JPH07332247A - Control device for variable displacement hydraulic pump - Google Patents

Control device for variable displacement hydraulic pump

Info

Publication number
JPH07332247A
JPH07332247A JP6126462A JP12646294A JPH07332247A JP H07332247 A JPH07332247 A JP H07332247A JP 6126462 A JP6126462 A JP 6126462A JP 12646294 A JP12646294 A JP 12646294A JP H07332247 A JPH07332247 A JP H07332247A
Authority
JP
Japan
Prior art keywords
control
pressure
pump
flow rate
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6126462A
Other languages
Japanese (ja)
Other versions
JP2774773B2 (en
Inventor
Hirokazu Shintani
裕和 新谷
Koichi Fukushima
弘一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6126462A priority Critical patent/JP2774773B2/en
Publication of JPH07332247A publication Critical patent/JPH07332247A/en
Application granted granted Critical
Publication of JP2774773B2 publication Critical patent/JP2774773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform constant stable control of torque through prevention of the occurrence of a delay in operation of a hydraulic control system. CONSTITUTION:The delivery pressure of a capacity variable hydraulic pump 1 is detected by a pressure sensor 12 and a detecting result is fed to the computing part 13 of a controller 15. A target value of a pump delivery flow rate by which torque is controlled to a constant value through compensation computation of a phase delay by the computing part 13 is calculated. A flow rate command signal responding to the flow rate target value is fed to an electromagnetic proportional valve 9 from a control signal output part 14. An actuator 2 is operated through a servo valve 4 and the inclination angle of a pump 1 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はトルク一定制御を行う可
変容量油圧ポンプの制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for a variable displacement hydraulic pump that performs constant torque control.

【0002】[0002]

【従来の技術】従来、可変容量油圧ポンプの吐出圧に応
じて傾転角(吐出流量)を変化させ、トルク一定制御を
行う制御装置は、実公平5−558号公報等に示されて
いるように公知である。
2. Description of the Related Art Conventionally, a control device for performing constant torque control by changing the tilt angle (discharge flow rate) according to the discharge pressure of a variable displacement hydraulic pump is shown in Japanese Utility Model Publication No. 5-558. As is known.

【0003】この公知の制御装置においては、圧力検出
手段によってポンプ吐出圧を検出し、この検出されたポ
ンプ吐出圧からトルク一定制御のためのポンプ流量を求
め、このポンプ流量に応じた電気信号を制御弁装置に送
り、この制御弁装置およびサーボ弁を介して、ポンプの
傾転角を制御するアクチュエータ(シリンダ)を作動さ
せる構成をとっている。
In this known control device, the pump discharge pressure is detected by the pressure detecting means, the pump flow rate for constant torque control is obtained from the detected pump discharge pressure, and an electric signal corresponding to this pump flow rate is obtained. The configuration is such that the actuator (cylinder) for controlling the tilting angle of the pump is operated by sending it to the control valve device and via the control valve device and the servo valve.

【0004】[0004]

【発明が解決しようとする課題】ところが、公知の制御
装置においては、いずれも検出時点でのポンプ吐出圧に
基づいてポンプ吐出流量を求め、これを電気信号に変え
て制御弁装置に送る構成をとっているため、とくに冬期
等の低温下で油の流動性が低下した場合に、油圧制御系
(制御弁装置、サーボ弁、アクチュエータ)の作動に遅
れが生じ、この遅れによりポンプ制御系全体がハンチン
グしてトルク一定制御が不安定となるという問題があっ
た。
However, in any of the known control devices, the pump discharge flow rate is obtained based on the pump discharge pressure at the time of detection, and is converted into an electric signal and sent to the control valve device. Therefore, when the fluidity of the oil decreases especially in low temperatures such as in winter, there is a delay in the operation of the hydraulic control system (control valve device, servo valve, actuator), and this delay causes the entire pump control system to operate. There is a problem that hunting causes unstable torque control.

