JPH07332783A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH07332783A
JPH07332783A JP12739594A JP12739594A JPH07332783A JP H07332783 A JPH07332783 A JP H07332783A JP 12739594 A JP12739594 A JP 12739594A JP 12739594 A JP12739594 A JP 12739594A JP H07332783 A JPH07332783 A JP H07332783A
Authority
JP
Japan
Prior art keywords
refrigerant
desiccant
desiccant container
pipe
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12739594A
Other languages
Japanese (ja)
Inventor
Takayoshi Hamada
高義 濱田
Masanori Taki
昌徳 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12739594A priority Critical patent/JPH07332783A/en
Publication of JPH07332783A publication Critical patent/JPH07332783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively remove moisture and foreign matter such as a wear powder, etc., without rescattering from a refrigerant and to reduce the pressure loss of the refrigerant in a refrigerator using a hydroflourocarbon(H.F.C) refrigerant containing a large water content. CONSTITUTION:A refrigerant using an H.F.C refrigerant comprises a desiccant vessel 9 having a larger inner diameter than that of refrigerant tubes 17, 18 and a zeolite desiccant 10 partly in the tubes 17, 18, and a unidirectional flow means having four check valves 13, 14, 15, 16 or four solenoid valves before and after the vessel, wherein a refrigerant flow is always unidirectional at the times of both cooling and heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハイドロフルオロカー
ボン(以下H.F.Cという)系冷媒を用いる冷凍装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a hydrofluorocarbon (hereinafter referred to as HFC) refrigerant.

【0002】[0002]

【従来の技術】空調用冷凍装置では、従来C.F.C
(クロロフルオロカーボン)系冷媒やH.C.FC系冷
媒(CHClF2 )を使用して冷房と暖房を行ってい
る。
2. Description of the Related Art Conventional refrigeration systems for air conditioning use C.I. F. C
(Chlorofluorocarbon) type refrigerant or H. C. FC type refrigerant (CHClF 2 ) is used for cooling and heating.

【0003】図4は、冷凍装置に乾燥剤容器を用いた場
合の冷媒の流れを示す。9はフィルタ乾燥剤10が充填
された乾燥剤容器である。冷房時には冷媒配管には矢印
7、8に示すように冷媒が流れ、また、暖房時には矢印
11、12に示すように冷房時とは逆方向に冷媒が流れ
る。従って、乾燥剤容器9内では、冷房時には矢印aに
示すように冷媒が流れ、暖房時には矢印bに示すように
逆方向に冷媒が流れる。
FIG. 4 shows the flow of the refrigerant when a desiccant container is used in the refrigeration system. A desiccant container 9 is filled with a filter desiccant 10. During cooling, the refrigerant flows through the refrigerant pipes as indicated by arrows 7 and 8, and during heating, the refrigerant flows in the direction opposite to that during cooling as indicated by arrows 11 and 12. Therefore, in the desiccant container 9, the refrigerant flows as shown by the arrow a during cooling and flows in the opposite direction as shown by the arrow b during heating.

【0004】なお、通常冷凍装置内の含有水分は低濃度
であるために、冷凍システム内には前記フィルタ乾燥剤
以外の乾燥剤は装着されていない。
Since the water content in the refrigeration system is usually low, no desiccant other than the filter desiccant is installed in the refrigeration system.

【0005】[0005]

【発明が解決しようとする課題】H.F.C系の冷媒
(含混合冷媒)を使用した冷凍装置では、H.F.C系
冷媒の潤滑油への溶解性不足のために、従来の鉱油系又
はアルキルベンゼン系潤滑油ではなくエステル系潤滑油
を使用する必要がある。ところが、H.F.C系冷媒
は、従来のC.F.C系及びH.C.FC系冷媒よりも
含有水分が多く、また、エステル系潤滑油は、前記の鉱
油系及びアルキルベンゼン系潤滑油より水分含有率が高
い。
[Problems to be Solved by the Invention] F. In a refrigerating apparatus using a C-based refrigerant (mixed refrigerant), H.264. F. Due to lack of solubility of the C-based refrigerant in the lubricating oil, it is necessary to use the ester-based lubricating oil instead of the conventional mineral oil-based or alkylbenzene-based lubricating oil. However, H. F. C-based refrigerants are conventional C.I. F. C system and H.I. C. The water content is higher than that of the FC refrigerant, and the ester lubricating oil has a higher water content than the mineral oil-based and alkylbenzene-based lubricating oils.

