JPH07328455A - Regenerating method of catalyst - Google Patents

Regenerating method of catalyst

Info

Publication number
JPH07328455A
JPH07328455A JP6122168A JP12216894A JPH07328455A JP H07328455 A JPH07328455 A JP H07328455A JP 6122168 A JP6122168 A JP 6122168A JP 12216894 A JP12216894 A JP 12216894A JP H07328455 A JPH07328455 A JP H07328455A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
styrene monomer
blown
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6122168A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hamada
一幸 浜田
Shigeo Nagase
重雄 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6122168A priority Critical patent/JPH07328455A/en
Publication of JPH07328455A publication Critical patent/JPH07328455A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove carbon, polymerized material, iron oxide, or the like depositing on the surface of a catalyst and to regenerate the catalyst in a good state by cleaning a granular catalyst having decreased activity with liquid hydrocarbon while blowing a gaseous material at a specified average line velocity. CONSTITUTION:A granular catalyst having decreased activity is regenerated by cleaning with liquid hydrocarbon while blowing a gaseous material at 10-150 mm/min average line velocity. The gaseous material is blown through the lower part of a reactor. Further, the catalyst is cleaned with liquid hydrocarbon under conditions of 20-90 deg.C and 0-2.0kg/cm<2>G. Thus, carbon, polymerized material, iron oxide, and the like produced from hydrocarbon depositing on the surface of the catalyst can be efficiently removed, and the catalyst is preferably regenerated in a good state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒の再生方法にかか
わるものであり、更に詳しく言えば触媒表面に沈着した
炭素分、重合生成物、酸化鉄を除去する触媒の再生方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a catalyst, and more particularly to a method for regenerating a catalyst for removing carbon, polymerized products and iron oxide deposited on the surface of the catalyst. .

【0002】[0002]

【従来の技術】一般に炭化水素を水添する触媒は使用す
るに従って流体中の被毒物質により被毒されたり、流体
に持ち込まれるサビ、更には流体自体に起因する重合生
成物及び炭素分が触媒表面に沈着し触媒活性を著しく低
下させるに至る。一般に水添触媒は貴金属を担持してお
り、非常に高価であるため、失活する度に頻繁に更新す
る訳にはいかず、商業的な使用に耐え得るには触媒の再
生方法の確立が望まれていた。
2. Description of the Related Art Generally, a catalyst for hydrogenating a hydrocarbon is poisoned by poisonous substances in the fluid as it is used, and rust introduced into the fluid, as well as a polymerization product and carbon content caused by the fluid itself. Deposition on the surface leads to a marked decrease in catalytic activity. In general, hydrogenated catalysts carry precious metals and are extremely expensive, so they cannot be frequently renewed each time they are deactivated, and it is desirable to establish a catalyst regeneration method to withstand commercial use. It was rare.

【0003】この問題を解決する手段として、「特開昭
50-153790」の「触媒再生法」では固体粒状触媒の再生
方法として触媒を炭化水素で洗浄する方法が開示されて
いる。この方法は性能劣化した触媒を温度37.8〜371
℃、圧力0.35〜105.5 kg/cm2の範囲内で液状炭化水素に
より洗浄することにより表面に沈着した、炭素分や炭化
水素重合物質を除去するものである。
As a means for solving this problem, Japanese Patent Laid-Open No.
In “Catalyst Regeneration Method” of “50-153790”, a method of washing the catalyst with hydrocarbon is disclosed as a method of regenerating the solid particulate catalyst. This method treats the deteriorated catalyst at a temperature of 37.8-371.
The carbon content and hydrocarbon polymer substances deposited on the surface are removed by washing with liquid hydrocarbon at a temperature of 0.35 to 105.5 kg / cm 2 at a temperature of ℃.

【0004】この方法によりある程度触媒活性は回復す
るものの触媒表面から完全に上記沈着物は除去されきれ
ず、触媒活性表面積は完全に回復することはなかった。
このようにかかる技術をもっても、一度触媒表面に沈着
物が付着すると新触媒の活性を再現することができず、
より完全な触媒表面沈着物の除去による効果的な触媒再
生方法が要望されていた。
Although the catalyst activity was recovered to some extent by this method, the deposits could not be completely removed from the catalyst surface, and the catalyst active surface area was not completely recovered.
Even with such a technique, once the deposit adheres to the catalyst surface, the activity of the new catalyst cannot be reproduced,
There has been a need for an effective catalyst regeneration method by more complete removal of catalyst surface deposits.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、触媒
表面の沈着物をより効果的に除去し、触媒の優れた再生
方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for effectively regenerating a catalyst by more effectively removing deposits on the surface of the catalyst.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意研究を
重ねた結果、触媒を液体炭化水素によって洗浄する際に
ガス状物質を同時に通気することにより、触媒表面に沈
着した炭化水素に起因する炭素分、炭化水素重合生成物
を効果的に除去できる事を見いだし、この知見に基づい
て本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors, the hydrocarbons deposited on the catalyst surface are caused by simultaneously ventilating a gaseous substance when the catalyst is washed with liquid hydrocarbons. It has been found that the carbon content and the hydrocarbon polymerization product can be effectively removed, and the present invention has been completed based on this finding.