【0005】そこで本発明は、油圧制御系の作動遅れを
防止して安定したトルク一定制御を行うことができる可
変容量油圧ポンプの制御装置を提供するものである。
Therefore, the present invention provides a control device for a variable displacement hydraulic pump capable of performing stable torque constant control by preventing operation delay of a hydraulic control system.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、可変
容量油圧ポンプと、このポンプの傾転角を制御するアク
チュエータと、このアクチュエータの作動を制御する制
御弁装置と、ポンプ吐出圧を検出する圧力検出手段と、
上記制御弁装置に作動信号を出力するコントローラとを
具備し、このコントローラは、上記圧力検出手段によっ
て検出されたポンプ吐出圧の時系列値から制御の位相遅
れを補償する位相遅れ補償演算を行う演算部と、この演
算部で算出された圧力値と予め設定されたトルク値とか
らトルク一定制御を行うためのポンプ吐出流量を割出
し、このポンプ吐出流量を得るための流量指令信号を上
記制御弁装置に対して出力する制御信号出力部とから成
るものである。
According to a first aspect of the present invention, there is provided a variable displacement hydraulic pump, an actuator for controlling a tilt angle of the pump, a control valve device for controlling the operation of the actuator, and a pump discharge pressure. Pressure detecting means for detecting,
A controller for outputting an operation signal to the control valve device, the controller performing a phase delay compensation calculation for compensating a phase delay of control from a time series value of the pump discharge pressure detected by the pressure detecting means. Section, the pump discharge flow rate for performing constant torque control is calculated from the pressure value calculated by this calculation section and the preset torque value, and a flow rate command signal for obtaining this pump discharge flow rate is supplied to the control valve. And a control signal output unit for outputting to the device.

【0007】請求項2の発明は、請求項1の構成におい
て、制御弁装置として、コントローラからの作動信号に
応じた二次圧を出力する電磁比例減圧弁と、この電磁比
例減圧弁の二次圧により作動してアクチュエータを制御
するサーボ弁とが設けられたものである。
According to a second aspect of the present invention, in the configuration of the first aspect, as the control valve device, an electromagnetic proportional pressure reducing valve that outputs a secondary pressure corresponding to an operation signal from the controller, and a secondary of the electromagnetic proportional pressure reducing valve. A servo valve that operates by pressure to control the actuator is provided.

【0008】[0008]

【作用】上記構成によると、演算部によって位相遅れ補
償演算を行い、この補償されたポンプ吐出圧に基づいて
トルク一定制御を行うためのポンプ吐出流量を割出し、
制御弁装置を制御するため、油圧制御系の作動遅れを防
止して安定したトルク一定制御を行うことができる。
According to the above structure, the calculation unit performs the phase delay compensation calculation, and the pump discharge flow rate for performing the constant torque control is calculated based on the compensated pump discharge pressure.
Since the control valve device is controlled, it is possible to prevent operation delay of the hydraulic control system and perform stable torque constant control.

【0009】また、請求項2の構成によると、電磁比例
減圧弁によってサーボ弁を駆動し、このサーボ弁によっ
てアクチュエータを作動させる構成であるため、ポンプ
の流量制御をポンプ吐出圧のみに基づいて簡単に行うこ
とができる。
Further, according to the second aspect of the present invention, since the servo valve is driven by the electromagnetic proportional pressure reducing valve and the actuator is operated by this servo valve, the flow rate control of the pump is simplified based only on the pump discharge pressure. Can be done.

【0010】[0010]

【実施例】本発明の実施例を図によって説明する。Embodiments of the present invention will be described with reference to the drawings.

【0011】第1実施例(図1,2参照) 1は可変容量油圧ポンプ、2はこのポンプ1の傾転角を
制御するアクチュエータ、3はこのアクチュエータのピ
ストンで、このピストン3が図の左右方向に移動するこ
とによってポンプ傾転角(吐出流量)が変化する。
First Embodiment (see FIGS. 1 and 2) 1 is a variable displacement hydraulic pump, 2 is an actuator for controlling the tilt angle of the pump 1, 3 is a piston of this actuator, and this piston 3 is the left and right of the drawing. The pump tilt angle (discharge flow rate) is changed by moving in the direction.

