JPH0733156Y2 - Electrophoresis cell for zeta potential measurement of flat plate sample - Google Patents

Electrophoresis cell for zeta potential measurement of flat plate sample

Info

Publication number
JPH0733156Y2
JPH0733156Y2 JP1990109928U JP10992890U JPH0733156Y2 JP H0733156 Y2 JPH0733156 Y2 JP H0733156Y2 JP 1990109928 U JP1990109928 U JP 1990109928U JP 10992890 U JP10992890 U JP 10992890U JP H0733156 Y2 JPH0733156 Y2 JP H0733156Y2
Authority
JP
Japan
Prior art keywords
zeta potential
cell
flat plate
plate sample
potential measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990109928U
Other languages
Japanese (ja)
Other versions
JPH0466572U (en
Inventor
聡 西村
博 立山
絹江 恒松
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1990109928U priority Critical patent/JPH0733156Y2/en
Publication of JPH0466572U publication Critical patent/JPH0466572U/ja
Application granted granted Critical
Publication of JPH0733156Y2 publication Critical patent/JPH0733156Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は対象物質の平滑な平面に於けるゼータ電位の測
定が可能な電気泳動セルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an electrophoretic cell capable of measuring the zeta potential on a smooth plane of a target substance.

〈従来の技術〉 一般に、液中における粒子表面の電荷や電位2重層の性
質を把握するための有効な手段としてゼータ電位の測定
が行われ、最も簡便なゼータ電位の測定方法として電気
泳動法が広く採用されている。しかし、電気泳動法の測
定対象物質は、形状が球状に近く、かつ表面電荷の分布
が均一な粒子に限定される。例えば、雲母や粘土鉱物の
如く板状形態を有し、その端面が正に、層面が負に荷電
している粒子のゼータ電位を従来の電気泳動法で測定し
た場合、得られるゼータ電位は端面と層面の両者の影響
を含み、更に粒子周辺の電気2重層の歪や粒子形状とい
った補正不可能な影響をも含む値を示す。これは、従来
からのゼータ電位の測定が内部に空間部を有する透明平
行板間または毛細管に対象物質粒子そのものを溶液と共
に収納し、該粒子自体を電気泳動させてその泳動速度を
測定することによってゼータ電位を算出する方法を採用
していたからである。
<Prior Art> In general, zeta potential is measured as an effective means for grasping the charge on the surface of a particle in a liquid and the property of a potential double layer, and the electrophoresis method is the simplest method for measuring zeta potential. Widely adopted. However, the substance to be measured by the electrophoresis method is limited to particles having a shape close to a sphere and having a uniform surface charge distribution. For example, when the zeta potential of a particle that has a plate-like morphology like mica or clay mineral and whose end surface is positively charged and its layer surface is negatively charged is measured by a conventional electrophoresis method, the obtained zeta potential is the end surface. And the layer surface, and also includes uncorrectable effects such as distortion of the electric double layer around the particle and particle shape. This is because conventional zeta potential measurement involves accommodating the target substance particles themselves together with a solution between transparent parallel plates or a capillary tube having a space inside, and measuring the migration speed by electrophoresing the particles themselves. This is because the method of calculating the zeta potential was adopted.

〈考案が解決しようとする課題〉 本考案では上記従来技術の欠点を解消し、対象物質の特
定な平滑表面のゼータ電位を測定可能とする電気泳動セ
ルを提供することを目的とする。
<Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an electrophoretic cell capable of measuring the zeta potential of a specific smooth surface of a target substance.

〈課題を解決する為の手段〉 上記目的を達成する為に本考案では次の如き手段を採用
した。即ち、透光性物質を素材とし、両面が平行とされ
た矩形状セル基台の一面中央部に、均一深さで外形が矩
形状を呈する凹部を設け、該凹部の左右両側には凹部と
は独立した電極挿通孔をセル基台上端面から穿設し、一
方同じく透光性物質を素材とし、両面が平行とされたセ
ル蓋体と上記凹部全面の間に測定対象である平板物質を
挿入して水密的に覆う如く着脱自在に構成した層面のゼ
ータ電気測定用電気泳動セルである。なお上記セル基台
およびセル蓋体のそれぞれの両面は分光光度計用セル程
度の光学的研磨をほどこすものとし、これらの水密的密
閉はグリース,パラフィンあるいはテフロンペースト等
を用いて行う。
<Means for Solving the Problems> In order to achieve the above object, the present invention employs the following means. That is, a translucent material is used as a material, and a concave portion having a uniform outer shape and a rectangular outer shape is provided in the central portion of one surface of a rectangular cell base whose both surfaces are parallel to each other. Is an independent electrode insertion hole from the upper end surface of the cell base, and the same transparent material is used as a material. It is an electrophoretic cell for zeta-electric measurement of a layer surface that is detachably configured so as to be inserted and covered in a watertight manner. Both surfaces of the cell base and the cell lid are subjected to optical polishing to the extent of a spectrophotometer cell, and watertight sealing of these is performed using grease, paraffin, or Teflon paste.