【0007】すなわち本発明は、ガス状物質を平均線速
度10〜150mm/minで吹き込みながら、活性の
低下した粒状触媒を液体炭化水素で洗浄する触媒再生方
法である。本発明で用いられる触媒の種類は特に限定さ
れるものではないが、以下の製造分野で使用される水添
触媒の再生に特に効果的である。すなわち、スチレンモ
ノマーの精製における副生物のフェニルアセチレン水添
反応、ベンゼンの水素化反応、フェノールよりシクロヘ
キサノールを合成する水素化反応、イソオクテンよりイ
ソオクタンを製造する水素化反応、石油系オレフィン中
のアセチレンを水素添加し除去する反応などである。
That is, the present invention is a catalyst regeneration method in which a granular catalyst with reduced activity is washed with liquid hydrocarbon while blowing a gaseous substance at an average linear velocity of 10 to 150 mm / min. The type of catalyst used in the present invention is not particularly limited, but it is particularly effective for regeneration of the hydrogenation catalyst used in the following manufacturing fields. That is, by-product hydrogenation reaction of styrene in the purification of styrene monomer, hydrogenation reaction of benzene, hydrogenation reaction to synthesize cyclohexanol from phenol, hydrogenation reaction to produce isooctane from isooctene, acetylene in petroleum-based olefins Reactions such as hydrogenation and removal.

【0008】本発明で「活性の低下した」とは、例え
ば、炭素分や炭化水素重合物質が触媒表面に沈着するこ
とによって、触媒の活性表面積が減少し、触媒本来の活
性能力よりも活性が低下した状態を指す。本発明でいう
触媒とは、担体に金属を担持した多孔性のものである。
ここで言う担体は特に限定されるものではないが、粒状
酸化アルミニウム、シリカ、シリカアルミナ、活性炭が
望ましい。
In the present invention, the term "activity is reduced" means that the active surface area of the catalyst is reduced by depositing carbon or hydrocarbon polymer substances on the catalyst surface, and the activity is lower than the original activity of the catalyst. Refers to the lowered state. The catalyst referred to in the present invention is a porous one in which a metal is supported on a carrier.
The carrier mentioned here is not particularly limited, but granular aluminum oxide, silica, silica-alumina, and activated carbon are preferable.

【0009】また、ここで言う触媒金属としては、ニッ
ケル、コバルト、鉄、銅、白金、パラジウム、ロジウ
ム、ルテニウム、イリジウム、レニウム、硫化物などが
挙げられる。本発明は特にこれらに限定されるものでは
ないが、パラジウムが特に好ましい。触媒の平均粒径は
本発明を特に限定するものではないが、1〜20mmが一般
的である。触媒形状は円柱ペレット状のものでも球形で
もまたタブレット状であってもかまわない。
Examples of the catalyst metal mentioned here include nickel, cobalt, iron, copper, platinum, palladium, rhodium, ruthenium, iridium, rhenium and sulfides. The present invention is not particularly limited to these, but palladium is particularly preferable. The average particle size of the catalyst is not particularly limited in the present invention, but is generally 1 to 20 mm. The catalyst may have a cylindrical pellet shape, a spherical shape, or a tablet shape.

【0010】触媒中に含有されている触媒金属の量に制
限はないが、好ましくは0.01〜3重量%、更に好ましく
は0.01〜0.5重量%である。触媒の形態は上記担体の表
面に金属を含浸したものである。再生洗浄時の温度及び
圧力は、好ましくは温度20℃から90℃、圧力0kg/cm2Gか
ら2kg/cm2Gであり、更に好ましくは温度40℃〜80℃、圧
力0kg/cm2Gから1.5kg/cm 2Gであるが、特にこれらに限定
されるものではなくこの他の条件下でも相応の洗浄再生
効果は得られる。
The amount of catalytic metal contained in the catalyst is controlled.
Although not limited, preferably 0.01 to 3% by weight, more preferably
Is 0.01 to 0.5% by weight. The form of the catalyst is shown in the table above.
The surface is impregnated with metal. The temperature during regeneration cleaning and
The pressure is preferably 20 ° C to 90 ° C, pressure 0kg / cm2G or
2 kg / cm2G, and more preferably at a temperature of 40 ° C to 80 ° C and pressure.
Force 0kg / cm2G to 1.5 kg / cm 2G, but especially limited to these
Not subject to proper cleaning and regeneration under other conditions
The effect is obtained.

【0011】本発明で言うガス状物質とは、上記温度、
圧力条件下で気体であるものであれば特に限定されない
が、例えば、窒素、酸素、水素、塩素、オゾン、一酸化
炭素、二酸化酸素、及びこれらの2種またはそれ以上の
混合物が挙げられる。中でも、触媒、液体炭化水素との
反応性が低いことから、窒素が好ましい。本発明では、
該ガス状物質を吹き込むことにより、触媒と接している
界面の液体炭化水素が更新されやすくなり、常に強い洗
浄効果が維持される。その結果、触媒表面の沈着物が効
果的に除去されて、触媒のより完全な再生が可能とな
る。
The gaseous substance referred to in the present invention means the above temperature,
There is no particular limitation as long as it is a gas under pressure conditions, and examples thereof include nitrogen, oxygen, hydrogen, chlorine, ozone, carbon monoxide, oxygen dioxide, and a mixture of two or more thereof. Of these, nitrogen is preferable because it has low reactivity with the catalyst and liquid hydrocarbons. In the present invention,
By blowing in the gaseous substance, the liquid hydrocarbon at the interface in contact with the catalyst is easily renewed, and a strong cleaning effect is always maintained. As a result, deposits on the surface of the catalyst are effectively removed, allowing more complete regeneration of the catalyst.

