JPH07333304A - Magnetic field detection sensor - Google Patents

Magnetic field detection sensor

Info

Publication number
JPH07333304A
JPH07333304A JP6130571A JP13057194A JPH07333304A JP H07333304 A JPH07333304 A JP H07333304A JP 6130571 A JP6130571 A JP 6130571A JP 13057194 A JP13057194 A JP 13057194A JP H07333304 A JPH07333304 A JP H07333304A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
detection sensor
field detection
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6130571A
Other languages
Japanese (ja)
Other versions
JP3161667B2 (en
Inventor
Masakatsu Senda
正勝 千田
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13057194A priority Critical patent/JP3161667B2/en
Publication of JPH07333304A publication Critical patent/JPH07333304A/en
Application granted granted Critical
Publication of JP3161667B2 publication Critical patent/JP3161667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a magnetic field detection sensor wherein signal output, S/N ratio, sensitivity, and signal detection accuracy are high, and parts configuration is simple. CONSTITUTION:On the surface of a detection conductor 2 with a pair of electrodes 1a and 1b at both ends, at least a magnetic body 4 is assigned directly or with a non-magnetic insulator in between. A transmission line 5 is connected to the electrodes 1a and 1b. The transmission line 5 is connected to a reflection characteristic measuring instrument, and when magnetic permeability of the magnetic body 4 is changed according to an external magnetic field, based on the changes of a reflection coefficient on the ends of electrodes 1a and 1b, an external magnetic field 7 is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁界検出センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field detecting sensor.

【0002】[0002]

【従来の技術】従来、磁界検出センサとしては、強磁性
体の異方性磁気抵抗効果(MR効果;Magneto−
Resistance effect)を利用した磁気
抵抗効果型センサ(MRセンサ)が多く使用されてき
た。MRセンサの構造を図8に示す。図中、符号10は
磁気抵抗素子であり、その長手方向の両端には電気導線
12a,12bが接続されている。したがって、電流は
図中矢印のように磁気抵抗素子10の長手方向Iに流れ
る。この素子10は前記電流方向Iに外部磁界Hが垂直
となるように配置される。この時の磁化方向Mの電流方
向Iに対する傾きがθで表わされている。この従来のM
Rセンサでは、前記素子10に平行に直流バイアス用導
体ライン13が設けられている。この導体ライン13に
は素子10と同様に両端に電気導線14a,14bが接
続されている。MR効果による抵抗Rの変化は次式で表
される。
2. Description of the Related Art Conventionally, as a magnetic field detecting sensor, an anisotropic magnetoresistive effect (MR effect; Magneto-) of a ferromagnetic material has been used.
A magnetoresistive effect type sensor (MR sensor) utilizing the resistance effect has been widely used. The structure of the MR sensor is shown in FIG. In the figure, reference numeral 10 is a magnetoresistive element, and electric conductors 12a and 12b are connected to both ends in the longitudinal direction thereof. Therefore, the current flows in the longitudinal direction I of the magnetoresistive element 10 as indicated by the arrow in the figure. The element 10 is arranged so that the external magnetic field H is perpendicular to the current direction I. The inclination of the magnetization direction M with respect to the current direction I at this time is represented by θ. This conventional M
In the R sensor, a DC bias conductor line 13 is provided in parallel with the element 10. Like the element 10, the conductor line 13 is connected at both ends with electric conductors 14a and 14b. The change in the resistance R due to the MR effect is expressed by the following equation.

【0003】[0003]

【数1】 R=R0 +ΔRcos2 θ …(1) ここで、R0 は磁化方向Mが電流方向Iと垂直になった
場合の抵抗、ΔRは磁化方向Mが電流方向Iと平行にな
った場合の抵抗とR0 との差、θは前記したように磁化
方向Mと電流方向Iとの間の角度である。MRセンサの
SN比はΔR/R0 (MR比)で表される。代表的なM
Rセンサ用材料としてはNiFe,NiCo,NiCu
合金などが挙げられる。NiFeにおける抵抗率の外部
磁界依存性を図9に示す。図9に見られるように、従来
のMRセンサのMR比はいずれも数%程度(室温)と低
く、またΔRそのものも小さな値でしかない。従って、
従来のMRセンサでは、信号出力、SN比、感度などが
低いという問題があった。
## EQU1 ## R = R 0 + ΔR cos 2 θ (1) Here, R 0 is the resistance when the magnetization direction M is perpendicular to the current direction I, and ΔR is the magnetization direction M is parallel to the current direction I. The difference between the resistance and R 0 in the case of the above, θ is the angle between the magnetization direction M and the current direction I as described above. The SN ratio of the MR sensor is represented by ΔR / R 0 (MR ratio). Representative M
NiFe, NiCo, NiCu as materials for R sensor
Examples include alloys. FIG. 9 shows the external magnetic field dependence of the resistivity of NiFe. As can be seen from FIG. 9, the MR ratio of the conventional MR sensor is as low as several% (room temperature), and ΔR itself is a small value. Therefore,
The conventional MR sensor has a problem that signal output, SN ratio, sensitivity, etc. are low.