【0006】このように、冷媒と潤滑油の水分含有率が
高いと、冷凍システム内への持込み水分が増加すること
となり、これによってエステル油との加水分解反応によ
りエステル油が老化して全酸価値を上昇させ、長時間運
転すると全酸価値の上昇による金属材料の腐食等が発生
する。また、H.F.C系冷媒では潤滑性が不足するこ
とにより摩耗量は従来のC.F.C系及びH.C.FC
系冷媒の使用時よりも増加する傾向が見受けられる。従
って、H.F.C系冷媒使用時には冷凍システム内の水
分と摩耗粉の除去が信頼性向上の観点から重要である。
As described above, when the water content of the refrigerant and the lubricating oil is high, the amount of water carried into the refrigeration system increases, which causes the ester oil to age due to the hydrolysis reaction with the ester oil and the total acid content. When the value is increased and the product is operated for a long time, the corrosion of the metal material occurs due to the increase in the total acid value. In addition, H. F. Due to lack of lubricity in C-based refrigerants, the amount of wear is less than that of conventional C.I. F. C system and H.I. C. FC
It can be seen that the tendency is to increase compared to when using a system refrigerant. Therefore, H. F. When using a C-based refrigerant, it is important to remove water and abrasion powder in the refrigeration system from the viewpoint of improving reliability.

【0007】従来の冷房冷凍運転(冷専)では、冷媒の
流れ方向が常時一方向であるため図4に示すフィルタ乾
燥剤を使用しても問題はない。しかし、冷房と暖房を併
用する空調機においては、フィルタ乾燥剤を通る冷媒の
流れは冷房時と暖房時では逆になる。フィルタ乾燥剤で
捕集された水分は、冷媒の流れが逆になっても捕集され
たままであるが、フィルタ乾燥剤で捕集された摩耗粉等
の異物は、冷媒の流れが逆になると散逸し、信頼性を損
うこととなる。
In the conventional cooling / freezing operation (cooling only), since the flow direction of the refrigerant is always one direction, there is no problem even if the filter desiccant shown in FIG. 4 is used. However, in an air conditioner that uses both cooling and heating, the flow of refrigerant through the filter desiccant is opposite during cooling and during heating. Moisture collected by the filter desiccant remains collected even when the flow of the refrigerant is reversed, but foreign matter such as abrasion powder collected by the filter desiccant becomes reverse when the flow of the refrigerant is reversed. It will be dissipated, and reliability will be lost.

【0008】本発明は、以上の問題点を解決することが
できる冷凍装置を提供しようとするものである。
The present invention is intended to provide a refrigerating apparatus which can solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明は、次の手段を講
じた。 (1) H.F.C系冷媒を使用する冷凍装置におい
て、冷媒循環経路を構成する冷媒配管の一部に冷媒配管
内径より更に大きい内径を有すると共にゼオライト系乾
燥剤が充填された乾燥剤容器を配設し、同乾燥剤容器の
前後に冷媒の一方向流れ手段を取り付けて冷・暖房運転
時に冷媒流れを常時一定方向としたことを特徴とする。 (2) 前記(1)の冷凍装置において、前記一方向流
れ手段は、乾燥剤容器の前後の冷媒配管に設けられそれ
ぞれ一方向への冷媒の流れを許容する第1及び第2の逆
止弁、第2の逆止弁の乾燥剤容器と反対側の位置で冷媒
配管より分岐し第1の逆止弁と乾燥剤容器との間で冷媒
配管に合流する第1の分岐配管に設けられ前記第1及び
第2の逆止弁とは逆方向への冷媒の流れを許容する第3
の逆止弁、及び第2の逆止弁と乾燥剤容器との間で冷媒
配管から分岐し第1の逆止弁の乾燥剤容器と反対側の位
置で冷媒配管に合流する第2の分岐配管に設けられ前記
第1及び第2の逆止弁とは逆方向への冷媒の流れを許容
する第4の逆止弁よりなることを特徴とする。 (3) 前記(1)の冷凍装置において、前記一方向流
れ手段は、乾燥剤容器の前後の冷媒配管にそれぞれ設け
られた第1及び第2の電磁弁、及び冷媒配管の第1の電
磁弁の前と後の部分をそれぞれ冷媒配管の第2の電磁弁
の前と後の部分に接続する2本の連絡管の各々に設けら
れた第3及び第4の電磁弁からなることを特徴とする。
The present invention has taken the following means. (1) H. F. In a refrigeration apparatus using a C-based refrigerant, a desiccant container having an inner diameter larger than the inner diameter of the refrigerant pipe and filled with a zeolite-based desiccant is provided in a part of the refrigerant pipe forming the refrigerant circulation path, and the same drying is performed. It is characterized in that a one-way flow means of the refrigerant is attached to the front and rear of the agent container to keep the flow of the refrigerant always constant during the cooling / heating operation. (2) In the refrigerating apparatus of (1), the one-way flow means is provided in the refrigerant pipes in front of and behind the desiccant container, and each of the first and second check valves allows the refrigerant to flow in one direction. Provided in a first branch pipe that branches from the refrigerant pipe at a position opposite to the desiccant container of the second check valve and joins the refrigerant pipe between the first check valve and the desiccant container The third that allows the flow of the refrigerant in the opposite direction to the first and second check valves
Check valve, and a second branch that branches from the refrigerant pipe between the second check valve and the desiccant container and joins the refrigerant pipe at a position on the opposite side of the first check valve from the desiccant container. It is characterized in that it comprises a fourth check valve which is provided in the pipe and allows the flow of the refrigerant in the opposite direction to the first and second check valves. (3) In the refrigerating apparatus of (1), the one-way flow means includes first and second solenoid valves provided in refrigerant pipes before and after the desiccant container, and a first solenoid valve of the refrigerant pipe. And a third solenoid valve provided on each of the two connecting pipes that connect the front and rear portions of the same to the front and rear portions of the second solenoid valve of the refrigerant pipe, respectively. To do.