【0012】4はアクチュエータ2の作動を制御するサ
ーボ弁、5はこのサーボ弁4のスプール、6はこのスプ
ール5に連結されたピストン、7はこのピストン6にバ
ネ8に対抗する圧力をかける圧力室で、この圧力室7に
電磁比例減圧弁(以下、単に比例弁という)9の二次側
管路10が接続され、比例弁9の二次圧によってサーボ
弁4が一方向(図右方)に駆動される。
Reference numeral 4 is a servo valve for controlling the operation of the actuator 2. Reference numeral 5 is a spool of the servo valve 4. Reference numeral 6 is a piston connected to the spool 5. Reference numeral 7 is a pressure for applying a pressure to the piston 6 against the spring 8. In this chamber, a secondary side conduit 10 of an electromagnetic proportional pressure reducing valve (hereinafter, simply referred to as a proportional valve) 9 is connected to the pressure chamber 7, and the secondary pressure of the proportional valve 9 causes the servo valve 4 to move in one direction (to the right in the figure). ) Is driven.

【0013】また、サーボ弁4は、入出力ポート4aが
アクチュエータ2の伸び側油室2aに接続されるととも
に、圧力ポート4bが補助油圧源11に、タンクポート
4cがタンクTにそれぞれ接続されている。
Further, in the servo valve 4, the input / output port 4a is connected to the extension side oil chamber 2a of the actuator 2, the pressure port 4b is connected to the auxiliary hydraulic power source 11, and the tank port 4c is connected to the tank T. There is.

【0014】一方、アクチュエータ2の縮み側油室2b
は補助油圧源11に接続され、この補助油圧源11の圧
力と、サーボ弁4の位置によって決まる圧力とによって
アクチュエータ2の位置(ピストン3の位置=ポンプ傾
転角)が決定されるようになっている。
On the other hand, the contraction side oil chamber 2b of the actuator 2
Is connected to the auxiliary hydraulic power source 11, and the position of the actuator 2 (position of the piston 3 = pump tilt angle) is determined by the pressure of the auxiliary hydraulic power source 11 and the pressure determined by the position of the servo valve 4. ing.

【0015】12はポンプ1の吐出圧を検出する圧力セ
ンサで、この圧力センサ12の圧力信号が、演算部13
と制御信号出力部14とによって構成されるコントロー
ラ15の演算部13に入力される。
Reference numeral 12 is a pressure sensor for detecting the discharge pressure of the pump 1, and the pressure signal of this pressure sensor 12 is calculated by the arithmetic unit 13
And the control signal output unit 14 are input to the arithmetic unit 13 of the controller 15.

【0016】演算部13は、圧力信号に基づいてトルク
一定制御を行うためのポンプ吐出流量の目標値qaを求
め、この求められた流量qaに対応する電気信号(流量
指令信号)iaが制御信号出力部14から比例弁9に送
られる。
The calculation unit 13 obtains a target value qa of the pump discharge flow rate for performing constant torque control based on the pressure signal, and an electric signal (flow rate command signal) ia corresponding to the obtained flow rate qa is a control signal. It is sent from the output unit 14 to the proportional valve 9.

【0017】これにより、比例弁9が流量指令信号ia
の大きさに応じた二次圧をサーボ弁4の圧力室7に向け
て出力し、サーボ弁4が、この二次圧とバネ8の力とに
よって決まる位置に設定される。
As a result, the proportional valve 9 causes the flow rate command signal ia.
Is output to the pressure chamber 7 of the servo valve 4, and the servo valve 4 is set at a position determined by the secondary pressure and the force of the spring 8.