【0004】最近、Fe/Cr多層膜において、MR比
が50%程度となる現象が発見され(巨大MR効果:
M.N.Baibich et al.,Phys.R
ev.Lett.,61,2472,’88)、高SN
比、高感度センサ用材料として期待されたが、動作温度
が4.2Kと極低温であり、また20kOeといった強
磁界印加が必要であるため、実用には向かない。さらに
抵抗の外部磁界依存性に大きなヒステリシスが現われる
ため、信号検出精度が低いという欠点もある。
Recently, in the Fe / Cr multilayer film, a phenomenon in which the MR ratio becomes about 50% was discovered (giant MR effect:
M. N. Baibich et al. , Phys. R
ev. Lett. , 61, 472, '88), high SN
Although it was expected as a material for high-sensitivity sensors, it is not suitable for practical use because its operating temperature is 4.2K, which is extremely low, and it requires the application of a strong magnetic field of 20 kOe. Further, since a large hysteresis appears in the dependence of the resistance on the external magnetic field, there is a drawback that the signal detection accuracy is low.

【0005】前記の(1)式から明らかなように、MR
効果は磁界反転に対して対称であるため、外部磁界の極
性を検出するためには、直流バイアス磁界を磁気抵抗素
子10に印加し動作点を移動させ、反対称性を持たす必
要がある。従来のMRセンサでは、そのため、図8に示
すように直流バイアス用導体ライン13を新たに設置す
る必要があった。しかし、この方法では、構成部品数が
増え、部品設計上、部品作製上、複雑さを伴うという欠
点があった。
As is clear from the above equation (1), the MR
Since the effect is symmetric with respect to the magnetic field reversal, in order to detect the polarity of the external magnetic field, it is necessary to apply a DC bias magnetic field to the magnetoresistive element 10 to move the operating point to have antisymmetry. Therefore, in the conventional MR sensor, it was necessary to newly install the DC bias conductor line 13 as shown in FIG. However, this method has a drawback in that the number of constituent parts is increased and complexity is involved in part designing, part manufacturing.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、従来
の磁界検出センサにおいて問題であった、信号出力の低
さ、SN比、感度、信号検出精度の低さ、および部品構
成の複雑さを解決した磁界検出センサを提供することで
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The problems to be solved by the present invention are low signal output, SN ratio, sensitivity, low signal detection accuracy, and complexity of parts configuration, which were problems in the conventional magnetic field detection sensor. It is to provide a magnetic field detection sensor that solves the above problem.

【0007】[0007]

【課題を解決するための手段】本発明の磁界検出センサ
は、一対の電極を両端に有する検出導体の表面に、直接
あるいは非磁性絶縁体を介して、少なくとも一つの磁性
体が配設され、前記電極には伝送線路が接続され、該伝
送線路は反射特性測定器に接続されてなり、前記磁性体
の透磁率が外部磁界に応じて変化する時、前記電極端で
の反射係数が変化することに基づいて前記外部磁界が検
出されることを特徴とする。
In the magnetic field detection sensor of the present invention, at least one magnetic body is disposed on the surface of a detection conductor having a pair of electrodes at both ends, directly or through a non-magnetic insulator. A transmission line is connected to the electrode, and the transmission line is connected to a reflection characteristic measuring device. When the magnetic permeability of the magnetic body changes according to an external magnetic field, the reflection coefficient at the electrode end changes. Based on this, the external magnetic field is detected.

【0008】前記構造において、磁性体は前記検出導体
の周囲を一周する閉磁路構造となっていることが好まし
く、さらに、前記磁性体は磁性層と非磁性絶縁層とが交
互に積層された多層構造磁性体とすることが好ましい。
この場合、磁性層の層厚は該磁性層の表皮深さより薄
く、非磁性絶縁層の層厚は前記磁性層間の電気的絶縁を
保ち得る厚さ以上に設定することが大切である。
In the above structure, it is preferable that the magnetic body has a closed magnetic circuit structure that goes around the detection conductor, and the magnetic body has a multilayer structure in which magnetic layers and nonmagnetic insulating layers are alternately laminated. It is preferable to use a structural magnetic material.
In this case, it is important that the layer thickness of the magnetic layer is thinner than the skin depth of the magnetic layer, and the layer thickness of the non-magnetic insulating layer is set to a thickness equal to or more than a thickness capable of maintaining electrical insulation between the magnetic layers.

【0009】また、前記磁性体は、短冊状に形成し、そ
の長辺方向が外部磁界方向と平行となるように設定する
ことが望ましい。ここで、磁性体は短辺方向を容易軸と
する一軸磁気異方性を有することが望ましい。
Further, it is desirable that the magnetic body is formed in a strip shape and is set so that the long side direction thereof is parallel to the external magnetic field direction. Here, the magnetic material preferably has uniaxial magnetic anisotropy with the easy axis in the short side direction.