【0010】[0010]

【作用】前記本発明(1)は、冷媒循環経路を構成する
冷媒配管に乾燥剤容器を配設し、その前後に冷媒の一方
向流れ手段を取り付けているために、冷房時、暖房時共
に常にゼオライト系乾燥剤中の冷媒の流れが一方向とな
り、冷媒中の水分と潤滑油中の水分が吸着除去されると
共に摩耗粉等の異物を常時捕集し、飛散を防止する作用
を有する。
In the present invention (1), since the desiccant container is arranged in the refrigerant pipe constituting the refrigerant circulation path and the one-way flow means of the refrigerant is attached before and after the desiccant container, both in cooling and heating. The flow of the refrigerant in the zeolite desiccant is always in one direction, and the water in the refrigerant and the water in the lubricating oil are adsorbed and removed, and at the same time, foreign matter such as abrasion powder is constantly trapped to prevent scattering.

【0011】例えば、約100〜200時間冷凍装置が
稼働すると、冷媒循環系内の水分はほとんどゼオライト
系乾燥剤に吸着されて、その後は低水分濃度下での運転
となる。
For example, when the refrigerating apparatus is operated for about 100 to 200 hours, most of the water in the refrigerant circulation system is adsorbed by the zeolite desiccant, and thereafter the operation is performed under a low water concentration.

【0012】また、ゼオライト系乾燥剤を充填する乾燥
剤容器は、前記のように冷媒配管より更に大きい内径を
有しているため冷媒の圧損は無視できる程度に低下し、
かつ、水分と摩耗粉等の異物が充分に捕集される。
Further, since the desiccant container filled with the zeolite desiccant has an inner diameter larger than that of the refrigerant pipe as described above, the pressure loss of the refrigerant is reduced to a negligible level,
In addition, foreign matters such as water and abrasion powder are sufficiently collected.

【0013】前記本発明(2)は、前記の手段を備えて
いるために、冷房時又は暖房時において、冷媒循環経路
に一方の方向に冷媒が流れる場合には、第1及び第2の
逆止弁は冷媒の流れを許容し、第3及び第4の逆止弁は
冷媒の流れを阻止する。従って、冷媒は、順次第1の逆
止弁、乾燥剤容器及び第2の逆止弁を通って流れること
になる。他方、暖房時又は冷房時において冷媒循環経路
に前記とは逆方向に冷媒が流れる場合には、第1及び第
2の逆止弁は冷媒の流れを阻止し、第3及び第4の逆止
弁は冷媒の流れを許容する。従って、冷媒は、第3の逆
止弁が設けられた第1の分岐配管より前記第1の逆止弁
側から乾燥剤容器に導入され、乾燥剤容器の前記第2の
逆止弁側から排出され第4の逆止弁が設けられた第2の
分岐配管を流れる。以上の通り、冷房時にも暖房時に
も、乾燥剤容器を前記第1の逆止弁側から前記第2の逆
止弁側へと常に一方向へ冷媒を流すことができる。
Since the present invention (2) is provided with the above-mentioned means, when the refrigerant flows in the refrigerant circulation path in one direction during cooling or heating, the first and second reverse directions are provided. The stop valve allows the flow of the refrigerant, and the third and fourth check valves block the flow of the refrigerant. Thus, the refrigerant will flow sequentially through the first check valve, the desiccant container and the second check valve. On the other hand, when the refrigerant flows in the opposite direction to the refrigerant circulation path during heating or cooling, the first and second check valves block the flow of the refrigerant, and the third and fourth check valves. The valve allows the flow of refrigerant. Therefore, the refrigerant is introduced into the desiccant container from the first check valve side through the first branch pipe provided with the third check valve, and from the second check valve side of the desiccant container. It is discharged and flows through the second branch pipe provided with the fourth check valve. As described above, the refrigerant can always flow in one direction from the first check valve side to the second check valve side in the desiccant container during both cooling and heating.