【0012】本発明で触媒再生時に吹き込まれるガス状
物質の流量が小さすぎると、十分な洗浄効果を得ること
ができず、逆に流量が大きすぎると、触媒層を撹拌し触
媒表面に担持された金属を剥離し触媒劣化を加速する。
従ってガス状物質の吹き込み量は最適化されなければな
らない。すなわち、本発明における触媒再生時に触媒層
に吹き込まれるガス状物質の容器内の平均線速度は、10
〜150(mm/min)であり、好ましくは30〜50(mm/min)であ
る。この範囲でガス状物質を反応器下部すなわち触媒層
下部より吹き込むことにより触媒表面から金属を剥離せ
ず、触媒表面の沈着物を効果的に除去することができ
る。
In the present invention, if the flow rate of the gaseous substance blown during catalyst regeneration is too small, a sufficient cleaning effect cannot be obtained, and conversely, if the flow rate is too large, the catalyst layer is agitated and supported on the catalyst surface. The metal is removed to accelerate catalyst deterioration.
Therefore, the amount of gaseous substances blown in must be optimized. That is, the average linear velocity in the container of the gaseous substance blown into the catalyst layer during catalyst regeneration in the present invention is 10
It is ~ 150 (mm / min), preferably 30-50 (mm / min). By blowing the gaseous substance from the lower part of the reactor, that is, the lower part of the catalyst layer in this range, the metal is not peeled from the catalyst surface, and the deposits on the catalyst surface can be effectively removed.

【0013】ここで反応器の大きさは特に限定されない
が、触媒充填量が、0.5m3 〜20m3の反応器が一般的であ
る。ガス状物質は、均一に分散して供給した方が効果的
に触媒表面の沈着物を除去することができるため、スパ
ージャーなどで均一な分散供給をすることが望ましい。
スパージャーの穴径は本発明を特に限定するものではな
いが、触媒がスパージャー中に入らない程度の大きさ
で、0.1〜20mmが一般的である。
[0013] Without being limited where the size of the reactor, in particular, catalyst loading is, reactor 0.5 m 3 to 20 m 3 is common. Since it is possible to effectively remove deposits on the catalyst surface by uniformly dispersing and supplying the gaseous substance, it is desirable to uniformly disperse and supply the gaseous substance with a sparger or the like.
The hole diameter of the sparger is not particularly limited to the present invention, but is a size that does not allow the catalyst to enter the sparger, and is generally 0.1 to 20 mm.

【0014】更にフィード時のガス状物質の気泡径は、
充填される触媒径と充填密度、スパージャー穴径に密接
に関連があるが、上記温度、圧力、触媒径条件下では、
0.01〜20mmである。洗浄に用いる液体炭化水素は、本発
明を特に限定するものではないが、上記温度圧力条件下
で液体である芳香族炭化水素誘導体や脂肪族炭化水素な
どが好ましい。
Further, the bubble diameter of the gaseous substance at the time of feeding is
Although closely related to the packed catalyst diameter and packing density, sparger hole diameter, under the above temperature, pressure and catalyst diameter conditions,
It is 0.01 to 20 mm. The liquid hydrocarbon used for washing is not particularly limited to the present invention, but an aromatic hydrocarbon derivative or an aliphatic hydrocarbon which is liquid under the above temperature and pressure conditions is preferable.

【0015】これらの例としてベンゼン、エチルベンゼ
ン、スチレンモノマー、トルエン、キシレン、ジエチル
ベンゼン、メタノール、エタノール、アセトンメチルエ
チルケトン等の炭化水素もしくはこれらの組み合わせが
挙げられるが、通常、これらの中から、触媒を使用する
プロセスで用いられる液体が選択される。例えば、粗ス
チレンモノマーの精製工程で使用する触媒を再生処理す
る場合は、液体炭化水素として、スチレンモノマーやエ
チルベンゼンを用いることが好ましい。
Examples of these include hydrocarbons such as benzene, ethylbenzene, styrene monomer, toluene, xylene, diethylbenzene, methanol, ethanol, and acetone methyl ethyl ketone, or a combination thereof. Usually, a catalyst is used from these. The liquid used in the process is selected. For example, when the catalyst used in the purification step of the crude styrene monomer is regenerated, it is preferable to use styrene monomer or ethylbenzene as the liquid hydrocarbon.