【0010】さらに、前記構造において、反射特性測定
器の測定周波数が、磁性体の磁気共鳴周波数近傍である
ことが望ましい。
Further, in the above structure, it is desirable that the measurement frequency of the reflection characteristic measuring device is near the magnetic resonance frequency of the magnetic material.

【0011】[0011]

【作用】本発明の磁界検出センサは、従来の磁界検出セ
ンサと、部品構成、検出原理が異なる。
The magnetic field detection sensor of the present invention differs from the conventional magnetic field detection sensor in the parts configuration and the detection principle.

【0012】本発明の磁界検出センサによれば、外部磁
界変化に応じた磁性体の透磁率変化が敏感に反射係数の
変化に反映されるため、高信号出力、高SN比、高感度
となる。また、外部磁界依存性にヒステリシスが現われ
ないため、信号検出精度が高い。さらに、検出導体が、
直接バイアス用導体ラインを兼ねるため、部品構成が単
純となる。
According to the magnetic field detection sensor of the present invention, a change in the magnetic permeability of the magnetic material according to a change in the external magnetic field is sensitively reflected in the change in the reflection coefficient, so that a high signal output, a high SN ratio, and a high sensitivity are obtained. . Further, since hysteresis does not appear in the external magnetic field dependency, the signal detection accuracy is high. In addition, the sensing conductor
Since it also serves as the conductor line for bias directly, the component structure is simplified.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1および図2は本発明の磁界検出センサ
の実施例の正面図を示す図、図3(a)および図3
(b)はそれぞれ図1および図2のA−A′線に沿う断
面図を示す図である。一対の電極1a,1bを両端に有
する検出導体2の表面に、直接(図3(a))あるいは
非磁性絶縁体3を介して(図3(b))、少なくとも一
つの磁性体4が配設され、前記電極1a,1bには伝送
線路5が接続され、この伝送線路5は反射特性測定器6
に接続されている。なお、図中符号7は外部磁界を示
す。
1 and 2 are front views of an embodiment of the magnetic field detecting sensor of the present invention, FIG. 3 (a) and FIG.
FIG. 3B is a diagram showing a cross-sectional view taken along the line AA ′ of FIGS. 1 and 2. At least one magnetic body 4 is arranged on the surface of the detection conductor 2 having a pair of electrodes 1a and 1b at both ends, either directly (FIG. 3A) or via a non-magnetic insulator 3 (FIG. 3B). A transmission line 5 is connected to the electrodes 1a and 1b, and the transmission line 5 is a reflection characteristic measuring device 6
It is connected to the. Reference numeral 7 in the figure indicates an external magnetic field.

【0015】図1は磁性体4が複数個の場合、図2は磁
性体4が一個の場合、また、図3(a)は磁性体4が直
接検出導体2の表面に配設されている場合、図3(b)
は磁性体4が非磁性絶縁体3を介して検出導体2の表面
に配設されている場合である。
FIG. 1 shows a case where there are a plurality of magnetic bodies 4, FIG. 2 shows a case where there is one magnetic body 4, and FIG. 3A shows a case where the magnetic bodies 4 are directly arranged on the surface of the detection conductor 2. In case of Fig. 3 (b)
Shows the case where the magnetic body 4 is disposed on the surface of the detection conductor 2 via the non-magnetic insulator 3.

【0016】検出原理を説明する。電極1a,1b間の
インピーダンスZは、検出導体2のみのインピーダンス
0 と、磁性体4に由来するインピーダンスZm との和
として、
The detection principle will be described. The impedance Z between the electrodes 1a and 1b is the sum of the impedance Z 0 of only the detection conductor 2 and the impedance Z m derived from the magnetic body 4,

【0017】[0017]

【数2】 Z=Z0 +Zm …(2) で記述される。Zm は次式のように磁性体4の比透磁率
μr と周波数fとの積に比例する。
[Expression 2] Z = Z 0 + Z m (2) Z m is proportional to the product of the relative permeability μ r of the magnetic body 4 and the frequency f as in the following equation.

【0018】[0018]

【数3】 Zm ∝μr ×f …(3) 磁性体4の比透磁率μr は、外部磁界7の強度に応じて
有限値から零まで変化するため、インピーダンスZm
従って、インピーダンスZも変化する。本センサでは、
このインピーダンスZの変化を反射係数測定により測定
する。
Z m ∝ μ r × f (3) Since the relative permeability μ r of the magnetic body 4 changes from a finite value to zero according to the strength of the external magnetic field 7, the impedance Z m ,
Therefore, the impedance Z also changes. With this sensor,
This change in impedance Z is measured by reflection coefficient measurement.

【0019】なお、信号出力、SN比、感度を向上させ
るため、以下のような構造上の工夫を施すことが効果的
である。
In order to improve the signal output, SN ratio, and sensitivity, it is effective to make the following structural improvements.