【0014】前記本発明(3)は、前記の手段を備えて
いるために、冷房時又は暖房時において冷媒循環経路に
一方向に冷媒が流れる場合には、第1及び第2の電磁弁
を閉じ、第3及び第4の電磁弁を開く。これによって、
冷媒は、第3の電磁弁が設けられた連絡管を通って第2
の電磁弁側から乾燥剤容器に入り、第1の電磁弁側で乾
燥剤容器から排出され第4の電磁弁が設けられた連絡管
を通って流れる。他方、暖房時又は冷房時において冷媒
循環経路に逆方向に冷媒が流れる場合には、第1及び第
2の電磁弁を開き、第3及び第4の電磁弁を閉じる。こ
れによって、冷媒は、順次第1の電磁弁、乾燥剤容器及
び第2の電磁弁を通って流れる。以上の通り、冷房時に
も暖房時にも、冷媒は乾燥剤容器内を常に一方向へ流れ
ることになる。
Since the present invention (3) is provided with the above-mentioned means, when the refrigerant flows in one direction in the refrigerant circulation path during cooling or heating, the first and second solenoid valves are provided. Close and open the third and fourth solenoid valves. by this,
The refrigerant passes through the connecting pipe provided with the third solenoid valve to the second
From the electromagnetic valve side into the desiccant container, is discharged from the desiccant container on the first electromagnetic valve side, and flows through the connecting pipe provided with the fourth electromagnetic valve. On the other hand, when the refrigerant flows in the opposite direction to the refrigerant circulation path during heating or cooling, the first and second solenoid valves are opened and the third and fourth solenoid valves are closed. This causes the refrigerant to flow sequentially through the first solenoid valve, the desiccant container, and the second solenoid valve. As described above, the refrigerant always flows in one direction in the desiccant container both during cooling and during heating.

【0015】[0015]

【実施例】本発明の第1の実施例を、図1及び図2によ
って説明する。本実施例は、H.F.C系冷媒を用いる
冷凍装置に係り、図2に示すように、モータ内蔵型の圧
縮機3、凝縮器4、フィルタ乾燥剤容器9、蒸発器6及
びアキュムレータ2を順次接続して冷媒循環経路を構成
する冷媒配管1を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. This embodiment is based on H.264. F. With regard to a refrigerating apparatus using a C-based refrigerant, as shown in FIG. 2, a compressor 3 with a built-in motor, a condenser 4, a filter desiccant container 9, an evaporator 6 and an accumulator 2 are sequentially connected to form a refrigerant circulation path. It is provided with a refrigerant pipe 1 that constitutes it.

【0016】図1に示すように、蒸発器6と乾燥剤容器
9を接続する冷媒配管17には、蒸発器6側から凝縮器
4側への一方向の冷媒の流れを許容し逆方向の冷媒の流
れを阻止する第1の逆止弁13が設けられ、また、乾燥
剤容器9と凝縮器4を接続する冷媒配管18には、蒸発
器6側から凝縮器4側への一方向の冷媒の流れを許容し
逆方向の冷媒の流れを阻止する第2の逆止弁14が設け
られている。
As shown in FIG. 1, the refrigerant pipe 17 connecting the evaporator 6 and the desiccant container 9 allows a unidirectional flow of the refrigerant from the evaporator 6 side to the condenser 4 side while allowing the refrigerant to flow in the opposite direction. A first check valve 13 that blocks the flow of the refrigerant is provided, and the refrigerant pipe 18 that connects the desiccant container 9 and the condenser 4 has a one-way direction from the evaporator 6 side to the condenser 4 side. A second check valve 14 is provided that allows the flow of the refrigerant and blocks the flow of the refrigerant in the opposite direction.

【0017】前記冷媒配管18の第2の逆止弁14の乾
燥剤容器9の反対側(凝縮器側)の位置より第1の分岐
配管19が分岐し、同分岐配管19は第1の逆止弁13
と乾燥剤容器9との間において前記冷媒配管17に合流
している。また、乾燥剤容器9と第2の逆止弁14との
間で前記冷媒配管18より第2の分岐配管20が分岐
し、同分岐配管20は前記冷媒配管17の第1の逆止弁
13の乾燥剤容器9の反対側(蒸発器側)の位置で冷媒
配管17に合流している。前記第1及び第2の分岐配管
19、20には、それぞれ凝縮器側から蒸発器側への冷
媒の流れを許容し逆方向の冷媒の流れを阻止する第3及
び第4の逆止弁15、16が設けられている。
A first branch pipe 19 branches from the position of the second check valve 14 of the refrigerant pipe 18 on the opposite side (condenser side) of the desiccant container 9, and the branch pipe 19 is the first reverse pipe. Stop valve 13
And the desiccant container 9 are joined to the refrigerant pipe 17. In addition, a second branch pipe 20 branches from the refrigerant pipe 18 between the desiccant container 9 and the second check valve 14, and the branch pipe 20 connects the first check valve 13 of the refrigerant pipe 17. It joins the refrigerant pipe 17 at a position on the opposite side (evaporator side) of the desiccant container 9. In the first and second branch pipes 19 and 20, respectively, third and fourth check valves 15 that allow the flow of the refrigerant from the condenser side to the evaporator side and block the flow of the refrigerant in the opposite direction. , 16 are provided.