【0018】このサーボ弁4の位置により、アクチュエ
ータ2のピストン3の位置が定まり、ポンプ1の傾転角
(吐出流量)が決定される。
The position of the servo valve 4 determines the position of the piston 3 of the actuator 2, and the tilt angle (discharge flow rate) of the pump 1 is determined.

【0019】ここで、たとえば低温下では油の流動性の
低下によって油圧制御系(比例弁9、サーボ弁4、アク
チュエータ2)に作動遅れが生じ、これによりポンプ制
御系全体がハンチングを起こし易くなる。
Here, for example, at low temperature, the hydraulic control system (proportional valve 9, servo valve 4, actuator 2) is delayed in operation due to a decrease in the fluidity of the oil, and as a result, the entire pump control system easily causes hunting. .

【0020】そこで、演算部13は次のような位相遅れ
補償演算を行う。
Therefore, the calculation unit 13 performs the following phase delay compensation calculation.

【0021】図2を併用して説明すると、演算部13
は、 圧力センサ12によって検出されるポンプ吐出圧
(以下、入力値という)Pinを、微小時間のサンプリン
グタイムTでサンプリングし、 このサンプリング値を用いて油圧制御系の遅れを考
慮した出力値Poutを演算し、 この出力値Poutと、予め設定されたトルク一定制
御のための圧力−流量特性(図2中のP−q特性図参
照)とから目標流量qaを割出し、 これを制御信号出力部14に送る。
Referring to FIG. 2 together, the calculation unit 13
Is a pump discharge pressure (hereinafter, referred to as an input value) Pin detected by the pressure sensor 12 is sampled at a sampling time T of a minute time, and an output value Pout considering a delay of a hydraulic control system is used by using this sampling value. The target flow rate qa is calculated from this output value Pout and the preset pressure-flow rate characteristic for torque constant control (see the Pq characteristic diagram in FIG. 2), and this is calculated by the control signal output unit. Send to 14.

【0022】上記を数式であらわすと、When the above is expressed by a mathematical expression,

【0023】[0023]

【数1】 [Equation 1]

【0024】となる。ここで、T:サンプリングタイ
ム、d:係数、k:現サンプリング時点、k−1:1時
点前のサンプリング、a:遅れ時定数、b:進み時定数 であり、Pout(k−1)は1時点前の出力値、Pin
(k)は現時点での入力値、Pin(k−1)は1時点前
の入力値である。
It becomes Here, T: sampling time, d: coefficient, k: current sampling time, k-1: sampling before one time, a: delay time constant, b: advance time constant, and Pout (k-1) is 1 Output value before time point, Pin
(K) is the input value at the current time, and Pin (k-1) is the input value one time before.

【0025】この位相遅れ補償演算において、a,bを
適当に設定することにより、圧力の変動周波数と油圧制
御系の遅れに適合した出力値が求められ、これに基づい
てポンプ吐出流量が設定されるため、油圧制御系の作動
遅れを防止し、ポンプ制御系全体のハンチングを防止す
ることができる。
In this phase delay compensation calculation, by appropriately setting a and b, an output value suitable for the pressure fluctuation frequency and the delay of the hydraulic control system is obtained, and the pump discharge flow rate is set based on this output value. Therefore, it is possible to prevent operation delay of the hydraulic control system and prevent hunting of the entire pump control system.

【0026】なお、コントローラ15の演算部13にお
ける位相遅れ補償演算として、図3に示すように微分の
みによる補償演算を行ってもよい。
As the phase delay compensation calculation in the calculation unit 13 of the controller 15, compensation calculation based only on differentiation may be performed as shown in FIG.

【0027】こうすれば、位相進みがすべての周波数で
90°のみとなるため、きめ細かな補償ができないとと
もに、ノイズの影響を受け易いという難点がある反面、
演算式が単純化され、演算速度の高速化を図ることがで
きるという利点を有する。
In this way, since the phase lead is only 90 ° at all frequencies, there is the drawback that fine compensation cannot be performed and it is easily affected by noise.
There is an advantage that the arithmetic expression is simplified and the arithmetic speed can be increased.