【0016】また、液体炭化水素の供給量は、触媒が充
分浸漬される量が必要であり、通常、バッチ操作で再生
を行う場合は、触媒体積の1〜5倍、好ましくは1〜2
倍の液体炭化水素を供給する。本発明の好ましい実施態
様によれば、触媒表面の沈着物が増加し、触媒活性表面
積が減少することにより触媒再生の必要が生じた場合、
触媒を反応器の中に充填したまま反応器内に残留してい
るプロセス流体を抜き出す。ついでこの反応器の中に洗
浄液である液体炭化水素を反応器内の触媒が十分浸漬さ
れる程度まで導入する。その後反応器の底部すなわち触
媒層の下部の空間部分にガス状物質を吹き込み、1〜4
時間この状態を継続し、ガス状物質気泡を上昇させる。
該時間経過後反応器中の液体炭化水素を抜き出し、再び
フレッシュな液体炭化水素を導入し、同様にガス状物質
を吹き込む。一般にこの操作の繰り返し回数が多けれ
ば、それだけ触媒表面上の沈着物の除去割合が高まる
が、1〜5回、望ましくは3回程度で所望の効果を得る
には十分である。
Further, the amount of liquid hydrocarbon to be supplied must be such that the catalyst is sufficiently immersed, and when regenerating by a batch operation, it is usually 1 to 5 times the catalyst volume, preferably 1 to 2 times.
Supply twice as much liquid hydrocarbons. According to a preferred embodiment of the present invention, when the need for catalyst regeneration arises due to increased catalyst surface deposits and reduced catalytically active surface area,
The process fluid remaining in the reactor is withdrawn while the catalyst remains charged in the reactor. Then, a liquid hydrocarbon as a cleaning liquid is introduced into this reactor until the catalyst in the reactor is sufficiently immersed. Then, the gaseous substance was blown into the bottom of the reactor, that is, the space below the catalyst layer,
This state is continued for a period of time to raise the bubbles of the gaseous substance.
After the lapse of time, the liquid hydrocarbons in the reactor are extracted, fresh liquid hydrocarbons are introduced again, and gaseous substances are also blown in. Generally, if the number of repetitions of this operation is large, the rate of removal of deposits on the surface of the catalyst is increased, but 1 to 5, preferably about 3 times is sufficient to obtain the desired effect.

【0017】また液体炭化水素は上記のようにバッチ処
理してもよいが、場合によっては連続流通で供給しても
よい。このときの所要時間はバッチ処理と同じく1〜4
時間程度である。
The liquid hydrocarbon may be batch-processed as described above, but in some cases, may be supplied by continuous flow. The time required at this time is 1 to 4 as in batch processing.
It's about time.

【0018】[0018]

【実施例】以下実施例をあげて本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described with reference to the following examples.

【0019】[0019]

【実施例1】本実施例にて引用されるスチレンモノマー
の製造工程においては、エチルベンゼンを脱水素反応器
により脱水素し、粗スチレンモノマーを得た後、精製工
程にて処理されるが、精製工程に送られる前に本発明に
記載された触媒反応器に通液し粗スチレンモノマー中の
不純物であるところのフェニルアセチレン(以下PA)を
除去している。この粗スチレンモノマーの組成はガスク
ロマトグラフィー測定によると、スチレンモノマー65重
量%、エチルベンゼン34重量%、トルエン1重量%、PA
はこの中に32ppmであった。また、ここで使用された触
媒は、平均粒径2〜4mmの粒状酸化アルミニウムにパラ
ジウムを0.2wt%含浸させたものである。
Example 1 In the styrene monomer production process quoted in this example, ethylbenzene was dehydrogenated by a dehydrogenation reactor to obtain a crude styrene monomer, which was then treated in a purification process. Before being sent to the process, it is passed through the catalytic reactor described in the present invention to remove phenylacetylene (hereinafter PA) which is an impurity in the crude styrene monomer. The composition of this crude styrene monomer is 65% by weight of styrene monomer, 34% by weight of ethylbenzene, 1% by weight of toluene, and PA by gas chromatography.
Was 32ppm in this. The catalyst used here is a granular aluminum oxide having an average particle diameter of 2 to 4 mm impregnated with 0.2 wt% of palladium.

【0020】ここで触媒層での粗スチレンの平均滞留時
間は180 秒であった。尚、以下の実施例、比較例では全
てこの滞留時間である。反応器内の下部には触媒を通さ
ない程度の目開きの金網を設置し、その上に触媒を積み
上げる。粗スチレンは反応器下部から導入され、触媒層
を通過した後、反応器上部からでていく。
The average residence time of crude styrene in the catalyst layer was 180 seconds. This retention time is used in all of the following examples and comparative examples. In the lower part of the reactor, a wire mesh is installed so that the catalyst does not pass through, and the catalyst is piled up on it. Crude styrene is introduced from the lower part of the reactor, passes through the catalyst layer, and then exits from the upper part of the reactor.