【0018】前記乾燥剤容器9は、環状又は円筒状に構
成され、同乾燥剤容器9内にはゼオライト系のフィルタ
乾燥剤10が充填されており、また、同乾燥剤容器9は
冷媒配管17、18の内径より更に大きい内径を有して
いる。また、冷媒は、乾燥剤容器9内において図1中矢
印に示すように内方から外方へ向ってフィルタ乾燥剤1
0を通過するようになっている。
The desiccant container 9 is formed in an annular shape or a cylindrical shape. The desiccant container 9 is filled with a zeolite-based filter desiccant 10, and the desiccant container 9 is provided with a refrigerant pipe 17. , 18 has a larger inner diameter than the inner diameter. Further, the refrigerant flows in the desiccant container 9 from the inside to the outside as shown by the arrow in FIG.
It is designed to pass 0.

【0019】本実施例において、冷房時には、冷媒7
は、図1中矢印に示すように蒸発器側から冷媒配管17
を通り、第1の逆止弁13を経て乾燥剤容器9内に導入
されてフィルタ乾燥剤10によって水分と摩耗粉等の異
物が捕集された上、冷媒8は、矢印に示すように乾燥剤
容器9より、第2の逆止弁14を経て凝縮器側へ流れ
る。
In this embodiment, the refrigerant 7 is used during cooling.
Is the refrigerant pipe 17 from the evaporator side as shown by the arrow in FIG.
After passing through the first check valve 13 and being introduced into the desiccant container 9, the filter desiccant 10 collects moisture and foreign matter such as abrasion powder, and the refrigerant 8 dries as shown by the arrow. It flows from the agent container 9 to the condenser side through the second check valve 14.

【0020】一方、暖房時には、冷媒11は、図1中矢
印に示すように凝縮器側から冷媒配管18、第1の分岐
配管19、第3の逆止弁15を通って第1の逆止弁13
の側から乾燥剤容器9内に導入され、フィルタ乾燥剤1
0によって水分と摩耗粉等の異物が捕集された上、冷媒
12は、矢印に示すように乾燥剤容器9の第2の逆止弁
14側から排出され、第2の分岐配管20、第4の逆止
弁16を経て冷媒配管17に入り蒸発器側へ流れる。
On the other hand, during heating, the refrigerant 11 passes through the refrigerant pipe 18, the first branch pipe 19, and the third check valve 15 from the condenser side as shown by the arrow in FIG. Valve 13
Of the filter desiccant 1 introduced into the desiccant container 9 from the side of
In addition to collecting water and foreign matter such as abrasion powder by 0, the refrigerant 12 is discharged from the second check valve 14 side of the desiccant container 9 as shown by the arrow, and the second branch pipe 20, After passing through the check valve 16 of No. 4, it enters the refrigerant pipe 17 and flows to the evaporator side.

【0021】以上の通り本実施例では、冷房時にも暖房
時にもH.F.C系冷媒は乾燥剤容器9内を常に一方向
に流れることになる。従って、フィルタ乾燥剤10によ
ってH.F.C系冷媒から捕集された水分と摩耗粉等の
異物が散逸することが防止される。
As described above, according to the present embodiment, the H.V. F. The C-based refrigerant always flows in the desiccant container 9 in one direction. Therefore, H. F. Dispersion of water and foreign matter such as abrasion powder collected from the C-based refrigerant is prevented.

【0022】また、乾燥剤容器9の内径は、冷媒配管1
7、18の内径より大きくされているために、乾燥剤容
器9内における冷媒の圧損を小さくすることができ、か
つ、水分と摩耗粉等の異物を効率よく捕集することがで
きる。
Further, the inner diameter of the desiccant container 9 is equal to that of the refrigerant pipe 1.
Since the inner diameter is larger than the inner diameters of 7 and 18, the pressure loss of the refrigerant in the desiccant container 9 can be reduced, and foreign matters such as water and abrasion powder can be efficiently collected.

【0023】本発明の第2の実施例を、図3によって説
明する。本実施例は、前記の第1の実施例における第1
ないし第4の逆止弁と第1及び第2の分岐配管を廃し
て、以下に説明する電磁弁と連絡管を設けたものであ
る。
The second embodiment of the present invention will be described with reference to FIG. This embodiment is the first embodiment of the first embodiment.
Or, the fourth check valve and the first and second branch pipes are eliminated, and a solenoid valve and a connecting pipe described below are provided.

【0024】即ち、乾燥剤容器9と蒸発器とを接続する
冷媒配管17に第1の電磁弁31が設けられ、また、乾
燥剤容器9と凝縮器とを接続する冷媒配管18に第2の
電磁弁32が設けられている。
That is, the first electromagnetic valve 31 is provided in the refrigerant pipe 17 connecting the desiccant container 9 and the evaporator, and the second electromagnetic valve 31 is provided in the refrigerant pipe 18 connecting the desiccant container 9 and the condenser. A solenoid valve 32 is provided.

