JPH07329156A - Injection stretch blow molding method of polyethylene naphthalate - Google Patents

Injection stretch blow molding method of polyethylene naphthalate

Info

Publication number
JPH07329156A
JPH07329156A JP14407694A JP14407694A JPH07329156A JP H07329156 A JPH07329156 A JP H07329156A JP 14407694 A JP14407694 A JP 14407694A JP 14407694 A JP14407694 A JP 14407694A JP H07329156 A JPH07329156 A JP H07329156A
Authority
JP
Japan
Prior art keywords
preform
mold
temperature
injection
stretch blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14407694A
Other languages
Japanese (ja)
Inventor
Hisashi Nakajima
恒 中島
Hideaki Koda
甲田英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOKIKO KENKYUSHO KK
Aoki Technical Laboratory Inc
Original Assignee
AOKIKO KENKYUSHO KK
Aoki Technical Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOKIKO KENKYUSHO KK, Aoki Technical Laboratory Inc filed Critical AOKIKO KENKYUSHO KK
Priority to JP14407694A priority Critical patent/JPH07329156A/en
Publication of JPH07329156A publication Critical patent/JPH07329156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make an injection stretch blow molding of polyethylene naphthalate possible by setting a surface temperature with which mold release of a preform and stretch blow molding after it are compatible with each other. CONSTITUTION:Before a preform of polyethylene naphthalate molded by injection molding is released from an injection mold, gas is put with pressure in a boundary of a core mold and the preform so as to cut off the edge of the inside of the preform from the core mold. The mold release is performed within a temperature range where cooling of the inside of the preform is incomplete and temperature is high and the surface temperature of the preform immediately after the mold release becomes 75-85 deg.C at room temperature. Stretch blow molding is performed during a time when the surface temperature after the mold release is rising due to the inner heat of the preform and within a time before the temperature reaches 150 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ポリエチレンナフタ
レートを薄肉の飲料ボトルなどの容器に射出延伸吹込成
形する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of injection stretch blow molding polyethylene naphthalate into a container such as a thin beverage bottle.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレート(以下PE
Tと略称する)の延伸吹込成形品は、透明性で耐衝撃性
を有し、ガスバリヤー性も比較的良好なことから 飲料
ボトルなどに広く採用されている。しかし耐熱性につい
ては熱変形温度(ガラス転移温度)が約75℃なので、
高温充填を必要とする飲料ボトルとして採用する場合に
は、ヒートセット等の熱処理により耐熱性を高めて使用
している。このため耐熱ボトルと称されているPETボ
トルは、延伸吹込成形したまのPETボトルに比べてコ
スト高となっている。
2. Description of the Related Art Polyethylene terephthalate (hereinafter PE
The stretch blow-molded product (abbreviated as T) is transparent, has impact resistance, and has relatively good gas barrier properties, and is therefore widely used in beverage bottles and the like. However, regarding heat resistance, since the heat distortion temperature (glass transition temperature) is about 75 ° C,
When it is used as a beverage bottle that requires high-temperature filling, it is used with heat resistance increased by heat treatment such as heat setting. For this reason, PET bottles called heat-resistant bottles are more expensive than PET bottles that have been stretch blow-molded.

【0003】一般にPENと略称されているポリエチレ
ンナフタレートは、PETよりも溶融温度(268℃)
及びガラス転移温度(113°〜123℃)が著しく高
く、薄肉容器としての耐熱温度も充填温度(80℃前
後)以上でガスバリヤー性にも優れ、衝撃強度も充分で
透明性をも有するなどのことから、耐熱性飲料ボトルと
しての需要が期待されつつある。しかしながら、射出金
型に溶融樹脂を射出充填してプリフォームを成形し、そ
のプリフォームを吹込金型内にて容器などの中空成形品
に延伸吹込成形する成形法では、熱可塑性樹脂の殆どを
薄肉の中空成形品に成形することが可能とされている
が、しかし現状ではポリエチレンテレフタレート、ポリ
プロピレン、ポリカーボネート、塩化ビニールなどに限
られ、PENによるボトルの延伸吹込成形は未だなし得
なかった。
Polyethylene naphthalate, which is generally abbreviated as PEN, has a melting temperature (268 ° C.) higher than that of PET.
And the glass transition temperature (113 ° to 123 ° C.) is extremely high, the heat resistant temperature as a thin container is higher than the filling temperature (around 80 ° C.), the gas barrier property is excellent, the impact strength is sufficient, and the transparency is high. Therefore, demand as a heat-resistant beverage bottle is expected. However, in a molding method in which a molten resin is injection-filled into an injection mold to form a preform, and the preform is stretch-blow molded into a hollow molded product such as a container in a blow mold, most of the thermoplastic resin is used. Although it is possible to mold into a thin hollow molded product, at present, it is limited to polyethylene terephthalate, polypropylene, polycarbonate, vinyl chloride, etc., and stretch blow molding of a bottle with PEN has not been possible yet.