【0020】磁性体4の透磁率変化を効率的に反射係数
変化に反映させるには、磁性体4が検出導体2の周囲を
一周する閉磁路構造とすることが、磁束漏れを抑えられ
る点で効果的である。例えば、図1,図2および図3で
は上下2個の磁性体4で検出導体2をサンドイッチする
閉磁路構造としている。
In order to efficiently reflect the change in the magnetic permeability of the magnetic body 4 in the change in the reflection coefficient, a closed magnetic circuit structure in which the magnetic body 4 makes one round around the detection conductor 2 is used in order to suppress magnetic flux leakage. It is effective. For example, in FIG. 1, FIG. 2 and FIG. 3, a closed magnetic circuit structure in which the detection conductor 2 is sandwiched by two upper and lower magnetic bodies 4 is used.

【0021】本センサの動作周波数は後述するように、
数百MHzの高周波となる。高周波では、周知の表皮効
果(skin effect)により磁性体の有効体積
が減少し、信号出力、SN比、感度が低下する。表皮効
果を回避する方法として、磁性体4の断面構造を、図4
に示すように磁性層41と非磁性絶縁層42とを交互に
積層した多層構造とすることが効果的である。この際、
磁性層41の層厚をこの磁性層41の表皮深さ(ski
n depth)より薄く、例えば1桁程度薄く設定
し、また非磁性絶縁層42の層厚を磁性層41間の電気
的絶縁を保ち得る厚さ以上に設定することが効果的であ
る。
The operating frequency of this sensor is as described below.
It becomes a high frequency of several hundred MHz. At high frequencies, the effective volume of the magnetic material decreases due to the well-known skin effect, and the signal output, SN ratio, and sensitivity decrease. As a method of avoiding the skin effect, the cross-sectional structure of the magnetic body 4 is shown in FIG.
It is effective to have a multilayer structure in which the magnetic layers 41 and the non-magnetic insulating layers 42 are alternately laminated as shown in FIG. On this occasion,
The layer thickness of the magnetic layer 41 is determined by the skin depth (ski
It is effective to set the thickness of the non-magnetic insulating layer 42 to be thinner than n depth), for example, by about one digit, and to set the thickness of the non-magnetic insulating layer 42 to a thickness that can maintain electrical insulation between the magnetic layers 41 or more.

【0022】外部磁界7に対する感度を向上させるに
は、磁性体4の形状を図1,図2および図3に示すよう
に外部磁界7方向と磁性体4の長辺方向が平行となる短
冊状とし、膜面内反磁界の影響を回避することが効果的
である。図5にNiFe膜における、反磁界係数の磁性
体形状依存性の実験結果を示す。膜厚は3μm、幅を5
μmとし、長さとの関係を示した。図から長さが200
μm(0.2mm)以上で反磁界の影響をほとんど無視
できることがわかる。
In order to improve the sensitivity to the external magnetic field 7, the shape of the magnetic body 4 is a strip shape in which the direction of the external magnetic field 7 and the long side direction of the magnetic body 4 are parallel as shown in FIGS. 1, 2 and 3. Therefore, it is effective to avoid the influence of the in-plane demagnetizing field. FIG. 5 shows the experimental results of the magnetic material shape dependence of the demagnetizing factor in the NiFe film. Thickness is 3μm, width is 5
μm, and the relationship with the length is shown. 200 length from the figure
It can be seen that the effect of the demagnetizing field can be almost ignored when the thickness is μm (0.2 mm) or more.

【0023】数百MHzの高周波磁界には一軸磁気異方
性の困難軸方向の磁化過程のみが応答する。検出導体2
から発生する高周波磁界の方向は検出導体2の円周方向
であるため、これと一軸磁気異方性の困難軸方向を一致
させるべく、磁性体4の短辺方向を容易軸とする一軸磁
気異方性を付与させる。
Only a magnetization process in the hard axis direction of uniaxial magnetic anisotropy responds to a high frequency magnetic field of several hundred MHz. Detection conductor 2
Since the direction of the high-frequency magnetic field generated from the magnetic field is the circumferential direction of the detection conductor 2, the uniaxial magnetic anisotropy with the easy axis in the short side direction of the magnetic body 4 is made to coincide with the hard axis direction of the uniaxial magnetic anisotropy. Gives direction.

【0024】また、極性検出機能を持たすには、検出導
体2に流した直流バイアス電流から生ずる直流バイアス
磁界を利用できる。この際、検出導体2が直流バイアス
用導体ラインを兼ねるため、部品構成が単純となる。
Further, in order to have a polarity detecting function, a DC bias magnetic field generated from the DC bias current flowing in the detecting conductor 2 can be used. At this time, since the detection conductor 2 also serves as a DC bias conductor line, the component structure is simplified.