【0025】冷媒配管17の前記第1の電磁弁31より
蒸発器側の部分と冷媒配管18の乾燥剤容器9と前記第
2の電磁弁32の間の部分とは第1の連絡管41で接続
されており、また、冷媒配管17の前記第1の電磁弁3
1と乾燥剤容器9の間の部分と冷媒配管の前記第2の電
磁弁32より凝縮器側の部分とは第2の連絡管42で接
続されている。前記第1及び第2の連絡管41、42に
は、それぞれ第3及び第4の電磁弁33、34が設けら
れている。
A portion of the refrigerant pipe 17 on the evaporator side of the first electromagnetic valve 31 and a portion of the refrigerant pipe 18 between the desiccant container 9 and the second electromagnetic valve 32 are connected by a first connecting pipe 41. The first solenoid valve 3 connected to the refrigerant pipe 17
A portion between 1 and the desiccant container 9 and a portion of the refrigerant pipe on the condenser side of the second solenoid valve 32 are connected by a second connecting pipe 42. Third and fourth electromagnetic valves 33 and 34 are provided on the first and second communication pipes 41 and 42, respectively.

【0026】本実施例では、冷房時には、電磁弁31、
32を閉とし電磁弁33、34を開とする。これによっ
て、冷媒は、実線矢印Aに示すように、蒸発器側から冷
媒配管17、第1の連絡管41及び冷媒配管18を通っ
て乾燥剤容器9に導入され、更に乾燥剤容器9から冷媒
配管17、第2の連絡管42及び冷媒配管18を通って
凝縮器側へ流れる。
In this embodiment, the solenoid valve 31,
32 is closed and solenoid valves 33 and 34 are opened. As a result, the refrigerant is introduced into the desiccant container 9 from the evaporator side through the refrigerant pipe 17, the first communication pipe 41, and the refrigerant pipe 18, as shown by the solid arrow A, and further from the desiccant container 9 to the refrigerant. It flows to the condenser side through the pipe 17, the second connecting pipe 42 and the refrigerant pipe 18.

【0027】一方、暖房時には、電磁弁31、32を開
とし電磁弁33、34を閉とする。これによって、冷媒
は、点線矢印Bに示すように、凝縮器側から冷媒配管1
8を経て乾燥剤容器9に導入され、更に乾燥剤容器9か
ら冷媒配管17を通って蒸発器側へ流れる。
On the other hand, during heating, the solenoid valves 31 and 32 are opened and the solenoid valves 33 and 34 are closed. As a result, the refrigerant flows from the condenser side to the refrigerant pipe 1 as shown by the dotted arrow B.
8 is introduced into the desiccant container 9 and further flows from the desiccant container 9 through the refrigerant pipe 17 to the evaporator side.

【0028】図3の矢印A、Bに示すように、冷媒は、
冷房時においても暖房時においても、乾燥剤容器9内を
同一の方向に流れることとなり、前記第1の実施例と同
様に、フィルタ乾燥剤によってH.F.C系冷媒から捕
集された水分と摩耗粉等の異物が散逸することを防止す
ることができる。
As shown by arrows A and B in FIG. 3, the refrigerant is
Both during cooling and during heating, they flow in the same direction in the desiccant container 9 and, as in the first embodiment, H. F. It is possible to prevent the moisture collected from the C-based refrigerant and foreign matter such as abrasion powder from being dissipated.

【0029】次に、本発明について、空調用冷・暖房機
を使用して実施したフィールド試験について説明する。
冷凍機は約4000kcal/Hrの冷凍能力を有する機種を
使用した。図2に示す冷凍装置を使用して冷媒はR−1
34a(CF3 CH2 F)を使用し、乾燥剤容器は図1
に示す逆止弁付きの円筒状型のものとし、これにフィル
タ乾燥剤約3gを充填した。
Next, the present invention will be described with respect to a field test conducted by using an air conditioner cooling / heating machine.
As the refrigerator, a model having a refrigerating capacity of about 4000 kcal / Hr was used. Using the refrigerating apparatus shown in FIG. 2, the refrigerant is R-1.
34a (CF 3 CH 2 F) is used, and the desiccant container is shown in FIG.
A cylindrical type with a check valve shown in Fig. 3 was filled with about 3 g of filter desiccant.

【0030】油0.6リットル、冷媒2kgを充填後、各
々の水分濃度を計測すると共に油中の異物濃度をそれぞ
れ経過時間毎に計測した。その結果を表1に示す。
After filling 0.6 liter of oil and 2 kg of refrigerant, the water concentration of each was measured and the concentration of foreign matter in the oil was measured at each elapsed time. The results are shown in Table 1.