【0028】第2実施例(図4参照) 第1実施例との相違点のみを説明する。Second Embodiment (Refer to FIG. 4) Only differences from the first embodiment will be described.

【0029】第2実施例では、コントローラ15によっ
て制御される制御弁装置として、第1および第2の高速
電磁切換弁(以下、単に第1切換弁、第2切換弁とい
う)16,17が用いられている。
In the second embodiment, first and second high speed electromagnetic switching valves (hereinafter, simply referred to as first switching valve and second switching valve) 16 and 17 are used as control valve devices controlled by the controller 15. Has been.

【0030】第1切換弁16は、補助油圧源11と、ア
クチュエータ2の伸び側油室2aとの間に設けられ、駆
動信号が入力されない状態でこれらを連通させる。
The first switching valve 16 is provided between the auxiliary hydraulic power source 11 and the extension side oil chamber 2a of the actuator 2, and makes them communicate with each other in the state where no drive signal is input.

【0031】一方、第2切換弁17は、アクチュエータ
2の伸び側油室2aとタンクTとの間に設けられ、駆動
信号が入力されない状態でこれらを遮断する。
On the other hand, the second switching valve 17 is provided between the extension side oil chamber 2a of the actuator 2 and the tank T, and shuts off these when the drive signal is not input.

【0032】18はポンプ1の傾転角からポンプ吐出流
量を検出する流量検出装置で、圧力センサ12による圧
力信号とともにこの流量信号がコントローラ15の演算
部13に送られる。
Reference numeral 18 is a flow rate detecting device for detecting the pump discharge flow rate from the tilt angle of the pump 1, and this flow rate signal is sent to the arithmetic unit 13 of the controller 15 together with the pressure signal from the pressure sensor 12.

【0033】演算部13は、圧力信号に基づく遅れ補償
演算を経て目標流量を割出し、流量検出装置18による
検出流量(実際流量)がこの目標流量になるように、制
御信号出力部14から第1および第2切換弁16,17
に向けてオン・オフ信号が繰返し出力される。
The calculation unit 13 indexes the target flow rate through the delay compensation calculation based on the pressure signal, and the control signal output unit 14 outputs the target flow rate so that the flow rate detected by the flow rate detection device 18 (actual flow rate) becomes the target flow rate. First and second switching valves 16, 17
The on / off signal is repeatedly output to.

【0034】これにより、両切換弁16,17が高速で
連通・遮断両位置間で切換わり、第2切換弁17が連通
位置にセットされるごとに、アクチュエータ2の伸び側
油室2aがタンクTに連通することによってアクチュエ
ータ2が小きざみに縮み側に移動、すなわちポンプ1の
傾転角が変化して吐出流量が目標流量に向けて変化す
る。
As a result, both switching valves 16 and 17 are switched at high speed between the communicating and blocking positions, and every time the second switching valve 17 is set to the communicating position, the extension side oil chamber 2a of the actuator 2 is stored in the tank. By communicating with T, the actuator 2 moves in small steps toward the contraction side, that is, the tilt angle of the pump 1 changes and the discharge flow rate changes toward the target flow rate.

【0035】[0035]

【発明の効果】上記のように本発明によるときは、圧力
検出手段によりポンプの吐出圧を検出して演算部に送
り、この演算部で位相遅れ補償演算を行ってトルク一定
制御を行うためのポンプ吐出流量を割出し、これに基づ
いて制御弁装置を制御する構成としたから、低温下等で
の油圧制御系の作動遅れ、これによるポンプ制御系全体
のハンチングの発生を防止して安定したトルク一定制御
を行うことができる。
As described above, according to the present invention, the discharge pressure of the pump is detected by the pressure detecting means and sent to the arithmetic unit, and the arithmetic unit performs the phase lag compensation calculation to perform the constant torque control. Since the pump discharge flow rate is indexed and the control valve device is controlled based on this index, operation delay of the hydraulic control system at low temperature, etc., and hunting of the entire pump control system due to this are prevented and stable. Torque constant control can be performed.