【0004】[0004]

【発明が解決しようとする課題】プリフォームの射出成
形から中空成形品への延伸吹込成形を連続して行う成形
法には、射出成形したプリフォームを冷却固化する前の
熱いうちに射出金型から離型し、その熱いプリフォーム
を温度調節してから吹込金型により中空成形品に延伸吹
込成形する方法と、特開平4−214322号公報に開
示されているように、離型後のプリフォームの温度調節
を省略して、直ちに延伸吹込成形を行う方法とがある。
The molding method in which the injection molding of the preform and the stretch blow molding into the hollow molded product are continuously performed is carried out by the injection mold before the injection-molded preform is cooled and solidified. From the mold, the temperature of the hot preform is adjusted, and then stretch blow molding is performed on the hollow molded product by a blow mold, and as disclosed in JP-A-4-214322, the mold after the mold is released. There is a method in which stretch blow molding is carried out immediately without controlling the temperature of the reform.

【0005】このいずれの射出延伸吹込成形において
も、プリフォームの成形は、プリフォーム外側を形成す
るキャビティ型とプリフォーム内側を成形するコア型と
から構成された射出金型と、プリフォームの口部外側を
形成するリップ型とを使用し、キャビティ型と該キャビ
ティ型の開口部と型閉したリップ型を貫通して、キャビ
ティ型内に挿入した上記コア型との間のキャビティに、
溶融樹脂をキャビティ型底部から射出充填して行ってい
る。
In any of these injection stretch blow molding processes, the preform is molded by an injection mold composed of a cavity mold forming the outside of the preform and a core mold molding the inside of the preform, and the mouth of the preform. Using a lip mold that forms the outside of the cavity, through the cavity mold, the opening of the cavity mold and the closed lip mold, into the cavity between the core mold inserted into the cavity mold,
A molten resin is injected and filled from the bottom of the cavity mold.

【0006】射出成形したプリフォームは、延伸吹込成
形を受ける主たる部分の内部に成形に必要な充分な熱を
有するうちに射出金型から離型される。この離型はコア
型とリップ型の両方を上方に移動して、あるいはコア型
を上方にキャビティ型を下方に移動して行っており、離
型後のプリフォームは冷却固化した口部周囲をリップ型
に保持させたまま吹込金型へと移送される。
The injection-molded preform is released from the injection mold while having sufficient heat necessary for molding inside the main part that undergoes stretch blow molding. This mold release is performed by moving both the core mold and the lip mold upwards, or by moving the core mold upwards and the cavity molds downwards. While being held by the lip mold, it is transferred to the blow mold.

【0007】このようにプリフォームをコア型からも抜
き出して離型する理由は、冷却による収縮でコア型に強
く抱きついて密着した状態では、延伸ロッドによりプリ
フォームを軸方向に延伸することは極めて困難なことか
らで、リップ型を移送部材に兼用してプリフォームをキ
ャビティ型とコア型の両方から抜き出して吹込金型に移
送しているのである。
The reason why the preform is also extracted from the core mold and released from the mold in this way is that it is extremely difficult to stretch the preform in the axial direction by a stretching rod when the preform is tightly held and closely adhered to the core mold by shrinkage due to cooling. Due to the difficulty, the lip mold is also used as the transfer member, and the preform is extracted from both the cavity mold and the core mold and transferred to the blow mold.

【0008】通常、射出成形品の金型からの離型におい
て、コア型側からの射出成形品の抜き出しは、キャビテ
ィ型側からの抜き出しよりも困難とされている。これは
キャビティ側では射出成形品の冷却による収縮で、成形
品外側の表面がキャビティ面から離れるようになるのに
対し、コア型側では反対に収縮により成形品内側がコア
型に密着するようになるからである。
[0008] Generally, in releasing an injection-molded product from a mold, it is more difficult to remove the injection-molded product from the core mold side than to extract it from the cavity mold side. This is because the cavity side shrinks due to cooling of the injection-molded product, causing the outer surface of the molded product to separate from the cavity surface, while the core mold side conversely shrinks so that the inner part of the molded product adheres to the core mold. Because it will be.

【0009】延伸吹込成形が可能な柔軟状態の熱いプリ
フォームの強度は、冷却固化により全体に剛性を有する
通常の射出成形品とは異なって、内外側の表面のスキン
層によりプリフォームの形態が保たれる程度の強さしか
ないため、冷却固化した口部周囲をリップ型により保持
してコア型を引き抜く場合でも、密着したプリフォーム
内側のスキン層とコア型表面との縁切りに要する強さが
ないと、プリフォームはコア型に密着したままキャビテ
ィ型から引き抜かれ、固定状態にあるリップ型によりし
ごかれるようになって、あたかも提灯が縮まるように変
形してプリフォームの形態を失う。
The strength of a hot preform in a flexible state that can be stretch blow-molded differs from that of a conventional injection-molded product which has rigidity as a whole by cooling and solidification, and the shape of the preform depends on the skin layers on the inner and outer surfaces. The strength required to cut the edge between the skin layer inside the preform and the surface of the core mold, even when the core mold is pulled out by holding the periphery of the cooled and solidified mouth with the lip mold because it has only enough strength to be retained. Without it, the preform is pulled out of the cavity mold while being in close contact with the core mold, and is squeezed by the lip mold in the fixed state, so that the lantern is deformed as if it is contracted and loses the form of the preform.