【0025】以下に具体例を示す。図2,図3(a)の
タイプとし、磁性体4には図4の多層構造を採用した。
磁性層41にはNiFeを使用し、層厚は1μmオーダ
ーの表皮深さより十分薄い50nmとした。非磁性絶縁
層42にはSiO2 を使用し、層厚は磁性層41間の電
気的絶縁を保ち得る厚さである50nmとした。磁性体
4は総膜厚1.5μmとし、2個で検出導体2をサンド
イッチした。反磁界の影響を回避できるよう磁性体4の
幅は5μm、長さは200μmとした。磁性体4には短
辺方向が容易軸となる一軸異方性磁界3〜5 Oeを付
与した。検出導体2にはCuを使用し、検出導体2の幅
は10μm、厚さは2μm、長さは10μmとした。成
膜はイオンビームスパッタ法により、加工はフォトリソ
グラフ法により行った。成膜条件は、動作真空度Ar
1×10-4Torr、加速電圧1kV、基板温度室温〜
160℃とし、基板にはコーニングガラスを使用した。
一軸異方性磁界は成膜中、基板表面に平行に数百Oeの
静磁界を印加することにより付与した。伝送線路5には
50Ω系の同軸ケーブルを、反射特性測定器6にはネッ
トワークアナライザを使用した。測定は全て室温で行っ
た。
Specific examples are shown below. The type shown in FIGS. 2 and 3A is used, and the magnetic body 4 has the multilayer structure shown in FIG.
NiFe was used for the magnetic layer 41, and the layer thickness was 50 nm, which was sufficiently thinner than the skin depth of the order of 1 μm. SiO 2 was used for the nonmagnetic insulating layer 42, and the layer thickness was set to 50 nm, which is a thickness capable of maintaining electrical insulation between the magnetic layers 41. The magnetic substance 4 had a total film thickness of 1.5 μm, and two detection conductors 2 were sandwiched. The width of the magnetic body 4 was set to 5 μm and the length thereof was set to 200 μm so as to avoid the influence of the demagnetizing field. The magnetic body 4 was provided with a uniaxial anisotropic magnetic field of 3 to 5 Oe with the easy axis in the short side direction. Cu was used for the detection conductor 2, and the detection conductor 2 had a width of 10 μm, a thickness of 2 μm, and a length of 10 μm. Ion beam sputtering was used for film formation, and photolithography was used for processing. The film forming conditions are the operating vacuum degree Ar.
1 × 10 −4 Torr, acceleration voltage 1 kV, substrate temperature room temperature to
The temperature was set to 160 ° C., and Corning glass was used for the substrate.
The uniaxial anisotropic magnetic field was applied by applying a static magnetic field of several hundred Oe parallel to the substrate surface during film formation. A 50Ω coaxial cable was used for the transmission line 5, and a network analyzer was used for the reflection characteristic measuring device 6. All measurements were performed at room temperature.

【0026】本センサでは外部磁界7の強度に応じた比
透磁率μr の変化によるインピーダンスZの変化を反射
係数Γの測定により測定する。ここでは、図9との比較
のため、高周波抵抗値Rに換算した結果を示す。反射係
数Γと高周波抵抗値Rには以下の関係式が成り立つ。
In this sensor, the change in the impedance Z due to the change in the relative permeability μ r according to the strength of the external magnetic field 7 is measured by measuring the reflection coefficient Γ. Here, for comparison with FIG. 9, the result converted into the high frequency resistance value R is shown. The following relational expression holds between the reflection coefficient Γ and the high frequency resistance value R.

【0027】[0027]

【数4】 R=Real[(1+Γ)/(1−Γ)]×50(Ω) …(4) 図6に高周波抵抗Rの周波数特性を示す。実線は零磁界
状態、破線は十分大きな外部磁界を印加した状態でのR
値である。750MHzにおいて両者の差は、(5.8
−0.65)Ωの最大値となり、この時、MR比は
(5.8−0.65)/5.8=0.887(89%)
と、従来のMR効果に比較し、10倍以上の大きさとな
る。750MHz付近でR値が最大となるのは、この周
波数帯域が磁性体4に用いたNiFeの磁気共鳴周波数
600〜1000MHzに一致するためである。このこ
とから、大きなMR比を得るには、反射特性測定器6の
測定周波数を磁性体4の磁気共鳴周波数近傍に設定する
ことが効果的とわかる。また、図から3dB帯域幅で定
義される帯域幅は数百MHzと見積もられ、比較的広帯
域であることがわかる。例えば将来の高密度磁気記録に
は100MHz程度の帯域が要求されるが、本センサは
この要求に十分答えることができる。
## EQU00004 ## R = Real [(1 + .GAMMA.) / (1-.GAMMA.)]. Times.50 (.OMEGA.) (4) FIG. 6 shows the frequency characteristic of the high-frequency resistor R. The solid line is the zero magnetic field state, and the broken line is the R with a sufficiently large external magnetic field applied.
It is a value. At 750 MHz, the difference between the two is (5.8
It becomes the maximum value of −0.65) Ω, and at this time, the MR ratio is (5.8−0.65) /5.8=0.887 (89%).
Thus, the size is 10 times or more that of the conventional MR effect. The R value becomes maximum around 750 MHz because this frequency band matches the magnetic resonance frequency of 600 to 1000 MHz of NiFe used for the magnetic body 4. From this, it can be seen that in order to obtain a large MR ratio, it is effective to set the measurement frequency of the reflection characteristic measuring device 6 near the magnetic resonance frequency of the magnetic body 4. Further, from the figure, the bandwidth defined by the 3 dB bandwidth is estimated to be several hundred MHz, and it can be seen that the bandwidth is relatively wide. For example, a band of about 100 MHz is required for high density magnetic recording in the future, and this sensor can sufficiently meet this requirement.