〈作用〉 本考案の電気泳動セルによるゼータ電位測定は次の如き
方法により行う。即ち、通常石英ガラス等の透光性物質
で作られるセル基台の凹部に溶液を入れ、かつこの液中
に無機または有機物質からなるコロイド粒子等のトレー
サーを懸濁せしめ、該凹部を雲母や石英等ゼータ電位測
定対象物質の平板から成るセル蓋体で密閉し、密閉セル
内の電気浸透流速分布を測定することによって上記平板
状セル蓋体のゼータ電位を求める。詳しくは、セル基台
の凹部の深さ方向の各レベルでトレーサー粒子の泳動速
度を測定し、セル内溶液の電気浸透流速分布を凹部の深
さの関数として求めた後、森,岡本の理論から平板試料
の壁面の電気浸透流速を決定する。そして平板試料の壁
面での電気浸透流速をヘルムホルツースモルコウスキイ
の式に代入し、ゼータ電位を算出するのである。
<Operation> The zeta potential is measured by the electrophoresis cell of the present invention by the following method. That is, a solution is put in a concave portion of a cell base which is usually made of a transparent material such as quartz glass, and a tracer such as colloidal particles made of an inorganic or organic substance is suspended in the liquid, and the concave portion is treated with mica The cell is closed with a cell lid made of a flat plate of a zeta potential measurement target substance such as quartz, and the zeta potential of the flat cell lid is obtained by measuring the electroosmotic flow velocity distribution in the closed cell. Specifically, after measuring the migration velocity of tracer particles at each level in the depth direction of the recess of the cell base and obtaining the electroosmotic flow velocity distribution of the solution in the cell as a function of the depth of the recess, the theory of Mori and Okamoto To determine the electroosmotic flow velocity on the wall surface of the flat plate sample. Then, the electroosmotic flow velocity on the wall surface of the flat plate sample is substituted into the Helmholtz-Muskowski equation to calculate the zeta potential.

〈実施例〉 以下本考案を、その実施例の図面を参酌し乍ら詳述す
る。
<Embodiment> Hereinafter, the present invention will be described in detail with reference to the drawings of the embodiment.

この実施例に用いた電気泳動セルは、石英ガラス製で第
1図〜第5図に示すように、矩形状セル基台1の中央に
深さ1mmの凹部2が設けられており、該凹部の左右両側
には電極挿通孔3,3が設けられており、電極4としては
第6図に示すような厚さ0.7mmのパラジウム電極を用い
た。またセル蓋体5は第7図および第8図に示す様な平
板でその素材は雲母および石英の2種類とした。また凹
部2へ入れる水には支持電解質として1×10-3MKClを共
存させ、pH調節剤としてHClとKOHを用い実験は25℃で行
った。
The electrophoretic cell used in this example is made of quartz glass, and as shown in FIGS. 1 to 5, a concave portion 2 having a depth of 1 mm is provided at the center of a rectangular cell base 1, and the concave portion is formed. Electrode insertion holes 3 and 3 are provided on both left and right sides of the electrode, and as the electrode 4, a palladium electrode having a thickness of 0.7 mm as shown in FIG. 6 was used. The cell lid 5 is a flat plate as shown in FIGS. 7 and 8, and its material is two types, mica and quartz. In addition, 1 × 10 −3 MKCl as a supporting electrolyte was made to coexist in water to be put in the concave portion 2, HCl and KOH were used as pH adjusters, and the experiment was conducted at 25 ° C.

具体的実験としては、第9図に示すように、電気泳動セ
ル10の後方に顕微鏡11を配置し、電気泳動セル10に上方
からHe−Neレーザー光線を当て、ビデオカメラ12,ビデ
オレコーダー13およびビデオモニター14で観測した。
As a specific experiment, as shown in FIG. 9, a microscope 11 is arranged behind the electrophoretic cell 10, a He-Ne laser beam is applied to the electrophoretic cell 10 from above, and a video camera 12, a video recorder 13 and a video recorder are used. Observed on monitor 14.