【0036】また、請求項2の発明によると、電磁比例
減圧弁によってサーボ弁を駆動し、このサーボ弁によっ
てアクチュエータを作動させる構成であるため、ポンプ
の流量制御をポンプ吐出圧のみに基づいて簡単に行うこ
とができる。
Further, according to the invention of claim 2, since the servo valve is driven by the electromagnetic proportional pressure reducing valve and the actuator is actuated by the servo valve, the flow rate control of the pump is simplified based only on the pump discharge pressure. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかるポンプ制御装置の
全体構成図である。
FIG. 1 is an overall configuration diagram of a pump control device according to a first embodiment of the present invention.

【図2】同装置における制御系の作用を説明するための
図である。
FIG. 2 is a diagram for explaining an operation of a control system in the same device.

【図3】同制御系による位相遅れ補償演算の他の例を説
明するための図2相当図である。
FIG. 3 is a diagram corresponding to FIG. 2 for explaining another example of the phase delay compensation calculation by the control system.

【図4】本発明の第2実施例にかかるポンプ制御装置の
全体構成図である。
FIG. 4 is an overall configuration diagram of a pump control device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可変容量油圧ポンプ 2 アクチュエータ 4 制御弁装置を構成するサーボ弁 9 制御弁装置を構成する電磁比例弁 12 圧力検出手段としての圧力センサ 15 コントローラ 13 演算部 14 制御信号出力部 16,17 制御弁装置を構成する高速電磁切換弁 DESCRIPTION OF SYMBOLS 1 Variable displacement hydraulic pump 2 Actuator 4 Servo valve which constitutes a control valve device 9 Electromagnetic proportional valve which constitutes a control valve device 12 Pressure sensor as pressure detection means 15 Controller 13 Calculation part 14 Control signal output part 16 and 17 Control valve device High-speed solenoid directional control valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可変容量油圧ポンプと、このポンプの傾
転角を制御するアクチュエータと、このアクチュエータ
の作動を制御する制御弁装置と、ポンプ吐出圧を検出す
る圧力検出手段と、上記制御弁装置に作動信号を出力す
るコントローラとを具備し、このコントローラは、上記
圧力検出手段によって検出されたポンプ吐出圧の時系列
値から制御の位相遅れを補償する位相遅れ補償演算を行
う演算部と、この演算部で算出された圧力値と予め設定
されたトルク値とからトルク一定制御を行うためのポン
プ吐出流量を割出し、このポンプ吐出流量を得るための
流量指令信号を上記制御弁装置に対して出力する制御信
号出力部とから成ることを特徴とする可変容量油圧ポン
プの制御装置。
1. A variable displacement hydraulic pump, an actuator for controlling a tilt angle of the pump, a control valve device for controlling the operation of the actuator, a pressure detecting means for detecting a pump discharge pressure, and the control valve device. And a controller for outputting an operation signal to the controller, the controller performing a phase delay compensation calculation for compensating the phase delay of the control from the time series value of the pump discharge pressure detected by the pressure detecting means, and A pump discharge flow rate for performing constant torque control is calculated from the pressure value calculated by the calculation unit and a preset torque value, and a flow rate command signal for obtaining this pump discharge flow rate is sent to the control valve device. A control device for a variable displacement hydraulic pump, comprising: a control signal output section for outputting.
【請求項2】 制御弁装置として、コントローラからの
作動信号に応じた二次圧を出力する電磁比例減圧弁と、
この電磁比例減圧弁の二次圧により作動してアクチュエ
ータを制御するサーボ弁とが設けられたことを特徴とす
る請求項1記載の可変容量油圧ポンプの制御装置。
2. An electromagnetic proportional pressure reducing valve for outputting a secondary pressure according to an operation signal from a controller, as a control valve device,
The control device for a variable displacement hydraulic pump according to claim 1, further comprising a servo valve that operates by a secondary pressure of the electromagnetic proportional pressure reducing valve to control an actuator.
JP6126462A 1994-06-08 1994-06-08 Control device for variable displacement hydraulic pump Expired - Lifetime JP2774773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6126462A JP2774773B2 (en) 1994-06-08 1994-06-08 Control device for variable displacement hydraulic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6126462A JP2774773B2 (en) 1994-06-08 1994-06-08 Control device for variable displacement hydraulic pump