【0010】そこで射出延伸吹込成形では、延伸吹込成
形が可能でプリフォーム表面のスキン層がコア型の抜き
出し力に耐える固さになる温度までプリフォームを冷却
して離型を行うようにしている。この冷却温度は、プリ
フォームの肉厚やデザインにより異なってくるが、ブロ
ーアップ比がそれほどでもない広口容器のプリフォーム
の場合には、キャビティ型及びコア型の抜き勾配を大き
く設定きるので、収縮によるプリフォーム内側の密着力
を抜き勾配により緩和でき、また高温での離型も可能と
なるので冷却による収縮が少なくなるなどの相乗作用か
ら、細口容器に比べて離型が行い易い。
Therefore, in injection stretch blow molding, the preform is cooled to a temperature at which the stretch blow molding is possible and the skin layer on the surface of the preform has a hardness that can withstand the extraction force of the core mold. . This cooling temperature varies depending on the wall thickness and design of the preform, but in the case of a wide-mouthed container preform with a not so high blow-up ratio, the draft of the cavity type and core type can be set to a large degree, so the shrinkage The adhesion force on the inside of the preform can be relaxed by the draft, and mold release at high temperature is also possible, so that the mold release is easier than the narrow-mouth container because of synergistic effects such as shrinkage due to cooling.

【0011】しかし口径が小さくて丈が長く、ブローア
ップ比も大きく要求されるびん等の細口容器のプリフォ
ームの場合は、キャビティ型及びコア型の抜き勾配に制
限があり、その制限は丈が長くなるほど厳しいものとな
る。このため離型とその後の延伸吹込成形の両方を可能
とする両立温度までプリフォームを冷却して射出金型か
らの離型を行う必要がある。この両立温度に関しては、
PETの場合は常温で60°〜70℃、ポリプロピレン
の場合には90°〜100℃であり、その温度範囲であ
れば離型と延伸吹込成形の両方が成立するが、PETよ
りも溶融温度が高く、延伸吹込成形温度も当然に高いP
ENのプリフォームの場合には、これまでに成形されて
いた熱可塑性の場合よりも離型温度の設定が難しく、ま
た延伸吹込成形温度の許容範囲も狭いなどの理由から品
質のよい中空成形品を得ることができなかった。
However, in the case of a preform for a narrow-mouthed container such as a bottle, which is required to have a small diameter and a long length and a large blow-up ratio, there is a limitation in the draft of the cavity type and the core type, and the limitation is the length. The longer it gets, the more severe it becomes. For this reason, it is necessary to cool the preform to a compatible temperature that enables both mold release and subsequent stretch blow molding to perform mold release from the injection mold. Regarding this compatible temperature,
In the case of PET, the temperature is 60 ° to 70 ° C. at room temperature, and in the case of polypropylene, it is 90 ° to 100 ° C. In that temperature range, both mold release and stretch blow molding are established, but the melting temperature is higher than that of PET. High P and naturally high stretch blow molding temperature
In the case of EN preforms, it is more difficult to set the mold release temperature than in the case of the thermoplastic materials that have been molded so far, and the stretch blow molding temperature has a narrow allowable range. Couldn't get

【0012】この吹込成形温度の設定をプリフォームを
再加熱により調整した後ちに、延伸吹込成形を行うこと
も考え得るが、加熱ポットを採用した温調装置では、温
度が経時的に上昇して設定温度以上になり易く、またポ
リエチレンナフタレートは結晶化が速いので、迅速な操
作を要求されることなどから再加熱による場合であって
も成形は困難とされている。
Although it is conceivable that stretch blow molding is performed after adjusting the setting of the blow molding temperature by reheating the preform, in a temperature control device employing a heating pot, the temperature rises with time. Since the temperature tends to rise above the set temperature and polyethylene naphthalate is rapidly crystallized, rapid operation is required. Therefore, it is difficult to perform molding even by reheating.

【0013】この発明は上記PENの射出延伸吹込成形
における課題を解決するために考えられたものであっ
て、その目的は、プリフォームの離型とその後の伸吹込
成形が両立する表面温度の設定により、プリフォームの
高温離型を採用した射出延伸吹込成形によって、ポリエ
チレンナフタレートによるボトルその他容器などの中空
成形品の成形を可能とする新たな方法を提供することに
ある。
The present invention was conceived in order to solve the problems in the above-mentioned injection stretch blow molding of PEN, and its purpose is to set the surface temperature at which the mold release of the preform and the subsequent stretch blow molding are compatible. Accordingly, it is an object of the present invention to provide a new method capable of molding hollow molded articles such as bottles and other containers made of polyethylene naphthalate by injection stretch blow molding that employs high temperature mold release of a preform.