その結果として第10図に雲母平板と石英ガラス平板で密
閉した場合(雲母−石英系)および同じ2枚の石英ガラ
ス平板で密閉した場合(石英−石英系)のpH3に於ける
セル内の電気浸透流速を示す。この第10図から明らかな
如く、石英−石英系におけるセル内溶液の電気浸透流速
分布は対称な放物線を示すが、雲母−石英系におけるセ
ル内溶液の電気浸透流速分布は非対称な放物線を示し
た。雲母−石英系と石英−石英系の電気浸透流速分布か
ら得られた石英ガラス/水溶液界面の電気浸透流速は、
略一致した。このことはそれぞれの測定から得られる石
英ガラス平板のゼータ電位が略等しいことに相当し、電
気浸透流速分布の形状に関係なく平板試料のゼータ電位
の測定ができることを示している。更にpH3に於ける雲
母平板(雲母層面)/水溶液界面の電気浸透流速は石英
ガラス平板/水溶液界面のそれより大きい正の値を示し
た。これは雲母層面のゼータ電位が石英ガラス平板のゼ
ータ電位より負に大きいことを意味する。
As a result, Fig. 10 shows the electricity in the cell at pH 3 when sealed with a mica plate and a quartz glass plate (mica-quartz system) and with the same two quartz glass plates (quartz-quartz system). The permeation flow rate is shown. As is clear from FIG. 10, the electroosmotic flow velocity distribution of the solution in the cell in the quartz-quartz system shows a symmetrical parabola, while the electroosmotic flow velocity distribution of the solution in the cell in the mica-quartz system shows an asymmetric parabola. . The electroosmotic flow velocity at the quartz glass / aqueous solution interface obtained from the electroosmotic flow velocity distributions of the mica-quartz system and the quartz-quartz system is
It almost agreed. This corresponds to that the zeta potentials of the quartz glass flat plate obtained from the respective measurements are substantially equal, and it is shown that the zeta potential of the flat plate sample can be measured regardless of the shape of the electroosmotic flow velocity distribution. Furthermore, the electroosmotic flow velocity at the mica plate (mica layer surface) / aqueous solution interface at pH 3 showed a positive value higher than that at the silica glass plate / aqueous solution interface. This means that the zeta potential of the mica layer surface is negatively larger than that of the quartz glass plate.

次に第11図には電気浸透法で測定した雲母平板と石英ガ
ラス平板のゼータ電位をpHの関数として示した。セルの
両面を石英ガラス平板で密閉した場合(○)と、片面を
雲母平板で密閉した場合(●)のそれぞれに於いて得ら
れた石英ガラス平板のゼータ電位は上記第10図でも明ら
かなように略一致した。
Next, in Fig. 11, the zeta potentials of the mica plate and the quartz glass plate measured by the electroosmosis method are shown as a function of pH. The zeta potentials of the quartz glass plate obtained when the both sides of the cell were sealed with a quartz glass plate (○) and when one side was sealed with a mica plate (●) are also apparent in Fig. 10 above. Almost matched.

〈考案の効果〉 以上述べて来た如く、本考案によれば各種物質について
その粒子全体のゼータ電位ではなく、対象物質の特定な
平滑表面でのゼータ電位を求めることが出来るので、対
象物質の特性をより正確に把握出来るという効果があ
る。
<Effect of Device> As described above, according to the present invention, not the zeta potential of the entire particles of various substances but the zeta potential on a specific smooth surface of the target substance can be obtained. The effect is that the characteristics can be grasped more accurately.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案セル基台の正面図、第2図は同平面図、
第3図は同側面図、第4図は第1図IV−IV線の端面図、
第5図は第1図V−V線の端面図、第6図は電極部の要
部説明図、第7図は本考案セル蓋体の正面図、第8図は
同平面図、第9図は本考案によるゼータ電位測定装置の
模式図、第10図は液流速分布と深さとの関係を示すグラ
フ、第11図はpHとゼータ電位との関係を示すグラフ。
1 is a front view of the cell base of the present invention, FIG. 2 is a plan view of the same,
FIG. 3 is a side view of the same, FIG. 4 is an end view of line IV-IV in FIG.
FIG. 5 is an end view taken along the line VV of FIG. 1, FIG. 6 is an explanatory view of a main part of an electrode portion, FIG. 7 is a front view of a cell lid of the present invention, FIG. The figure is a schematic diagram of the zeta potential measuring device according to the present invention, FIG. 10 is a graph showing the relationship between liquid flow velocity distribution and depth, and FIG. 11 is a graph showing the relationship between pH and zeta potential.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】透光性物質を素材とし、両面が平行とされ
た矩形状セル基台の一面中央部に、均一深さで外形が矩
形状を呈する凹部を設け、該凹部の左右両側には凹部と
は独立した電極挿通孔をセル基台上端面から穿設し、一
方同じく透光性物質を素材とし、両面が平行とされたセ
ル蓋体と上記凹部全面の間に測定対象である平板物質を
挿入して水密的に覆う如く着脱自在に構成したことを特
徴とする平板試料のゼータ電位測定用電気泳動セル。
1. A recess having a uniform depth and a rectangular outer shape is provided at the center of one surface of a rectangular cell base whose both sides are parallel to each other, and which is made of a light-transmissive material. Is an electrode insertion hole that is independent of the recess and is made from the upper end surface of the cell base. On the other hand, a transparent material is also used as a material. An electrophoretic cell for measuring zeta potential of a flat plate sample, characterized in that the flat plate material is inserted so as to be covered in a watertight manner so as to be detachable.
JP1990109928U 1990-10-20 1990-10-20 Electrophoresis cell for zeta potential measurement of flat plate sample Expired - Lifetime JPH0733156Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990109928U JPH0733156Y2 (en) 1990-10-20 1990-10-20 Electrophoresis cell for zeta potential measurement of flat plate sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990109928U JPH0733156Y2 (en) 1990-10-20 1990-10-20 Electrophoresis cell for zeta potential measurement of flat plate sample