【0021】触媒表面に炭素分や炭化水素重合物質が付
着し、活性表面積が減少することにより触媒再生の必要
が生じた時、以下の処理を行った。すなわち反応器の中
に残留している粗スチレンを反応器下部から抜き出す。
中の液が十分に排出された時点で今度はエチルベンゼン
を反応器内の触媒が浸漬する程度まで導入し、十分に液
で満たされた時点で、今度は反応器下部から窒素ガスを
吹き込む。窒素ガスは反応器下部の金網の上に固定され
たガススパージャー(孔径1.5mm孔数16個)を通じて連
続的に吹き込まれる。このとき窒素ガスの触媒層中の平
均線速度は40mm/minであり、所要時間は2時間であっ
た。また反応器内の温度は60℃、圧力は1.0kgG/cm2であ
った。
When it became necessary to regenerate the catalyst due to the decrease of the active surface area due to the deposition of carbon or hydrocarbon polymer substances on the surface of the catalyst, the following treatment was carried out. That is, the crude styrene remaining in the reactor is withdrawn from the bottom of the reactor.
When the liquid inside is sufficiently discharged, ethylbenzene is introduced to the extent that the catalyst in the reactor is immersed, and when the liquid is sufficiently filled, nitrogen gas is blown from the lower part of the reactor. Nitrogen gas is continuously blown through a gas sparger (pore diameter 1.5 mm, number of 16 holes) fixed on the wire net at the bottom of the reactor. At this time, the average linear velocity of nitrogen gas in the catalyst layer was 40 mm / min, and the required time was 2 hours. The temperature in the reactor was 60 ° C and the pressure was 1.0 kgG / cm 2 .

【0022】このような再生処理を一回行った後、更に
再びこの触媒の充填された反応器に粗スチレンを通液し
て処理前後でPA転化率を比較すると表1のようになっ
た。また、合わせて触媒活性表面積をBET活性表面積測
定方法により求め、表1に記載した。
After performing such regeneration treatment once, crude styrene was again passed through the reactor filled with this catalyst, and the PA conversion rates before and after the treatment were compared. In addition, the catalytic active surface area was also determined by the BET active surface area measuring method and is shown in Table 1.

【0023】[0023]

【実施例2】本実施例にて引用されるスチレンモノマー
の製造工程においては、エチルベンゼンを脱水素反応器
により脱水素し粗スチレンモノマーを得た後、精製工程
にて処理されるが、精製工程に送られる前に本発明に記
載された触媒反応器に通液し粗スチレンモノマー中の不
純物であるところのPAを除去している。この粗スチレン
モノマーの組成は、ガスクロマトグラフィー測定による
とスチレンモノマー40重量%、エチルベンゼン58重量
%、トルエン2 重量%、PAはこの中に40ppm であった。
またここで使用された触媒は平均粒径3 〜5 mmの粒状酸
化アルミニウムにパラジウムを0.3wt%含浸させたもので
ある。
Example 2 In the styrene monomer production process quoted in this example, ethylbenzene is dehydrogenated by a dehydrogenation reactor to obtain a crude styrene monomer, which is then treated in the purification process. Before being sent to the reactor, it is passed through the catalytic reactor described in the present invention to remove PA which is an impurity in the crude styrene monomer. According to gas chromatography measurement, the composition of this crude styrene monomer was 40% by weight of styrene monomer, 58% by weight of ethylbenzene, 2% by weight of toluene, and PA was 40 ppm.
Further, the catalyst used here is a granular aluminum oxide having an average particle diameter of 3 to 5 mm impregnated with 0.3 wt% of palladium.

【0024】反応器内の下部には触媒を通さない程度の
目開きの金網を設置し、その上に触媒を積み上げる。粗
スチレンは反応器下部から導入され、触媒層を通過した
後、反応器上部からでていく。触媒表面に炭素分や炭化
水素重合物質が付着し、活性表面積が減少することによ
り触媒再生の必要が生じた時、以下の処理を行った。す
なわち反応器の中に残留している粗スチレンを反応器下
部から抜き出す。中の液が十分に排出された時点で今度
はエチルベンゼンを反応器内の触媒が浸漬する程度まで
導入し、十分に液で満たされた時点で、今度は反応器下
部から窒素ガスを吹き込む。窒素ガスは反応器下部の金
網の上に固定されたガススパージャー(孔径1.5mm孔数1
6個)を通じて連続的に吹き込まれる。このとき窒素ガ
スの触媒層中の平均線速度は50mm/minであり、所要時間
は2時間であった。また反応器内の温度は50℃、圧力は
1.1kgG/cm2であった。
At the bottom of the reactor, there is installed a wire mesh that does not allow the catalyst to pass through, and the catalyst is piled up on it. Crude styrene is introduced from the lower part of the reactor, passes through the catalyst layer, and then exits from the upper part of the reactor. When it became necessary to regenerate the catalyst due to the reduction of the active surface area due to the deposition of carbon or hydrocarbon polymer on the surface of the catalyst, the following treatment was performed. That is, the crude styrene remaining in the reactor is withdrawn from the bottom of the reactor. When the liquid inside is sufficiently discharged, ethylbenzene is introduced to the extent that the catalyst in the reactor is immersed, and when the liquid is sufficiently filled, nitrogen gas is blown from the lower part of the reactor. Nitrogen gas is a gas sparger fixed on the wire mesh at the bottom of the reactor (pore diameter 1.5 mm, number of holes 1
6 pieces) are continuously blown in. At this time, the average linear velocity of nitrogen gas in the catalyst layer was 50 mm / min, and the required time was 2 hours. The temperature in the reactor is 50 ° C and the pressure is
It was 1.1 kgG / cm 2 .

【0025】このような再生処理を一回行った後、更に
再びこの触媒の充填された反応器に粗スチレンを通液し
て処理前後のPA転化率を比較すると表1のようになっ
た。また、合わせて触媒活性表面積をBET 活性表面積測
定方法により求め、表1に記載した。
After carrying out such regeneration treatment once, crude styrene was again passed through the reactor filled with this catalyst, and the PA conversion rates before and after the treatment were compared. In addition, the catalytic active surface area was also determined by the BET active surface area measuring method and is shown in Table 1.