【0028】図7に750MHzでの高周波抵抗値Rの
外部磁界依存性を示す。Rは磁性体4に用いたNiFe
の一軸異方性磁界である3〜5 Oe前後で大きく減少
し、数Oeでほぼ一定値となる。図9と比較すると、同
程度の外部磁界強度で飽和するが、抵抗の変化率が大き
い分だけ、本センサの方が高感度となる。また、図7の
特性には、ヒステリシスは現われず、検出精度も高いこ
とが確認できる。
FIG. 7 shows the external magnetic field dependence of the high frequency resistance value R at 750 MHz. R is NiFe used for the magnetic body 4
It greatly decreases around 3 to 5 Oe, which is a uniaxial anisotropic magnetic field, and becomes a substantially constant value at several Oe. Compared to FIG. 9, the sensor is saturated with an external magnetic field strength of the same degree, but the sensor has higher sensitivity due to the larger resistance change rate. Further, it can be confirmed that no hysteresis appears in the characteristics of FIG. 7 and the detection accuracy is high.

【0029】成膜法としては、イオンビームスパッタ法
以外に、RFスパッタ法、マグネトロンスパッタ法、蒸
着法などの方法が挙げられ、いずれも同様の効果を得る
ことができる。
As the film forming method, in addition to the ion beam sputtering method, a method such as an RF sputtering method, a magnetron sputtering method, a vapor deposition method and the like can be mentioned, and the same effect can be obtained.

【0030】磁性体4、磁性層41としては、Fe,C
o,Niをベースとした磁性材料、例えば、NiFeM
o,NiFeCu,NiFeCr,NiFeNb,Ni
FeTi,NiFeSi,FeSi,FeC,FeN,
CoFe,FeSiAl,FeB,FeBSi,CoB
Si,FeCoBSi,FeCoNiBSi,CoXa
(Xa:Y,Zr,Hf,Ti,Nb,Mo,W,R
e,Ni,Fe,Mn),CoXbXc(Xb:Y,Z
r,Hf,Ti,Nb,Mo,W,Re,Ni,Fe,
Mn、Xc:Y,Zr,Hf,Ti,Nb,Mo,W,
Re,Ni,Fe,Mn)を、また非磁性絶縁体3およ
び非磁性絶縁層42としては、SiO2 ,AlN,Al
23 ,BN,TiN,SiC,ポリエチレンナフタレ
ート(PEN),ポリエチレンテレフタレート(PE
T),ポリイミド,カプトン,フォトレジストを、検出
導体2としては、Cu,Al,Ag,Au,Pt,S
n,Cr,Zn,Inを使用でき、いずれも同様の効果
を得ることができる。
For the magnetic body 4 and the magnetic layer 41, Fe, C
Magnetic material based on o, Ni, for example, NiFeM
o, NiFeCu, NiFeCr, NiFeNb, Ni
FeTi, NiFeSi, FeSi, FeC, FeN,
CoFe, FeSiAl, FeB, FeBSi, CoB
Si, FeCoBSi, FeCoNiBSi, CoXa
(Xa: Y, Zr, Hf, Ti, Nb, Mo, W, R
e, Ni, Fe, Mn), CoXbXc (Xb: Y, Z
r, Hf, Ti, Nb, Mo, W, Re, Ni, Fe,
Mn, Xc: Y, Zr, Hf, Ti, Nb, Mo, W,
Re, Ni, Fe, Mn), and as the nonmagnetic insulator 3 and the nonmagnetic insulating layer 42, SiO 2 , AlN, Al.
2 O 3 , BN, TiN, SiC, polyethylene naphthalate (PEN), polyethylene terephthalate (PE
T), polyimide, Kapton, and photoresist, and Cu, Al, Ag, Au, Pt, S as the detection conductor 2.
n, Cr, Zn, In can be used, and the same effect can be obtained.

【0031】以上の結果から明らかなように、本発明の
磁界検出センサでは、従来のセンサに比べ、信号出力、
SN比、感度、信号検出精度が高く、また部品構成が単
純化するという改善があった。
As is clear from the above results, in the magnetic field detection sensor of the present invention, the signal output,
The SN ratio, sensitivity, signal detection accuracy are high, and the parts configuration is simplified.