【0014】[0014]

【課題を解決するための手段】上記目的によるこの発明
の特徴は、溶融状態のPENを射出金型に射出充填して
所要のプリフォームに成形し、そのプリフォームをリッ
プ型により口部を保持して射出金型のキャビティ型とコ
ア型とから離型したのち、吹込金型に移送して薄肉の中
空成形品に延伸吹込成形するにあたり、上記プリフォー
ムを射出金型から離型する前に、上記コア型とプリフォ
ームとの境界に気体を圧入してプリフォーム内側をコア
型から縁切りし、しかるのちプリフォームの内部冷却が
未完で高温状態にあり、かつ離型直後のプリフォームの
表面温度が常温で75°〜85℃となる温度範囲にて離
型を行い、上記延伸吹込成形は離型後の上記表面温度が
プリフォームの内部熱により上昇中で150℃に達する
前の時間内にて行うことにある。
According to the features of the present invention according to the above object, a PEN in a molten state is injection-filled in an injection mold to be molded into a required preform, and the preform is held by a lip mold to hold a mouth portion. Then, after releasing from the cavity mold and core mold of the injection mold, before transferring to the blow mold and stretch blow molding into a thin hollow molded product, before releasing the preform from the injection mold , A gas is pressed into the boundary between the core mold and the preform to cut the inside of the preform from the core mold, and then the internal cooling of the preform is incomplete and at a high temperature, and the surface of the preform immediately after the mold release. Mold release is performed within a temperature range of 75 ° to 85 ° C. at room temperature, and the stretch blow molding is performed before the surface temperature after mold release reaches 150 ° C. while rising due to internal heat of the preform. At Lies in the fact.

【0015】上記プリフォームの成形時のPENの溶融
温度は、射出シリンダの前部温度で300℃程度を要す
る。この溶融状態のPENは12℃〜15℃あたりに温
度設定されたキャビティ型とコア型とにより形成された
射出金型のキャビティに射出充填されて、有底の上記プ
リフォームに成形される。
The melting temperature of PEN at the time of molding the above preform requires about 300 ° C. at the front temperature of the injection cylinder. The molten PEN is injected and filled into the cavity of the injection mold formed by the cavity mold and the core mold, the temperature of which is set at about 12 ° C to 15 ° C, and is molded into the bottomed preform.

【0016】溶融PENの射出充填が完了すると、射出
圧力は充填に要した一次圧よりも低圧の二次圧に切り替
えられて保圧に移行し、さらに冷却に移行する。上記縁
切り用の気体としては、経済的あるいは取り扱い上の点
から空気が最も好ましいが、場合によっては窒素ガス等
の不活性ガスを採用することもできる。また圧入は射出
充填の完了直後に開始してもプリフォームの形態に何等
影響を与えることはないが、保圧完了後に直ちに圧入を
開始することが最も好ましい。完了直前からの圧入開始
では、圧入気体による内圧の上昇によって充填抵抗が生
じ、所定量の溶融樹脂の充填が行えずにプリフォームの
形態が損なわれる。
When the injection filling of the molten PEN is completed, the injection pressure is switched to the secondary pressure lower than the primary pressure required for the filling to shift to the holding pressure and then to the cooling. Air is the most preferable as the edge-cutting gas from the viewpoint of economy or handling, but an inert gas such as nitrogen gas may be used in some cases. Although the press-fitting does not affect the form of the preform even if it is started immediately after the completion of injection filling, it is most preferable to start the press-fitting immediately after the completion of the holding pressure. When the press-fitting is started immediately before the completion, the filling pressure is generated due to the increase of the internal pressure due to the press-fitting gas, and the predetermined amount of the molten resin cannot be filled and the form of the preform is impaired.

【0017】上記気体の圧入は、コア型の根元または先
端部からコア型とプリフォームとの境界に気体を吹き込
むようにして行う。この圧入位置の選択はプリフォーム
の長さや厚さによって選択することができるが、長いプ
リフォームでは先端部から圧入するのが好ましい。また
気体の圧入目的がコア型とプリフォーム内側との縁切り
にあるので、圧入した気体はそのまま上記境界に所要時
間とどめ、プリフォーム内側をコア型表面から隔離して
離型可能な温度までプリフォームの冷却を行うが、圧入
(吹込)時間は少なくとも1秒間を要し、吹込圧力は5
kg/cm2 以上、好ましくは10kg/cm2 前後がよい。
The gas is press-fitted by blowing the gas from the root or tip of the core mold to the boundary between the core mold and the preform. The press-fitting position can be selected depending on the length and thickness of the preform, but it is preferable to press-fit from the tip of a long preform. Also, since the purpose of gas injection is to cut the edge between the core mold and the inside of the preform, the injected gas is kept at the boundary as it is for the required time, and the inside of the preform is separated from the surface of the core mold to a temperature at which preform can be released. However, the press-in (blowing) time requires at least 1 second, and the blowing pressure is 5
kg / cm 2 or more, preferably around 10 kg / cm 2 .