【0026】[0026]

【実施例3】本実施例にて引用されるスチレンモノマー
の製造工程においては、エチルベンゼンを脱水素反応器
により脱水素し、粗スチレンモノマーを得た後、精製工
程にて処理されるが、精製工程に送られる前に本発明に
記載された触媒反応器に通液し、粗スチレンモノマー中
の不純物であるところのPAを除去している。この粗スチ
レンモノマーの組成は、ガスクロマトグラフィー測定に
よるとスチレンモノマー34重量%、エチルベンゼン61重
量%、トルエン5 重量%、PAはこの中に35ppmであっ
た。またここで使用された触媒は平均粒径1 〜3 mmの粒
状酸化アルミニウムにパラジウムを0.4wt%含浸させたも
のである。
Example 3 In the styrene monomer production process quoted in this example, ethylbenzene was dehydrogenated by a dehydrogenation reactor to obtain a crude styrene monomer, which was then treated in the purification process. Before being sent to the process, it is passed through the catalytic reactor described in the present invention to remove PA which is an impurity in the crude styrene monomer. According to gas chromatography measurement, the composition of this crude styrene monomer was 34% by weight of styrene monomer, 61% by weight of ethylbenzene, 5% by weight of toluene, and PA was 35 ppm. Further, the catalyst used here is a granular aluminum oxide having an average particle diameter of 1 to 3 mm impregnated with 0.4 wt% of palladium.

【0027】反応器内の下部には触媒を通さない程度の
目開きの金網を設置し、その上に触媒を積み上げる。粗
スチレンは反応器下部から導入され、触媒層を通過した
後、反応器上部からでていく。触媒表面に炭素分や炭化
水素重合物質が付着し、活性表面積が減少することによ
り触媒再生の必要が生じた時、以下の処理を行った。す
なわち反応器の中に残留している粗スチレンを反応器下
部から抜き出す。中の液が十分に排出された時点で今度
はエチルベンゼンを反応器内の触媒が浸漬する程度まで
導入し、十分に液で満たされた時点で、今度は反応器下
部から窒素ガスを吹き込む。窒素ガスは反応器下部の金
網の上に固定されたガススパージャー(孔径1.5mm 孔数
16個)を通じて連続的に吹き込まれる。このとき窒素ガ
スの触媒層中の平均線速度は50mm/minであり、所要時間
は4 時間であった。また反応器内の温度は44℃、圧力は
0.5kgG/cm2であった。
In the lower part of the reactor, a wire mesh having openings that do not allow the catalyst to pass is installed, and the catalyst is piled up on it. Crude styrene is introduced from the lower part of the reactor, passes through the catalyst layer, and then exits from the upper part of the reactor. When it became necessary to regenerate the catalyst due to the reduction of the active surface area due to the deposition of carbon or hydrocarbon polymer on the surface of the catalyst, the following treatment was performed. That is, the crude styrene remaining in the reactor is withdrawn from the bottom of the reactor. When the liquid inside is sufficiently discharged, ethylbenzene is introduced to the extent that the catalyst in the reactor is immersed, and when the liquid is sufficiently filled, nitrogen gas is blown from the lower part of the reactor. Nitrogen gas is a gas sparger fixed on the wire mesh at the bottom of the reactor (pore diameter 1.5 mm
16 pieces) are continuously blown through. At this time, the average linear velocity of nitrogen gas in the catalyst layer was 50 mm / min, and the required time was 4 hours. The temperature inside the reactor is 44 ° C and the pressure is
It was 0.5 kgG / cm 2 .

【0028】このような再生処理を一回行った後、更に
再びこの触媒の充填された反応器に粗スチレンを通液し
て処理前後のPA転化率を比較すると表1のようになっ
た。また合わせて触媒活性表面積をBET 活性表面積測定
方法により求め、表1に記載した。
After carrying out such a regeneration treatment once, crude styrene was again passed through the reactor filled with this catalyst, and the PA conversion rates before and after the treatment were compared. In addition, the catalytic active surface area was determined by the BET active surface area measuring method and is shown in Table 1.

【0029】[0029]

【実施例4】本実施例にて引用されるスチレンモノマー
の製造工程においては、エチルベンゼンを脱水素反応器
により脱水素し、粗スチレンモノマーを得た後、精製工
程にて処理されるが、精製工程に送られる前に本発明に
記載された触媒反応器に通液し、粗スチレンモノマー中
の不純物であるところのPAを除去している。この粗スチ
レンモノマーの組成はガスクロマトグラフィー測定によ
るとスチレンモノマー56重量%、エチルベンゼン42.5重
量%、トルエン1.5 重量%、PAはこの中に25ppm であっ
た。またここで使用された触媒は平均粒径2 〜4 mmの粒
状酸化アルミニウムにパラジウムを0.1wt%含浸させたも
のである。
Example 4 In the styrene monomer production process quoted in this example, ethylbenzene was dehydrogenated by a dehydrogenation reactor to obtain a crude styrene monomer, which was then treated in a purification process. Before being sent to the process, it is passed through the catalytic reactor described in the present invention to remove PA which is an impurity in the crude styrene monomer. According to gas chromatography measurement, the composition of this crude styrene monomer was 56% by weight of styrene monomer, 42.5% by weight of ethylbenzene, 1.5% by weight of toluene, and PA was 25 ppm. The catalyst used here is granular aluminum oxide having an average particle size of 2 to 4 mm impregnated with 0.1 wt% of palladium.