【0031】なお、冷房及び暖房運転は交互に100Hr
毎に変更して計2000Hr運転した。
The cooling and heating operations are alternately performed for 100 hours.
It changed every time and operated for a total of 2000 hours.

【0032】[0032]

【表1】 [Table 1]

【0033】前記表1に示すように、約3gのフィルタ
乾燥剤で冷媒及び油中の水分除去が可能であり、また、
長時間の運転でも何等不具合は発生しなかった。
As shown in Table 1, about 3 g of filter desiccant can remove water in the refrigerant and oil, and
No problems occurred during long-term driving.

【0034】ちなみに、従来は、2000Hr耐久試験時
フィルタ乾燥剤への摩耗粉の付着及び再飛散による異物
量の増大等が認められ、不具合の発生原因の一つとして
異物の再飛散があった。しかし、本発明では、逆止弁操
作により再飛散が全くないと共に水分除去も可能とな
り、不具合現象は全く認められなかった。
By the way, conventionally, during the 2000 Hr durability test, the amount of foreign matter was increased due to the adhesion of abrasion powder to the filter desiccant and the re-dispersion, and the foreign matter was re-dispersed as one of the causes of the trouble. However, in the present invention, there is no re-scattering due to the operation of the check valve, and it is possible to remove water, and no trouble phenomenon was observed.

【0035】[0035]

【発明の効果】本発明は、特許請求の範囲の請求項1な
いし3に記載された構成を具備することによって、冷媒
の圧損を小さくして冷媒中の水分除去と共に異物を捕集
し再飛散を防止することができる。従って、H.F.C
系冷媒からの水分除去と異物除去を同時に行うことが可
能となり、著しく耐久時間を向上させると共に不具合の
発生率も著しく低下させることができる。
EFFECTS OF THE INVENTION The present invention has the structure described in claims 1 to 3 of the invention, and thereby reduces the pressure loss of the refrigerant to remove water in the refrigerant and collect and re-disperse foreign matter. Can be prevented. Therefore, H. F. C
It is possible to remove water and foreign matter from the system refrigerant at the same time, and it is possible to significantly improve the durability time and significantly reduce the occurrence rate of defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の乾燥剤容器とその付近
の断面図である。
FIG. 1 is a cross-sectional view of a desiccant container and its vicinity according to a first embodiment of the present invention.

【図2】前記第1の実施例の全体を示す説明図である。FIG. 2 is an explanatory diagram showing the whole of the first embodiment.

【図3】本発明の第2の実施例の説明図である。FIG. 3 is an explanatory diagram of a second embodiment of the present invention.

【図4】従来の冷凍装置の乾燥剤容器とその付近の断面
図である。
FIG. 4 is a cross-sectional view of a desiccant container of a conventional refrigeration system and its vicinity.

【符号の説明】[Explanation of symbols]