【0018】プリフォームの離型は上記温度範囲にて行
われるのであるが、延伸吹込成形はプリフォームの表面
温度が、離型時よりも50°〜80℃ほど上昇した温度
範囲、好ましくは125°〜150℃で行うのがよい。
上昇温度が80℃以上であるとピーク温度に近くなって
表面温度の温度上昇が緩慢となり、プリフォームに対す
る温度状態が結晶化しやすい環境となる。このため離型
後の表面温度が160℃を超えると肉厚分布が良好な成
形品の延伸吹込成形が困難となる。また上記温度範囲で
もその後に達するピーク温度を過ぎてからの温度では良
好な結果は得られない。表面温度が100℃以下では温
度が低く過ぎて気体の圧力による全体的な延び得られ
ず、成形が極めて困難となる。
The mold release of the preform is carried out within the above temperature range, but in the stretch blow molding, the surface temperature of the preform is raised by 50 ° to 80 ° C. as compared with the mold release time, preferably 125. It is preferable to carry out at a temperature of 150 ° C to 150 ° C.
When the temperature rise is 80 ° C. or higher, the temperature rises close to the peak temperature and the temperature rise of the surface temperature slows down, and the temperature condition for the preform becomes an environment in which crystallization tends to occur. Therefore, if the surface temperature after releasing exceeds 160 ° C., it becomes difficult to perform stretch blow molding of a molded product having a good wall thickness distribution. Even in the above temperature range, good results cannot be obtained at temperatures after the peak temperature reached thereafter is passed. When the surface temperature is 100 ° C. or lower, the temperature is too low to be extended entirely due to the pressure of gas, which makes molding extremely difficult.

【0019】このようなことから、延伸吹込成形を行う
際の最も好ましい表面温度は、離型時の表面温度より5
0°〜80℃ほど上昇した当たりの温度がよく、時間的
には離型後4〜7秒の範囲である。また離型時の表面温
度が内部の熱によりピークに達する温度は、肉厚により
ある程度の高低差は生ずるが、ピーク温度に達するまで
の時間には大きな差は生じない。したがって肉厚分布を
変えることによって内部熱量を調整し、プリフォームに
ブロー比率に応じた伸びが生ずるようにして、良好な肉
厚分布の容器等を得る場合においても、肉厚差が極端な
場合を除いて、離型後の所定の経過時間内にて全体的に
好ましい温度範囲での延伸吹込成形が可能となる。
From the above, the most preferable surface temperature at the time of stretch blow molding is 5 times higher than the surface temperature at the time of mold release.
The temperature when the temperature rises by 0 ° to 80 ° C. is good, and the time is in the range of 4 to 7 seconds after the mold release. Further, the temperature at which the surface temperature at the time of mold release reaches a peak due to internal heat causes a certain level difference due to the wall thickness, but does not cause a large difference in the time required to reach the peak temperature. Therefore, when the internal heat quantity is adjusted by changing the wall thickness distribution so that the preform expands according to the blow ratio, even when a container with a good wall thickness distribution is obtained, when the wall thickness difference is extreme Except for the above, it is possible to perform stretch blow molding in a generally preferable temperature range within a predetermined elapsed time after release.

【0020】延伸吹込成形時の空気の吹込圧力は、一次
と二次とに分けて段階的に行うことが好ましく、二次圧
は一次圧の2倍以上の圧力に設定するとよい。また延伸
は縦2倍程度、横3倍程度まで行うことが可能である。
It is preferable that the air blowing pressure during the stretch blow molding is divided into a primary pressure and a secondary pressure in stages, and the secondary pressure is set to a pressure twice or more the primary pressure. The stretching can be performed up to about 2 times in the length direction and about 3 times in the width direction.

【0021】[0021]

【作 用】上記方法では、PENのプリフォームの離型
に際して、コア型とプリフォーム内側との境界に気体を
圧入し、プリフォーム内側の縁切りを行った状態で冷却
を行うので、コア型とプリフォーム内側との境界に介在
する気体により、プリフォーム内側の冷却が抑えられ
て、内側スキン層が密着した場合よりも薄層に形成され
るようになり、その分だけプリフォーム内側の収縮が少
なく、密着も緩和される。
[Operation] In the above method, when the PEN preform is released from the mold, gas is pressed into the boundary between the core mold and the inside of the preform, and cooling is performed with the edge cut inside the preform. The gas existing at the boundary with the inside of the preform suppresses the cooling inside the preform, and the inner skin layer is formed in a thinner layer than when it adheres tightly. There is little, and adhesion is also eased.

【0022】反対にプリフォーム表側では、圧入気体に
よりその表面がキャビティ面に押圧されて冷却を受け易
くなり、冷却に伴う収縮による離れも防止されることか
ら、スキン層がプリフォームの形態を維持できる固さに
なるのが早く、後に延伸吹込成形可能な表面温度での離
型が可能となる。また急冷のため結晶化も極めて少なく
済む。
On the other hand, on the front side of the preform, the surface of the preform is pressed against the cavity surface by the press-fitted gas and is easily cooled, and the separation due to shrinkage due to cooling is prevented, so that the skin layer maintains the form of the preform. The hardness becomes quicker, and the mold can be released at the surface temperature at which stretch blow molding can be performed later. In addition, because of the rapid cooling, crystallization is extremely small.

【0023】また内部熱により表面温度が上昇している
過程では、内部からの加熱により結晶化が抑えられ、そ
の成長は遅いので結晶化による延伸阻害はなく、ポリエ
チレンナフタレートであっても延伸吹込成形がスムーズ
に行えて、良好な肉厚分布の容器等の成形品を得ること
ができる。
In the process in which the surface temperature rises due to internal heat, crystallization is suppressed by heating from the inside, and its growth is slow, so there is no hindrance to stretching due to crystallization, and even polyethylene naphthalate is blown by stretching. Molding can be performed smoothly, and a molded product such as a container having a good wall thickness distribution can be obtained.

【0024】[0024]

【実施例】【Example】

使用成形機 射出延伸吹込成形機 SB3−1
00LL (株)青木固研究所製 NO1 材 料 樹 脂 ポリエチレンナフタレート 日本鋼管
株式会社製 NXP−1500 IV値 0.597, 成 形 品 油ボトル(750cc) 寸 法 全高200mm, 口部内径23mm, 首下長
さ175mm,胴部外径65〜68mm,胴部の肉厚0.2
7mm,重量24g , プリフォーム 寸 法 全高95.5mm, 口部内径23mm, 首下
長さ70mm,胴部の肉厚2.8mm, 胴上部の外径2
6mm,胴下端部の外径24mm, 抜き勾配1°,
Molding machine used Injection stretch blow molding machine SB3-1
00LL NOA material manufactured by Aoki Solid Research Institute Co., Ltd. Resin Polyethylene naphthalate NIPPON KOBE CO., LTD. NXP-1500 IV value 0.597, molded product oil bottle (750cc) Dimensions 200mm, mouth diameter 23mm, neck Lower length 175 mm, outer diameter 65-68 mm, body thickness 0.2
7mm, weight 24g, preform dimension height 95.5mm, mouth inner diameter 23mm, neck length 70mm, body thickness 2.8mm, upper body outer diameter 2
6mm, outer diameter of the lower end of the body 24mm, draft angle 1 °,

【0025】プリフォーム成形条件 射出シリンダ温度 ノズル280℃,後部275℃,中間部280℃,前部
280℃, スクリュ回転数 125rpm 背 圧 力 10kg/cm2 射出圧一次 140kg/cm2 , 射出圧二次 50kg/cm2 , 充填保圧時間 3.6秒, 冷 却 時 間 1.0秒, 射出金型温度(実測値)設定温度15℃ キャビティ型 19.6℃, コア型 16℃, 圧入(吹込)気体 空 気, 圧入(吹込)圧力 9kg/cm2 , 圧入タイミング 保圧完了直後, 圧入(吹込)時間 1.0秒, 離 型 温 度 75〜80℃(プリフォーム表面
温度),
Preform molding conditions Injection cylinder temperature Nozzle 280 ° C, rear part 275 ° C, middle part 280 ° C, front part 280 ° C, screw rotation speed 125 rpm, back pressure force 10 kg / cm 2, injection pressure primary 140 kg / cm 2 , injection pressure two Next 50kg / cm 2 , filling and holding time 3.6sec, cooling time 1.0sec, injection mold temperature (actual measurement) set temperature 15 ℃, cavity mold 19.6 ℃, core mold 16 ℃, press fit ( Blow-in gas Air, press-in (blow-in) pressure 9kg / cm 2 , press-in timing Immediately after holding pressure, press-in (blow-in) time 1.0 second, mold release temperature 75-80 ℃ (preform surface temperature),

【0026】延伸吹込成形条件 金 型 温 度(設定温度) 15℃,(水冷) 延伸吹込温度 130°〜140℃(プリフォー
ム表面温度), 吹込圧力(延伸) 16kg/cm2 , 吹込時間 1.0〜1.5 秒, 延伸倍率 縦(軸方向) 2.50倍, 横(半径方向)2.60倍,
Stretch blow molding conditions Mold temperature (set temperature) 15 ° C., (water cooling) Stretch blow temperature 130 ° -140 ° C. (preform surface temperature), blow pressure (stretch) 16 kg / cm 2 , blow time 1. 0 to 1.5 seconds, draw ratio longitudinal (axial direction) 2.50 times, lateral (radial direction) 2.60 times,

【0027】NO2 材 料 樹 脂 ポリエチレンナフタレート AMOC
O社製(米国) IV値 0.680dL/g, 成 形 品 水,油用ボトル(750cc) 寸 法 全高200mm, 口部内径23mm, 首下長
さ175mm,胴部外径65〜68mm,胴部の肉厚0.2
7mm,重量24g , プリフォーム 寸 法 全高95.5mm, 口部内径23mm, 首下
長さ70mm,胴部の肉厚2.8mm, 胴上部の外径2
6mm,胴下端部の外径24mm, 抜き勾配1°,
NO2 material Resin Polyethylene naphthalate AMOC
Company O (US) IV value 0.680 dL / g, Molded water, oil bottle (750 cc) Dimensions 200 mm, mouth inner diameter 23 mm, neck length 175 mm, trunk outer diameter 65 to 68 mm, trunk Thickness of part 0.2
7mm, weight 24g, preform dimension height 95.5mm, mouth inner diameter 23mm, neck length 70mm, body thickness 2.8mm, upper body outer diameter 2
6mm, outer diameter of the lower end of the body 24mm, draft angle 1 °,

【0028】プリフォーム成形条件 射出シリンダ温度 ノズル280℃,後部296℃,中間部300℃,前部
300℃, スクリュ回転数 125rpm 背 圧 力 10kg/cm2 射出金型温度(実測値)設定温度15℃ キャビティ型 19.6℃, コア型 16℃, 射出圧一次 140kg/cm2 , 射出圧二次 50kg/cm2 , 充填保圧時間 3.6秒, 冷 却 時 間 1.2秒, 圧入(吹込)気体 空 気, 圧入(吹込)圧力 9kg/cm2 , 圧入タイミング 保圧完了直後, 圧入(吹込)時間 1.2秒間, 離 型 温 度 78℃(プリフォーム表面温
度),
Preform molding conditions Injection cylinder temperature Nozzle 280 ° C., rear 296 ° C., middle part 300 ° C., front part 300 ° C., screw rotation speed 125 rpm, back pressure force 10 kg / cm 2 injection mold temperature (measured value) set temperature 15 ℃ Cavity type 19.6 ℃, Core type 16 ℃, Injection pressure primary 140kg / cm 2 , Injection pressure secondary 50kg / cm 2 , Filling retention time 3.6sec, Cooling time 1.2sec, Press fit ( Blow-in gas Air, press-in (blow-in) pressure 9kg / cm 2 , press-in timing Immediately after holding pressure, press-in (blow-in) time 1.2 seconds, release temperature 78 ℃ (preform surface temperature),

【0029】延伸吹込成形条件 金 型 温 度(設定温度) 15℃,(水冷) 延伸吹込温度 140℃(プリフォーム表面温
度), 吹込圧力(延伸) 16kg/cm2 , 吹込時間 1.0〜1.5 秒, 延伸倍率 縦(軸方向) 2.50倍,横
(半径方向)2.60倍,
Stretch blow molding conditions Mold temperature (set temperature) 15 ° C., (water cooling) Stretch blow temperature 140 ° C. (preform surface temperature), blow pressure (stretch) 16 kg / cm 2 , blow time 1.0 to 1 0.5 seconds, draw ratio longitudinal (axial direction) 2.50 times, lateral (radial direction) 2.60 times,

【0030】結 果 ・ 上記実施例1,2により成形したいずれのPENボ
トル透明で偏肉が無く、PETボトルよりも全体的に剛
性があった。 ・ 油びんに食用油を95℃で充填したが熱変形は生じ
なかった。 ・ 内容物を密封した状態で2mの高さから数回繰返し
落下しても、破損は認められなかった。 なお、PETに比べて延伸性が悪く、偏肉が発生し易か
った。また白化速度が早く乳白化し易い。また射出成形
に際してはPETよりも溶融粘度が高くスクリュ回転ト
ルクが大きいので、シリンダ温度を高めに設定するのが
好ましく、成形材料は160℃で2時間ほど乾燥した使
用した。
Results: All PEN bottles molded according to Examples 1 and 2 above were transparent and had no uneven thickness, and were more rigid than PET bottles overall. -Oil bottle was filled with edible oil at 95 ° C, but no thermal deformation occurred. -No damage was found even if the contents were sealed and repeatedly dropped from a height of 2 m several times. The stretchability was poorer than that of PET, and uneven thickness was likely to occur. In addition, the whitening speed is fast and the whitening is easy. In injection molding, the melt viscosity is higher and the screw rotation torque is larger than in PET, so it is preferable to set the cylinder temperature higher, and the molding material was dried at 160 ° C. for about 2 hours before use.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 22:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area B29L 22:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融状態のポリエチレンナフタレートを
射出金型に射出充填して所要のプリフォームに成形し、
そのプリフォームをリップ型により口部を保持して射出
金型のキャビティ型とコア型とから離型したのち、吹込
金型に移送して薄肉の中空成形品に延伸吹込成形するに
あたり、 上記プリフォームを射出金型から離型する前に、上記コ
ア型とプリフォームとの境界に気体を圧入してプリフォ
ーム内側をコア型から縁切りし、しかるのちプリフォー
ムの内部冷却が未完で高温状態にあり、かつ離型直後の
プリフォームの表面温度が常温で75°〜85℃となる
温度範囲にて離型を行い、 上記延伸吹込成形は離型後の上記表面温度がプリフォー
ムの内部熱により上昇中で150℃に達する前の時間内
にて行うことを特徴とするポリエチレンナフタレートの
射出延伸吹込成形方法。
1. A polyethylene naphthalate in a molten state is injection-filled in an injection mold to be molded into a required preform,
The preform is held by the lip mold to separate the cavity mold and the core mold of the injection mold, and then transferred to the blow mold and stretch blow-molded into a thin hollow molded product. Before releasing the reform from the injection mold, gas is pressed into the boundary between the core mold and the preform to cut the inside of the preform from the core mold, and then the internal cooling of the preform is not completed and becomes a high temperature state. And the mold temperature is 75 ° C. to 85 ° C. at room temperature, and the stretch blow molding is performed so that the surface temperature after the mold release is caused by the internal heat of the preform. A method for injection stretch blow molding of polyethylene naphthalate, which is carried out within a time period before rising to 150 ° C.
JP14407694A 1994-06-03 1994-06-03 Injection stretch blow molding method of polyethylene naphthalate Pending JPH07329156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14407694A JPH07329156A (en) 1994-06-03 1994-06-03 Injection stretch blow molding method of polyethylene naphthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14407694A JPH07329156A (en) 1994-06-03 1994-06-03 Injection stretch blow molding method of polyethylene naphthalate

Publications (1)

Publication Number Publication Date
JPH07329156A true JPH07329156A (en) 1995-12-19

Family

ID=15353722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14407694A Pending JPH07329156A (en) 1994-06-03 1994-06-03 Injection stretch blow molding method of polyethylene naphthalate

Country Status (1)

Country Link
JP (1) JPH07329156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994872A (en) * 1995-09-29 1997-04-08 Aokiko Kenkyusho:Kk Method for injection draw blow molding
KR20020048103A (en) * 2000-12-16 2002-06-22 조 정 래 Molding process of polyethylene naphthalate container
CN114605056A (en) * 2022-04-18 2022-06-10 重庆天嘉日用品实业有限公司 Blowing mould for producing glass thermos bottle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994872A (en) * 1995-09-29 1997-04-08 Aokiko Kenkyusho:Kk Method for injection draw blow molding
KR20020048103A (en) * 2000-12-16 2002-06-22 조 정 래 Molding process of polyethylene naphthalate container
CN114605056A (en) * 2022-04-18 2022-06-10 重庆天嘉日用品实业有限公司 Blowing mould for producing glass thermos bottle

Similar Documents

Publication Publication Date Title
DK168064B1 (en) PROCEDURE FOR THE PREPARATION OF AN ORIENTED NON-COLLABLE POLYESTER CONTAINER INTENDED FOR HOT PRODUCTS
JP4714509B2 (en) Injection stretch blow molding method
JP3017602B2 (en) Refillable plastic container
US4933135A (en) Method of making a blow-moulded container from a thermoplastic polyester, in particular pet
JPH036061B2 (en)
RU2480331C2 (en) Package for hot filling
EP1688234A2 (en) A process for forming a container by stretch blow molding and container formed thereby
FR2649035A1 (en) METHOD OF MANUFACTURING BY BLOW-STRETCHING POLYETHYLENETEREPHTHALATE CONTAINERS FOR FILLING WITH A HOT LIQUID
EP0654340B1 (en) Method for injection stretch blow molding of polyethylene
CN1434762A (en) Hot fil container
JPH0411374B2 (en)
JPS6356104B2 (en)
JPH0681700B2 (en) Biaxially stretched plastic bottle manufacturing method
JPH07329156A (en) Injection stretch blow molding method of polyethylene naphthalate
JP3316510B2 (en) Injection stretch blow molding method for polyethylene
JPS5892536A (en) Biaxially stretched plastic bottle
AU716229B2 (en) Process for injection stretch blow molding
JPH08300460A (en) Preform molding method in injection stretching blow molding
ES2279811T3 (en) PROCEDURE FOR MOLDING BY COMPRESSION OF SEMI-CRYSTAL POLYMERS.
JP3316511B2 (en) Injection stretch blow molding method for polyethylene
JPH0443498B2 (en)
JPS63185620A (en) Production of thermally set polyester stretched molded container
JPH0431286B2 (en)
JPH0615643A (en) Manufacture of premolded body
WO2000023252A1 (en) Injection stretch blow molding method