【0030】反応器内の下部には触媒を通さない程度の
目開きの金網を設置しその上に触媒を積み上げる、粗ス
チレンは反応器下部から導入され触媒層を通過した後反
応器上部からでていく。触媒表面に炭素分や炭化水素重
合物質が付着し活性表面積が減少することにより触媒再
生の必要が生じた時、以下の処理を行った。すなわち反
応器の中に残留している粗スチレンを反応器下部から抜
き出す。中の液が十分に排出された時点で今度はエチル
ベンゼンを反応器内の触媒が浸漬する程度まで導入し十
分に液で満たされた時点で今度は反応器下部から窒素ガ
スを吹き込む。窒素ガスは反応器下部の金網の上に固定
されたガススパージャー(孔径1.5mm 孔数16個)を通じ
て連続的に吹き込まれる。このとき窒素ガスの触媒層中
の平均線速度は30mm/minであり所要時間は1 時間であっ
た。また反応器内の温度は80℃、圧力は1.5kgG/cm2であ
った。
In the lower part of the reactor, a wire mesh is installed so that the catalyst does not pass through, and the catalyst is piled up on it. Crude styrene is introduced from the lower part of the reactor and passed through the catalyst layer, and then from the upper part of the reactor. To go. When it became necessary to regenerate the catalyst due to the reduction of the active surface area due to the deposition of carbon or hydrocarbon polymer on the surface of the catalyst, the following treatment was performed. That is, the crude styrene remaining in the reactor is withdrawn from the bottom of the reactor. When the liquid inside is sufficiently discharged, ethylbenzene is introduced to the extent that the catalyst in the reactor is immersed, and when the liquid is sufficiently filled, nitrogen gas is blown from the lower part of the reactor. Nitrogen gas is continuously blown through a gas sparger (hole diameter: 1.5 mm, number of holes: 16) fixed on the wire mesh at the bottom of the reactor. At this time, the average linear velocity of nitrogen gas in the catalyst layer was 30 mm / min, and the required time was 1 hour. The temperature in the reactor was 80 ° C and the pressure was 1.5 kgG / cm 2 .

【0031】このような再生処理を一回行った後、更に
再びこの触媒の充填された反応器に粗スチレンを通液し
て処理前後のPA転化率を比較すると表1のようになっ
た。また合わせて触媒活性表面積の比較を表1に記載し
てある。
After carrying out such regeneration treatment once, crude styrene was again passed through the reactor filled with this catalyst, and the PA conversion rates before and after the treatment were compared. In addition, a comparison of catalytic active surface areas is also shown in Table 1.

【0032】[0032]

【比較例1】実施例1で窒素のフィードを行わず、エチ
ルベンゼンを触媒が充填された反応器内に満たし2時間
静置する操作を行う他は全て実施例1と同様な条件で操
作した。
Comparative Example 1 The same operation as in Example 1 was carried out except that in Example 1, no nitrogen was fed and the reactor filled with the catalyst was filled with ethylbenzene and allowed to stand for 2 hours.

【0033】[0033]

【比較例2】実施例1で窒素の平均流速が5mm/min、反
応器内の温度は62℃、圧力は0.9kgG/cm2である他は全て
実施例1と同様な条件で操作した。
Comparative Example 2 The same operation as in Example 1 was carried out except that the average flow rate of nitrogen in Example 1 was 5 mm / min, the temperature in the reactor was 62 ° C., and the pressure was 0.9 kgG / cm 2 .

【0034】[0034]

【比較例3】実施例1で窒素の平均流速が160mm/min、
反応器内の温度は57℃、圧力は1.2kgG/cm2、触媒中Pd含
有量が0.1wt%である他は全て実施例1と同様な条件で操
作した。
[Comparative Example 3] In Example 1, the average flow rate of nitrogen was 160 mm / min,
The temperature in the reactor was 57 ° C., the pressure was 1.2 kgG / cm 2 , and the Pd content in the catalyst was 0.1 wt%.

【0035】[0035]

【比較例4】実施例1で窒素の平均流速が200mm/min、
反応器内の温度は67℃、圧力は1.1kgG/cm2、触媒中Pd含
有量が0.4wt%である他は全て実施例1と同様な条件で操
作した。
[Comparative Example 4] In Example 1, the average flow rate of nitrogen was 200 mm / min.
The temperature in the reactor was 67 ° C., the pressure was 1.1 kgG / cm 2 , and the Pd content in the catalyst was 0.4 wt%. All operations were carried out under the same conditions as in Example 1.