1 冷媒配管 2 アキュムレータ 3 圧縮機 4 凝縮器 6 蒸発器 7、8 冷媒 9 乾燥剤容器 10 フィルタ乾燥器 11、12 冷媒 13 第1の逆止弁 14 第2の逆止弁 15 第3の逆止弁 16 第4の逆止弁 17、18 冷媒配管 19 第1の分岐配管 20 第2の分岐配管 31 第1の電磁弁 32 第2の電磁弁 33 第3の電磁弁 34 第4の電磁弁 41 第1の連絡管 42 第2の連絡管 1 Refrigerant pipe 2 Accumulator 3 Compressor 4 Condenser 6 Evaporator 7, 8 Refrigerant 9 Desiccant container 10 Filter dryer 11 and 12 Refrigerant 13 First check valve 14 Second check valve 15 Third check valve Valve 16 Fourth check valve 17, 18 Refrigerant piping 19 First branch piping 20 Second branch piping 31 First solenoid valve 32 Second solenoid valve 33 Third solenoid valve 34 Fourth solenoid valve 41 First communication pipe 42 Second communication pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ハイドロフルオロカーボン系冷媒を使用
する冷凍装置において、冷媒循環経路を構成する冷媒配
管の一部に冷媒配管内径より更に大きい内径を有すると
共にゼオライト系乾燥剤が充填された乾燥剤容器を配設
し、同乾燥剤容器の前後に冷媒の一方向流れ手段を取り
付けて冷・暖房運転時に冷媒流れを常時一定方向とした
ことを特徴とする冷凍装置。
1. A refrigerating apparatus using a hydrofluorocarbon-based refrigerant, comprising a desiccant container having an inner diameter larger than the inner diameter of the refrigerant pipe and a zeolite desiccant filled in a part of the refrigerant pipe constituting the refrigerant circulation path. A refrigerating apparatus characterized in that a refrigerant unidirectional flow means is provided in front of and behind the desiccant container so that the refrigerant flow is always constant during a cooling / heating operation.
【請求項2】 前記一方向流れ手段は、乾燥剤容器の前
後の冷媒配管に設けられそれぞれ一方向への冷媒の流れ
を許容する第1及び第2の逆止弁、第2の逆止弁の乾燥
剤容器と反対側の位置で冷媒配管より分岐し第1の逆止
弁と乾燥剤容器との間で冷媒配管に合流する第1の分岐
配管に設けられ前記第1及び第2の逆止弁とは逆方向へ
の冷媒の流れを許容する第3の逆止弁、及び第2の逆止
弁と乾燥剤容器との間で冷媒配管から分岐し第1の逆止
弁の乾燥剤容器と反対側の位置で冷媒配管に合流する第
2の分岐配管に設けられ前記第1及び第2の逆止弁とは
逆方向への冷媒の流れを許容する第4の逆止弁よりなる
ことを特徴とする請求項1に記載の冷凍装置。
2. The one-way flow means is provided in a refrigerant pipe before and after the desiccant container, and allows first and second check valves and a second check valve, respectively, which allow the refrigerant to flow in one direction. The first and second reverse pipes provided on a first branch pipe branching from the refrigerant pipe at a position opposite to the desiccant container and joining the refrigerant pipe between the first check valve and the desiccant container. A third check valve that allows the flow of the refrigerant in the opposite direction to the stop valve, and a desiccant of the first check valve that branches off from the refrigerant pipe between the second check valve and the desiccant container. A fourth check valve provided in a second branch pipe that joins the refrigerant pipe at a position opposite to the container and allows a refrigerant flow in a direction opposite to the first and second check valves. The refrigerating apparatus according to claim 1, wherein the refrigerating apparatus is a refrigerator.
【請求項3】 前記一方向流れ手段は、乾燥剤容器の前
後の冷媒配管にそれぞれ設けられた第1及び第2の電磁
弁、及び冷媒配管の第1の電磁弁の前と後の部分をそれ
ぞれ冷媒配管の第2の電磁弁の前と後の部分に接続する
2本の連絡管の各々に設けられた第3及び第4の電磁弁
からなることを特徴とする請求項1に記載の冷凍装置。
3. The one-way flow means includes first and second electromagnetic valves provided in the refrigerant pipes in front of and behind the desiccant container, and front and rear portions of the first electromagnetic valve in the refrigerant pipe. The third and fourth electromagnetic valves provided in each of the two connecting pipes connected to the front and rear portions of the second electromagnetic valve of the refrigerant pipe, respectively. Refrigeration equipment.
JP12739594A 1994-06-09 1994-06-09 Refrigerator Pending JPH07332783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12739594A JPH07332783A (en) 1994-06-09 1994-06-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12739594A JPH07332783A (en) 1994-06-09 1994-06-09 Refrigerator

Publications (1)

Publication Number Publication Date
JPH07332783A true JPH07332783A (en) 1995-12-22

Family

ID=14958938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12739594A Pending JPH07332783A (en) 1994-06-09 1994-06-09 Refrigerator

Country Status (1)

Country Link
JP (1) JPH07332783A (en)

Similar Documents

Publication Publication Date Title
EP1391667A2 (en) Converting a refrigerating system
JPH06221696A (en) Compression type freezer machine
US6185955B1 (en) Refrigerating system which can favorably use as a refrigerant, a fluid smaller in specific volume than a general refrigerant
JPH07332783A (en) Refrigerator
JP2008051497A (en) Refrigerant changing method for refrigerant circuit for refrigerating cold storage device, and refrigerating cold storage device
JP3454524B2 (en) Refrigeration cycle using second generation refrigerant
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP2004270974A (en) Method for changing refrigerant in refrigerant circuit for freezing and refrigerating device
JP2948141B2 (en) Compression refrigerator
JP3435164B2 (en) Sorachi Harmonizer
KR101999391B1 (en) refrigerant pipe cleaning equipment and cleaning method using the same
JP4409075B2 (en) Cleaning operation method of refrigeration cycle apparatus
JPH09236363A (en) Air conditioner
JP3280295B2 (en) Water removal system and water removal method for separation type air conditioner
JP3255149B2 (en) Refrigerant flow path cleaning apparatus and refrigerant flow path cleaning method
CN109916116A (en) The method for freezing oil recovery apparatus and air-conditioner set and air-conditioner set replacement refrigeration oil
JP2562725Y2 (en) Dryer for refrigeration equipment
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4067809B2 (en) Refrigerant replacement method for air conditioner, cleaning machine, air conditioner
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JP3751091B2 (en) Water removal trial operation method of refrigeration cycle apparatus and refrigeration cycle apparatus
CN216953642U (en) Use air conditioner of R744 refrigerant to fill oil-gas separation device of machine
JP3379426B2 (en) Thermal storage type air conditioner
JP3354124B2 (en) Cleaning equipment such as refrigeration cycle
JP2000039236A (en) Air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021029