Publications (2)

Publication Number Publication Date
JPH07332247A true JPH07332247A (en) 1995-12-22
JP2774773B2 JP2774773B2 (en) 1998-07-09

Family

ID=14935821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6126462A Expired - Lifetime JP2774773B2 (en) 1994-06-08 1994-06-08 Control device for variable displacement hydraulic pump

Country Status (1)

Country Link
JP (1) JP2774773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132322A (en) * 1997-10-30 1999-05-21 Unisia Jecs Corp Control device for automatic transmission
JP2009191770A (en) * 2008-02-15 2009-08-27 Hitachi Constr Mach Co Ltd Pump inclination rotation control device for hydraulic working machine
CN106168238A (en) * 2015-05-19 2016-11-30 卡特彼勒公司 For estimating the system of pump delivery
JP2019065626A (en) * 2017-10-03 2019-04-25 株式会社クボタ Hydraulic system for work machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347489A (en) * 1989-05-19 1991-02-28 Nachi Fujikoshi Corp Method and device for closed loop control for pump with variable capacity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347489A (en) * 1989-05-19 1991-02-28 Nachi Fujikoshi Corp Method and device for closed loop control for pump with variable capacity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132322A (en) * 1997-10-30 1999-05-21 Unisia Jecs Corp Control device for automatic transmission
JP2009191770A (en) * 2008-02-15 2009-08-27 Hitachi Constr Mach Co Ltd Pump inclination rotation control device for hydraulic working machine
CN106168238A (en) * 2015-05-19 2016-11-30 卡特彼勒公司 For estimating the system of pump delivery
CN106168238B (en) * 2015-05-19 2019-11-08 卡特彼勒公司 System for estimating the discharge capacity of pump
JP2019065626A (en) * 2017-10-03 2019-04-25 株式会社クボタ Hydraulic system for work machine

Also Published As

Publication number Publication date
JP2774773B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
EP0504415A4 (en) Control system of hydraulic pump
JP2567193B2 (en) Hydraulic pump discharge flow control device
WO2019065925A1 (en) Working machine
WO2018230642A1 (en) Hydraulic system
JP2774773B2 (en) Control device for variable displacement hydraulic pump
JPH0374605A (en) Pressure oil feeder for working machine cylinder
EP0015069B1 (en) Fluid actuated constant output power control for variable delivery pump
JP2822907B2 (en) Hydraulic control device
JP3429999B2 (en) Discharge pressure control method for screw compressor
US6360536B1 (en) Control system for a hydraulic transformer
US11933331B2 (en) Control device and hydraulic system including the same
JPH10267004A (en) Fluid control method and device thereof
JP3145595B2 (en) Hydraulic control device
EP4134775B1 (en) Position controller of a continuously variable transmission
US11454315B2 (en) Transmission controller for toroidal continuously variable transmission
JP3685287B2 (en) Capacity controller for variable displacement hydraulic pump
JP3192054B2 (en) Tilt angle control device for hydraulic pump
JPH0686873B2 (en) Variable displacement pump
JPS6246886B2 (en)
JP3099538B2 (en) Switching control device for directional control valve
JPH07293508A (en) Hydraulic control device
JPH0689762B2 (en) Actuator speed controller
JP2003148402A (en) Hydraulic control system
JPH0752390Y2 (en) Hydraulic supply device
JP3075439B2 (en) Switching control device for directional control valve