【0036】[0036]

【参考例1】Pd触媒0.2wt%含有の新触媒2m3を用い、反
応器内の温度は60℃、圧力は1.0kgG/cm2の条件下で実施
例1に記載の組成の粗スチレンを使用し、触媒反応器前
後の粗スチレン中のPA濃度を測定した。また合わせて使
用前の触媒活性表面積を測定した。
Reference Example 1 Using 2 m 3 of a new catalyst containing 0.2 wt% of Pd catalyst, the temperature in the reactor was 60 ° C., and the crude styrene having the composition described in Example 1 was used under the conditions of the pressure of 1.0 kgG / cm 2. It was used to measure the PA concentration in crude styrene before and after the catalytic reactor. In addition, the catalytic active surface area before use was also measured.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明の触媒再生方法により、触媒表面
の沈着物をより効果的に除去し、触媒活性表面積が低下
して活性が低下した触媒を、触媒本来の活性に近い点ま
で再生することができる。
EFFECTS OF THE INVENTION By the catalyst regeneration method of the present invention, the deposits on the surface of the catalyst are removed more effectively, and the catalyst having a reduced catalytic active surface area and reduced activity is regenerated to a point close to the original catalytic activity. be able to.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガス状物質を平均線速度10〜150m
m/minで吹き込みながら、活性の低下した粒状触媒
を液体炭化水素で洗浄する触媒再生方法。
1. An average linear velocity of a gaseous substance of 10 to 150 m
A catalyst regeneration method in which a granular catalyst with reduced activity is washed with liquid hydrocarbon while being blown at m / min.
【請求項2】 ガス状物質を反応器下部から吹き込むこ
とを特徴とする請求項1記載の触媒再生方法。
2. The method for regenerating a catalyst according to claim 1, wherein the gaseous substance is blown from the bottom of the reactor.
【請求項3】 温度20〜90℃、圧力0〜2.0kg/c
m2Gの条件下で液体炭化水素による洗浄を行うことを特
徴とする請求項1または請求項2記載の触媒再生方法。
3. Temperature 20 to 90 ° C., pressure 0 to 2.0 kg / c
The catalyst regeneration method according to claim 1 or 2, wherein washing with a liquid hydrocarbon is performed under a condition of m 2 G.
JP6122168A 1994-06-03 1994-06-03 Regenerating method of catalyst Withdrawn JPH07328455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122168A JPH07328455A (en) 1994-06-03 1994-06-03 Regenerating method of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122168A JPH07328455A (en) 1994-06-03 1994-06-03 Regenerating method of catalyst

Publications (1)

Publication Number Publication Date
JPH07328455A true JPH07328455A (en) 1995-12-19

Family

ID=14829268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122168A Withdrawn JPH07328455A (en) 1994-06-03 1994-06-03 Regenerating method of catalyst

Country Status (1)

Country Link
JP (1) JPH07328455A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079411A (en) * 1999-09-20 2001-03-27 Asahi Kasei Corp Method for regenerating catalyst for hydrogenation of reducing sugar
JP2011256150A (en) * 2010-06-11 2011-12-22 Taoka Chem Co Ltd Production method of 9-fluorenones
KR101390449B1 (en) * 2010-04-30 2014-04-30 아사히 가세이 케미칼즈 가부시키가이샤 Apparatus for removing substances from catalyst surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079411A (en) * 1999-09-20 2001-03-27 Asahi Kasei Corp Method for regenerating catalyst for hydrogenation of reducing sugar
KR101390449B1 (en) * 2010-04-30 2014-04-30 아사히 가세이 케미칼즈 가부시키가이샤 Apparatus for removing substances from catalyst surface
JP2011256150A (en) * 2010-06-11 2011-12-22 Taoka Chem Co Ltd Production method of 9-fluorenones

Similar Documents

Publication Publication Date Title
KR100447016B1 (en) Catalyst activation and rejuvenation process
Asplund Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation
US6084140A (en) Catalyst for selective hydrogenation of highly unsaturated hydrocarbon compound in olefin compound
AU2013278857B2 (en) Regeneration of spent paraffin dehydrogenation catalyst
JP2000508653A (en) Supercritical hydrogenation
JPS62586A (en) Treatment of sour hydrocarbon distillate
WO1994000232A1 (en) Regeneration of acetylene converter catalysts by hydrogen stripping
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
JP2003503175A (en) Activation of catalytic reforming catalyst
JP2003503176A (en) Activation method of reforming catalyst
US4260518A (en) Process for the regeneration of metallic catalysts
IL43680A (en) Preparation of cyclohexanone and/or cyclohexanol
JPH08507468A (en) Catalyst regeneration
JP2001058964A (en) Purification of diolefin hydrocarbon steam
JPH07328455A (en) Regenerating method of catalyst
TW200936239A (en) Fast filtering powder catalytic mixtures
JP3809413B2 (en) Method for regenerating a monolithic hydrogenation catalytic reactor
WO2003106019A1 (en) Catalyst for petroleum resin hydrogenation and process for producing hydrogenated petroleum resin
US4891346A (en) Redispersal of Ru, Os, Rh and Pd catalysts and processes therewith
JPH07508026A (en) Acetylene converter regulator
JPH05279269A (en) Method for hydrogenation reaction of unsaturated hydrocarbon compound
CN104093684A (en) Method and system for purifying an ethylene-containing gas stream
JPS6287535A (en) Purification of styrene or such
JP3949204B2 (en) Regeneration method of hydrogenation catalyst
JPS61204210A (en) Production of hydrogenated petroleum resin

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904