【0032】[0032]

【発明の効果】以上説明したように、本発明の磁界検出
センサによれば、外部磁界変化に応じた磁性体の透磁率
変化が敏感に反射係数の変化に反映されるため、高信号
出力、高SN比、高感度となる。また、比較的広帯域で
あるため、高周波信号に対しても安定に検出可能とな
り、磁気記録の高記録密度化に対しても優れた有用性を
発揮できる。さらに、検出導体が、直流バイアス用導体
ラインを兼ねるため、部品構成が単純となり、構成部品
点数の削減、構成の簡易化による製造コストの低減、製
作工程の削減を図ることができ、量産性および経済性に
優れる。
As described above, according to the magnetic field detecting sensor of the present invention, a change in the magnetic permeability of the magnetic material in response to a change in the external magnetic field is sensitively reflected in the change in the reflection coefficient. High SN ratio and high sensitivity. Further, since it is in a relatively wide band, it becomes possible to stably detect even a high frequency signal, and it is possible to exhibit excellent usefulness even for increasing the recording density of magnetic recording. Furthermore, since the detection conductor also serves as a DC bias conductor line, the component configuration is simplified, the number of components can be reduced, the manufacturing cost can be reduced by simplifying the configuration, and the number of manufacturing steps can be reduced. Excellent economy.

【0033】さらに、従来の巨大MR効果と比較した場
合、室温での動作、直流バイアス磁界印加量の低減、低
磁界応答が可能であり、検出に際し特殊な周囲環境を設
定する必要がなく、さらにヒステリシスが小さく高精度
な検出が可能であり、検出系の構成が単純で感度が高
い、高信頼性を有するなど数々の優れた効果を奏する。
Further, when compared with the conventional giant MR effect, operation at room temperature, reduction of DC bias magnetic field application amount, and low magnetic field response are possible, and there is no need to set a special ambient environment for detection. It has a number of excellent effects such as low hysteresis, high-precision detection, simple detection system configuration, high sensitivity, and high reliability.

【0034】[0034]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁界検出センサの実施例の正面図を示
す図である。
FIG. 1 is a diagram showing a front view of an embodiment of a magnetic field detection sensor of the present invention.

【図2】本発明の磁界検出センサの別の実施例の正面図
を示す図である。
FIG. 2 is a diagram showing a front view of another embodiment of the magnetic field detection sensor of the present invention.

【図3】(a)は本発明の磁界検出センサの実施例の断
面図を示す図、(b)は本発明の磁界検出センサの別の
実施例の断面図を示す図である。
3A is a diagram showing a sectional view of an embodiment of a magnetic field detection sensor of the present invention, and FIG. 3B is a diagram showing a sectional view of another embodiment of the magnetic field detection sensor of the present invention.

【図4】本発明の磁界検出センサの磁性体の断面構造の
実施例を示す図である。
FIG. 4 is a diagram showing an example of a cross-sectional structure of a magnetic body of the magnetic field detection sensor of the present invention.

【図5】反磁界係数の磁性体形状依存性を示すグラフで
ある。
FIG. 5 is a graph showing the dependence of a demagnetizing factor on the shape of a magnetic body.

【図6】高周波抵抗の周波数特性を示すグラフである。FIG. 6 is a graph showing frequency characteristics of high frequency resistance.

【図7】高周波抵抗の外部磁界依存性を示すグラフであ
る。
FIG. 7 is a graph showing the external magnetic field dependence of the high frequency resistance.

【図8】従来の磁気抵抗効果型センサの構造を示す斜視
図である。
FIG. 8 is a perspective view showing a structure of a conventional magnetoresistive sensor.

【図9】従来の磁気抵抗効果型センサにおける抵抗率の
外部磁界依存性を示すグラグである。
FIG. 9 is a graph showing the dependence of the resistivity of the conventional magnetoresistive sensor on the external magnetic field.

【符号の説明】[Explanation of symbols]