Publications (2)

Publication Number Publication Date
JPH0466572U JPH0466572U (en) 1992-06-11
JPH0733156Y2 true JPH0733156Y2 (en) 1995-07-31

Family

ID=31857194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990109928U Expired - Lifetime JPH0733156Y2 (en) 1990-10-20 1990-10-20 Electrophoresis cell for zeta potential measurement of flat plate sample

Country Status (1)

Country Link
JP (1) JPH0733156Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226981A (en) * 2005-02-18 2006-08-31 Microtec Nition:Kk Simplified electrophoretic type zeta electrometer
JP5207373B2 (en) * 2008-09-25 2013-06-12 国立大学法人東北大学 Simple zeta potential measuring device and zeta potential measuring method
JP5363295B2 (en) * 2009-09-01 2013-12-11 株式会社堀場製作所 Zeta potential measurement cell and zeta potential measurement device
JP5411096B2 (en) * 2010-08-31 2014-02-12 株式会社堀場製作所 Particle property measuring cell and particle property measuring device

Also Published As

Publication number Publication date
JPH0466572U (en) 1992-06-11

Similar Documents

Publication Publication Date Title
Scales et al. Electrokinetics of the silica-solution interface: a flat plate streaming potential study
US6214191B1 (en) Electrophoresis apparatus and method
Wu et al. Linkage between ζ-potential and electron donicity of charged polar surfaces 1. Implications for the mechanism of flocculation of particle suspensions with plurivalent counterions
Bernabeu et al. Influence of surface charge on adsorption of fibrinogen and/or albumin on a rotating disc electrode of platinum and carbon
JP2924815B2 (en) Zeta potential measurement device
JPS62103561A (en) Method and device for measuring zeta potential of colloidal particle
JPH0733156Y2 (en) Electrophoresis cell for zeta potential measurement of flat plate sample
CA1055888A (en) Electrophoresis slide mounting means
US3620947A (en) Electrophoretic system
US3755121A (en) Electrophoresis kit and system
FR2543979B1 (en) PROCESS FOR THE MANUFACTURE OF MONOCRYSTALLINE PARTICLES AND THEIR USE IN ANODES OF ELECTROCHEMICAL CELLS
AU723564B2 (en) Methods and materials for optimization of electronic hybridization reactions
Churaev et al. Electrokinetic study of polymer surfaces
Woodvine et al. The development and characterisation of square microfabricated electrode systems
Weiss et al. Electrophoretic properties of AgBr dispersions
Doren et al. Determination of the zeta potential of macroscopic specimens using microelectrophoresis
Burns Surface characterization through measurement of electroosmosis at flat plates
JPS58193446A (en) Simple two-dimensional electrophoresis
Moyer et al. ELECTROKINETIC PHENOMENA: XII. Electroosmotic and Electrophoretic Mobilities of Protein Surfaces in Dilute Salt Solutions
JPS61288148A (en) Two-dimensional electrophoresis method
Benavente et al. Electrokinetic characterization of isolated pepper cuticles in protonic form
Vince et al. Cationic modulation of the interaction of Dictyostelium discoideum amoebae with glass. Evidence from quantitative interference reflection microscopy
CN211426363U (en) Nucleic acid electrophoresis cell with heating function
Vanderhoff et al. Low-electroosmotic-mobility coatings for ASTP free-fluid electrophoretic separation
Kitagawa et al. Manipulation of a single cell with microcapillary tubing based on its electrophoretic mobility

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term