1a,1b 電極 2 検出導体 3 非磁性絶縁体 4 磁性体 5 伝送線路 6 反射特性測定器 7 外部磁界 41 磁性層 42 非磁性絶縁層 1a, 1b Electrode 2 Detection conductor 3 Non-magnetic insulator 4 Magnetic substance 5 Transmission line 6 Reflection characteristic measuring instrument 7 External magnetic field 41 Magnetic layer 42 Non-magnetic insulating layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極を両端に有する検出導体の表
面に、直接あるいは非磁性絶縁体を介して、少なくとも
一つの磁性体が配設され、前記電極には伝送線路が接続
され、該伝送線路は反射特性測定器に接続されてなり、
前記磁性体の透磁率が外部磁界に応じて変化する時、前
記電極端での反射係数が変化することに基づいて前記外
部磁界が検出されることを特徴とする磁界検出センサ。
1. At least one magnetic body is provided on the surface of a detection conductor having a pair of electrodes at both ends, directly or through a non-magnetic insulator, and a transmission line is connected to the electrodes, and the transmission line is connected to the transmission line. The line is connected to a reflection characteristic measuring instrument,
A magnetic field detection sensor, wherein when the magnetic permeability of the magnetic material changes according to an external magnetic field, the external magnetic field is detected based on a change in a reflection coefficient at the electrode end.
【請求項2】 前記磁性体が前記検出導体の周囲を一周
する閉磁路構造となっていることを特徴とする請求項1
に記載の磁界検出センサ。
2. The magnetic body has a closed magnetic circuit structure that goes around the circumference of the detection conductor.
Magnetic field detection sensor described in.
【請求項3】 前記磁性体が磁性層と非磁性絶縁層とが
交互に積層された多層構造磁性体であることを特徴とす
る請求項1または2に記載の磁界検出センサ。
3. The magnetic field detection sensor according to claim 1, wherein the magnetic material is a multi-layer magnetic material in which magnetic layers and nonmagnetic insulating layers are alternately laminated.
【請求項4】 前記磁性層の層厚が該磁性層の表皮深さ
より薄く設定されるとともに、前記非磁性絶縁層の層厚
が前記磁性層間の電気的絶縁を保ち得る厚さ以上に設定
されていることを特徴とする請求項3に記載の磁界検出
センサ。
4. The layer thickness of the magnetic layer is set to be thinner than the skin depth of the magnetic layer, and the layer thickness of the non-magnetic insulating layer is set to a thickness equal to or larger than a thickness capable of maintaining electrical insulation between the magnetic layers. The magnetic field detection sensor according to claim 3, wherein:
【請求項5】 前記磁性体が短冊状に形成され、その長
辺方向が外部磁界方向と平行となるように設定されてい
ることを特徴とする請求項1ないし4のいずれかに記載
の磁界検出センサ。
5. The magnetic field according to claim 1, wherein the magnetic body is formed in a strip shape and its long side direction is set to be parallel to the external magnetic field direction. Detection sensor.
【請求項6】 前記磁性体が、短辺方向を容易軸とする
一軸磁気異方性を有することを特徴とする請求項5に記
載の磁界検出センサ。
6. The magnetic field detection sensor according to claim 5, wherein the magnetic body has a uniaxial magnetic anisotropy with the easy axis in the short side direction.
【請求項7】 前記反射特性測定器の測定周波数が、前
記磁性体の磁気共鳴周波数近傍であることを特徴とする
請求項1に記載の磁界検出センサ。
7. The magnetic field detection sensor according to claim 1, wherein a measurement frequency of the reflection characteristic measuring device is in the vicinity of a magnetic resonance frequency of the magnetic body.
JP13057194A 1994-06-13 1994-06-13 Magnetic field detection sensor Expired - Fee Related JP3161667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13057194A JP3161667B2 (en) 1994-06-13 1994-06-13 Magnetic field detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13057194A JP3161667B2 (en) 1994-06-13 1994-06-13 Magnetic field detection sensor

Publications (2)

Publication Number Publication Date
JPH07333304A true JPH07333304A (en) 1995-12-22
JP3161667B2 JP3161667B2 (en) 2001-04-25

Family

ID=15037431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13057194A Expired - Fee Related JP3161667B2 (en) 1994-06-13 1994-06-13 Magnetic field detection sensor

Country Status (1)

Country Link
JP (1) JP3161667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867405A (en) * 2019-09-26 2021-05-28 韩国烟草人参公社 System and device for generating an aerosol using a plurality of aerosol-generating substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867405A (en) * 2019-09-26 2021-05-28 韩国烟草人参公社 System and device for generating an aerosol using a plurality of aerosol-generating substrates
CN112867405B (en) * 2019-09-26 2024-04-16 韩国烟草人参公社 Aerosol-generating system, cigarette and aerosol-generating device

Also Published As

Publication number Publication date
JP3161667B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US7602588B2 (en) Magnetic sensor using a magnetic oscillation element
Hika et al. Magneto-impedance in sandwich film for magnetic sensor heads
US6255813B1 (en) Magnetic sensor comprising a soft magnetic thin film element
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
US7471491B2 (en) Magnetic sensor having a frequency filter coupled to an output of a magnetoresistance element
US4489357A (en) Magnetic sensor having multilayered flux conductors
EP0898315A1 (en) Tunneling magnetoresistive element, and magnetic sensor using the same
JPH04247607A (en) Magnetoresistance effect element
JP2001023131A (en) Method and apparatus for inspecting characteristic of tunnel magnetoresistance effect element, and hard disk drive apparatus
JP2002025012A (en) Magnetoresistive effect thin film magnetic head
US20050105221A1 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP3161667B2 (en) Magnetic field detection sensor
JPH0870149A (en) Magnetoresistance element
Fry et al. Off-diagonal magnetoimpedance in NiFe-Au-NiFe layered film and its application to linear magnetic sensors
JP3035838B2 (en) Magnetoresistance composite element
US3490034A (en) Magnetometer utilizing the delaying effect of a magnetic transmission line
JP2001217478A (en) Magnetic resistance element
JP3203547B2 (en) Magnetic sensing element
JP3282444B2 (en) Magnetoresistive element
JP3385501B2 (en) Magnetic sensing element
JPH0763832A (en) Magnetic sensor and method for detecting magnetic field
JPH07262523A (en) Magnetic head
JP3496848B2 (en) Magnetic field detector
US20210270914A1 (en) Magnetic sensing devices based on interlayer exchange-coupled magnetic thin films
JP3005616B2 (en) Method for measuring magnetic permeability of soft magnetic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees