JPH07328430A - Gaseous iodine adsorbent - Google Patents

Gaseous iodine adsorbent

Info

Publication number
JPH07328430A
JPH07328430A JP6145410A JP14541094A JPH07328430A JP H07328430 A JPH07328430 A JP H07328430A JP 6145410 A JP6145410 A JP 6145410A JP 14541094 A JP14541094 A JP 14541094A JP H07328430 A JPH07328430 A JP H07328430A
Authority
JP
Japan
Prior art keywords
adsorbent
iodine
gas
flask
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6145410A
Other languages
Japanese (ja)
Inventor
Nobuhiko Aiba
伸彦 相羽
Hideki Kato
秀樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP6145410A priority Critical patent/JPH07328430A/en
Publication of JPH07328430A publication Critical patent/JPH07328430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an inexpensive gaseous iodine adsorbent excellent in adsorbing performance especially at high temp. or high humidity and used for adsorbing and removing gaseous iodine, e.g., radioactive gaseous iodine contained in off-gas from a nuclear power plant. CONSTITUTION:This gaseous iodine adsorbent is made of at least one kind of compd. selected from among compds. represented by the formulae, M<1> M<2>xO(2+3x)/2.mH2O and M<1>(1-y)M<2>y(OH)2A<p->y/p.nH2O [where M<1> is a divalent metal, M<2> is a trivalent metalloid or metal, 0<x<=1, 0<=m<=2.5, 0<y<=0.5, A<-p> is a p-valent anion, (p) is an integer of 1-4 and 0<=n<=0.6]. For example, magnesium carbonate is mixed with aluminum carbonate so that the atomic ratio of Mg:Al is regulated to 1:0.4 and the resultant mixture is fired at 700 deg.C to obtain the objective adsorbent represented by the formula, MgAl0.4O1.6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に200℃又はそれ
以上の高温又は相対湿度100%の高湿度下でのヨウ素
ガス吸着性能に優れ、気体中、例えば原子力プラントの
オフガス中に含まれる放射性ヨウ素の吸着除去に有用な
ヨウ素ガス吸着剤(以下、単に吸着剤ということもあ
る。)に関する。
BACKGROUND OF THE INVENTION The present invention is particularly excellent in iodine gas adsorption performance at a high temperature of 200 ° C. or higher or a high humidity of 100% relative humidity, and is a radioactive substance contained in a gas, for example, an off gas of a nuclear power plant. The present invention relates to an iodine gas adsorbent useful for adsorption / removal of iodine (hereinafter sometimes simply referred to as an adsorbent).

【0002】[0002]

【従来の技術】原子力発電所などの原子力プラントにお
いては、環境保全のため放射性ヨウ素の放出防止が重要
視されている。従来原子力発電所には、核燃料が溶解す
るような事故時における放射性ヨウ素の放出を防止する
ため、ヨウ素除去用フィルタが設置されている。また、
使用済み核燃料の再処理工場においては、使用済み核燃
料の剪断、溶解工程で発生するオフガスから、放射性ヨ
ウ素を除去するための装置が設けられている。更に、最
近では通常時における環境への放射性ヨウ素の放出量を
可能な限り低減させるため、これらの放出源並びに建屋
換気系などにヨウ素除去装置が設けられている。
2. Description of the Related Art In a nuclear power plant such as a nuclear power plant, prevention of radioactive iodine emission is important for environmental protection. Conventionally, a nuclear power plant is provided with an iodine removal filter in order to prevent the release of radioactive iodine in the event of an accident such as the dissolution of nuclear fuel. Also,
In the spent nuclear fuel reprocessing plant, a device for removing radioactive iodine from the offgas generated in the shearing and melting processes of the spent nuclear fuel is provided. Further, recently, in order to reduce the amount of radioactive iodine released to the environment in a normal time as much as possible, an iodine removing device is provided in these emission sources, a building ventilation system and the like.

【0003】ヨウ素ガス吸着剤としては、現在、活性炭
の他、ゼオライト、アルミナ及びシリカゲル等に銀を添
着したものなどが用いられている。しかし、活性炭は高
温又は高湿度下でのヨウ素ガス吸着性能が低く、原子力
プラント等の事故時における高温又は高湿度雰囲気に晒
された場合、放射性ヨウ素の放出を十分に防止できない
という問題がある。また、核燃料再処理時のオフガスの
ような高湿度下(常温において相対湿度90%以上)で
は使用できないという問題もある。
As the iodine gas adsorbent, at present, in addition to activated carbon, zeolite, alumina, silica gel and the like impregnated with silver are used. However, activated carbon has a low iodine gas adsorption performance under high temperature or high humidity, and there is a problem that the release of radioactive iodine cannot be sufficiently prevented when exposed to a high temperature or high humidity atmosphere at the time of an accident such as a nuclear power plant. Further, there is a problem that it cannot be used under high humidity such as off-gas at the time of reprocessing nuclear fuel (90% or more of relative humidity at room temperature).

【0004】一方、銀を添着したゼオライト等の吸着剤
は、120℃程度の温度下では吸着性能を有する。しか
し、特開昭57−45328号公報によると、高湿度雰
囲気では細孔内に水分が凝縮して銀とヨウ素との反応が
阻害されるため、高い吸着性能を維持するためには銀の
添着量を増加させなければならず、高価な銀の一部は有
効に利用されないまま廃棄されてしまうという問題があ
る。また、本発明者等が確認した所によると、200℃
以上の高温では銀の添着量が十分であっても、その吸着
性能が劣るという欠点もある。上記のように、従来の吸
着剤は原子力プラントにおいて発生するヨウ素ガスの吸
着除去等のためには、必ずしも十分な性能を有しておら
ず、高温又は高湿度下で実用的なヨウ素ガス吸着性能が
維持、発揮される吸着剤の開発が強く望まれている。
On the other hand, an adsorbent such as zeolite impregnated with silver has an adsorbing performance at a temperature of about 120 ° C. However, according to JP-A-57-45328, in a high-humidity atmosphere, water condenses in the pores and inhibits the reaction between silver and iodine. Therefore, in order to maintain high adsorption performance, silver impregnation is performed. The amount has to be increased, and there is a problem that some of expensive silver is discarded without being effectively used. In addition, according to the results confirmed by the present inventors, 200 ° C
At the above high temperature, even if the amount of silver impregnated is sufficient, there is a drawback that the adsorption performance is poor. As described above, the conventional adsorbent does not always have sufficient performance for adsorption removal of iodine gas generated in a nuclear power plant, etc., and has a practical iodine gas adsorption performance under high temperature or high humidity. There is a strong demand for the development of an adsorbent that can maintain and exhibit the above properties.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のヨウ
素ガス吸着剤が有する上記の問題を解決し、高温又は高
湿度下でも実用上十分なヨウ素ガス吸着性能を有する吸
着剤を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above problems of conventional iodine gas adsorbents and provides an adsorbent having a practically sufficient iodine gas adsorption performance even under high temperature or high humidity. Is an issue.

【0006】[0006]

【課題を解決するための手段】本発明者等は、各種吸着
剤について高温又は高湿度下でのヨウ素ガス吸着性能を
評価、検討した。その結果、特定の化学組成の無機化合
物からなる吸着剤が、前記問題を解決することができる
優れたヨウ素ガス吸着性能を有することを見出し、本発
明を完成するに至った。
Means for Solving the Problems The present inventors have evaluated and examined the iodine gas adsorption performance of various adsorbents at high temperature or high humidity. As a result, they have found that an adsorbent composed of an inorganic compound having a specific chemical composition has excellent iodine gas adsorption performance capable of solving the above problems, and completed the present invention.

【0007】第1発明のヨウ素ガス吸着剤は、下記の組
成式(1)又は(2)で表される化合物群より選ばれる
少なくとも1種の化合物からなることを特徴とする。 M12 x(2+3x)/2・mH2O (1) (ここで、M1は2価の金属であり、M2は3価の半金属
又は金属であり、x及びmは各々0<x≦1、0≦m≦
2.5を満たす数である。) M1 (1-y)2 y(OH)2p- y/p・nH2O (2) (ここで、M1は2価の金属であり、M2は3価の半金属
又は金属であり、y及びnは各々0<y≦0.5、0≦
n≦0.6を満たす数である。Ap-はp価のアニオンで
あり、pは正の整数である。) また、第2発明は、上記組成式(1)又は(2)におけ
るM1がMgであり、且つM2がAlであることを特徴と
する。
The iodine gas adsorbent of the first invention is characterized by comprising at least one compound selected from the group of compounds represented by the following composition formulas (1) or (2). M 1 M 2 x O (2 + 3x) / 2 · mH 2 O (1) (where M 1 is a divalent metal, M 2 is a trivalent semimetal or metal, and x and m Are 0 <x ≦ 1, 0 ≦ m ≦, respectively.
It is a number that satisfies 2.5. ) M 1 (1-y) M 2 y (OH) 2 Ap - y / p · nH 2 O (2) (where M 1 is a divalent metal and M 2 is a trivalent semimetal Or metal and y and n are 0 <y ≦ 0.5 and 0 ≦, respectively.
It is a number that satisfies n ≦ 0.6. A p- is a p-valent anion, and p is a positive integer. The second invention is characterized in that in the composition formula (1) or (2), M 1 is Mg and M 2 is Al.

【0008】上記「M1」はMg、Mn、Fe、Co、
Ni、Cu及びZn等の2価の金属であるが、M1がM
gである場合、特にヨウ素ガス吸着性能に優れるため好
ましく、且つMgは容易に得ることができ汎用的、経済
的でもある。また、上記「M2」はAl、In等の3価
の半金属又はFe、Cr、Co、Sc等の3価の金属で
あるが、M2がAlである場合、特にヨウ素ガス吸着性
能に優れ、また、Mg同様容易に得ることができる。
The above "M 1 " is Mg, Mn, Fe, Co,
Although it is a divalent metal such as Ni, Cu and Zn, M 1 is M
When it is g, it is particularly preferable because it is excellent in iodine gas adsorption performance, and Mg can be easily obtained and is also versatile and economical. Further, the above "M 2 " is a trivalent semimetal such as Al or In or a trivalent metal such as Fe, Cr, Co or Sc, but when M 2 is Al, the iodine gas adsorption performance is particularly high. It is excellent and can be easily obtained like Mg.

【0009】組成式(1)において0<x≦1である
が、特に0.1≦x≦0.5の範囲のものはヨウ素ガス
吸着性能に優れ、また、容易に得ることができ好まし
い。一方、組成式(2)において0<y≦0.5である
が、yが0.33以下のものは特にヨウ素ガス吸着性能
に優れ、また、容易に得ることができ好ましい。組成式
(2)におけるAp-は、OH- 、F- 、Cl- 、Br- 、N
O3 - 、CO3 2- 、SO4 2-、Fe(CN)6 3- 、CH3COO-、シュウ酸
イオン、サリチル酸イオン等のp価のアニオンである。
pは正の整数であり、通常1〜4の整数である。
In the composition formula (1), 0 <x ≦ 1, but a range of 0.1 ≦ x ≦ 0.5 is particularly preferable because it has excellent iodine gas adsorption performance and can be easily obtained. On the other hand, in the composition formula (2), 0 <y ≦ 0.5, and y of 0.33 or less is particularly preferable because it has excellent iodine gas adsorption performance and can be easily obtained. A p in the composition formula (2) is OH , F , Cl , Br , N.
It is a p-valent anion such as O 3 , CO 3 2− , SO 4 2− , Fe (CN) 6 3− , CH 3 COO , oxalate ion and salicylate ion.
p is a positive integer, usually an integer of 1 to 4.

【0010】組成式(1)で表される化合物は、M1
有する化合物及びM2を有する化合物、例えば炭酸塩又
は水酸化物等を、M1に対するM2の原子比が1以下とな
るように混合し、好ましくは400〜900℃、より好
ましくは500〜700℃で焼成することにより得られ
る。また、組成式(2)で表される化合物を、上記温度
範囲で焼成することによっても得ることができる。組成
式(2)で表される化合物は、ハイドロタルサイト類化
合物として知られており、M1を有する化合物及びM2
有する化合物、例えば炭酸塩又は水酸化物等を、pHが
9〜12の水溶液中で加水分解する方法等により得られ
る。
The compound represented by the composition formula (1) is a compound having M 1 and a compound having M 2 , such as carbonate or hydroxide, and the atomic ratio of M 2 to M 1 is 1 or less. Thus, it is obtained by baking and preferably firing at 400 to 900 ° C, more preferably 500 to 700 ° C. It can also be obtained by firing the compound represented by the composition formula (2) in the above temperature range. The compound represented by the composition formula (2) is known as a hydrotalcite-type compound, and includes a compound having M 1 and a compound having M 2 such as carbonate or hydroxide at a pH of 9 to 12. It is obtained by a method such as hydrolysis in an aqueous solution of.

【0011】本発明のヨウ素ガス吸着剤は、ヨウ素ガス
を含む気体と接触させることによって気体中のヨウ素ガ
スを吸着し、その気体からヨウ素ガスを除去することが
できる。従って、本発明の吸着剤は慣用の気固接触装
置、例えば固定層や流動層において使用できる。また、
吸着剤とヨウ素ガスを含む気体との接触を容易にするた
め、吸着剤を粒状やペレット状に成型して使用したり、
或いは吸着剤を担体に担持して使用することもできる。
更に、本発明のヨウ素ガス吸着剤をカートリッジの中に
充填する方法、織物や不織布の間に挟み込む方法等によ
りフィルター状に成形して用いることもできる。
The iodine gas adsorbent of the present invention is capable of adsorbing iodine gas in a gas by contacting it with a gas containing iodine gas and removing the iodine gas from the gas. Therefore, the adsorbents of the present invention can be used in conventional gas-solid contact devices such as fixed beds and fluidized beds. Also,
In order to facilitate the contact between the adsorbent and the gas containing iodine gas, the adsorbent may be used in the form of granules or pellets,
Alternatively, the adsorbent can be used by supporting it on a carrier.
Furthermore, the iodine gas adsorbent of the present invention can be used by molding it into a filter by a method of filling it in a cartridge, a method of sandwiching it between a woven fabric or a non-woven fabric, and the like.

【0012】ヨウ素ガスを含む気体と本発明の吸着剤と
を接触させる好ましい時間は、処理すべき対象或いは温
度、湿度等の処理時雰囲気により一概には決められない
が、数秒から数時間、場合によっては数日である。ま
た、ヨウ素ガスを含む気体と吸着剤との使用割合は、吸
着剤におけるヨウ素ガスの吸着量が、吸着剤の吸着容量
を越えない範囲で適宜調整することができ、例えばヨウ
素(I2)1ミリモル当たり、吸着剤を1.0g以上と
することが好ましい。この使用割合はヨウ素ガスを除去
する条件、例えばヨウ素ガスを含む気体と吸着剤との接
触時間或いは接触方法等によっても調整することができ
る。
The preferable time for contacting the gas containing iodine gas with the adsorbent of the present invention is not decided unconditionally depending on the object to be treated or the atmosphere at the time of treatment such as temperature and humidity, but it is from several seconds to several hours. It will take a few days. Further, the use ratio of the gas containing iodine gas and the adsorbent can be appropriately adjusted within a range in which the adsorbed amount of iodine gas in the adsorbent does not exceed the adsorption capacity of the adsorbent. For example, iodine (I 2 ) 1 The amount of the adsorbent is preferably 1.0 g or more per millimole. This usage ratio can also be adjusted by the conditions for removing iodine gas, for example, the contact time or the contact method between the gas containing iodine gas and the adsorbent.

【0013】上記のような操作によりヨウ素ガスを吸着
した吸着剤は、ヨウ素を安定して吸着保持するため、そ
のまま廃棄物として処分した場合に、たとえ地下水と接
触しても吸着したヨウ素を地下水中に放出せず、安定し
た吸着状態が長期に渡り維持される。また、ヨウ素ガス
吸着後の吸着剤を二次廃棄物として処理する場合、その
取り扱いを容易にするため、吸着剤を適当な固化剤によ
って固化することにより、ヨウ素が放出しない固化物と
して安全に処理することができる。好ましい固化剤とし
ては、セメント、アスファルト、プラスチック及びガラ
ス等があり、所望により砂、砕石等の骨剤、炭酸カルシ
ウム等の充填剤を用いてもよい。
Since the adsorbent which has adsorbed iodine gas by the above-mentioned operation stably adsorbs and holds iodine, when it is disposed of as waste as it is, even if it comes into contact with groundwater, the adsorbed iodine absorbs iodine. A stable adsorption state is maintained for a long period of time without being released. In addition, when the adsorbent after iodine gas adsorption is treated as secondary waste, the adsorbent is solidified with an appropriate solidifying agent to facilitate its handling, so that it is safely treated as a solidified product that does not release iodine. can do. Preferable solidifying agents include cement, asphalt, plastic, glass and the like, and if desired, a bone agent such as sand and crushed stone, and a filler such as calcium carbonate may be used.

【0014】上記固化剤の中ではセメントが特に好まし
く、耐久性を有する固化物を安価に且つ容易に得ること
ができる。好ましいセメントとしては、ケイ酸カルシウ
ム系のポルトランドセメント及びアルミン酸カルシウム
系のアルミナセメント等がある。これらの固化剤はいず
れも既に知られているものであり、固化方法は固化剤の
種類に応じて常法に従えばよい。尚、使用後の吸着剤
は、500〜900℃、より好ましくは600〜700
℃で焼成しヨウ素を放出させることにより、結晶水を含
有しないか極く僅か含有する化合物として再生させた
り、または同様の温度範囲で焼成した後、純水に添加す
る等の方法で水を含有させた後、200℃以下、より好
ましくは150℃以下で乾燥することにより結晶水を含
有する化合物として再生させ、再利用することができ
る。
Of the above solidifying agents, cement is particularly preferable, and a solidified product having durability can be obtained at low cost and easily. Preferred cements include calcium silicate-based Portland cement and calcium aluminate-based alumina cement. All of these solidifying agents are already known, and the solidifying method may be a conventional method depending on the type of solidifying agent. The used adsorbent is 500 to 900 ° C., more preferably 600 to 700 ° C.
By calcination at ℃ and releasing iodine, it is regenerated as a compound containing little or no water of crystallization, or after calcination in the same temperature range, water is added by adding it to pure water. Then, by drying at 200 ° C. or lower, more preferably 150 ° C. or lower, the compound containing water of crystallization can be regenerated and reused.

【0015】[0015]

【実施例】以下、実施例によって本発明を更に具体的に
説明する。 実施例1 MgとAlの原子比が1:0.4となる量の炭酸マグネ
シウムと炭酸アルミニウムを混合し、700℃の温度で
焼成して組成式 (MgAl)0.41.6で表される吸着剤
を得た。この吸着剤0.1gを容量250mlの蓋付き
フラスコに入れ、加熱器内で120℃とした後、フラス
コを加熱器内から一旦取り出して、その底部に蒸留水5
mlが入ったガラス管を静置した。その後、蓋付きフラ
スコに蓋をし、再び加熱器内に入れて120℃とした後
(これでフラスコ内は相対湿度100%の高湿度雰囲気
となる。)、50000ppmのI2ガスを含む空気5
mlを注射器を用いて蓋付きフラスコ内に注入した。1
分後にフラスコ内の気体を0.1Mチオ硫酸ナトリウム
水溶液10mlと接触させ、次いで、接触後のチオ硫酸
ナトリウム水溶液中のI-(ヨウ素イオン)濃度を島津
製作所製のシーケンシャル形高周波プラズマ発光分析装
置で測定することにより、フラスコ内の気体中のヨウ素
濃度を求めた。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 An adsorbent represented by the composition formula (MgAl) 0.4 O 1.6 by mixing magnesium carbonate and aluminum carbonate in an amount such that the atomic ratio of Mg and Al is 1: 0.4 and firing the mixture at a temperature of 700 ° C. Got 0.1 g of this adsorbent was put in a flask with a capacity of 250 ml and heated to 120 ° C. in the heater, and then the flask was taken out from the heater once and distilled water 5
The glass tube containing ml was left standing. After that, the flask with a lid was capped, placed again in the heater to 120 ° C. (this creates a high-humidity atmosphere with a relative humidity of 100% in the flask), and then air containing 50000 ppm of I 2 gas was added.
ml was injected using a syringe into a flask with a lid. 1
After a minute, the gas in the flask was brought into contact with 10 ml of a 0.1 M sodium thiosulfate aqueous solution, and then the I (iodine ion) concentration in the sodium thiosulfate aqueous solution after the contact was measured with a sequential high-frequency plasma emission spectrometer manufactured by Shimadzu Corporation. By measuring, the iodine concentration in the gas in the flask was determined.

【0016】実施例2 実施例1と同様にして得た組成式 (MgAl)0.41.6
・2.4H2Oで表される吸着剤を用いた以外は、実施例1
と同様にして、吸着剤と接触後のフラスコ内の気体中の
ヨウ素濃度を求めた。 実施例3 実施例1と同様にして得た組成式 (MgAl)0.31.45
で表される吸着剤を用いた以外は、実施例1と同様にし
て、吸着剤と接触後のフラスコ内の気体中のヨウ素濃度
を求めた。
Example 2 A composition formula (MgAl) 0.4 O 1.6 obtained in the same manner as in Example 1
· 2.4H except for using an adsorbent represented by 2 O, Example 1
The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in. Example 3 Composition formula (MgAl) 0.3 O 1.45 obtained in the same manner as in Example 1
The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 1 except that the adsorbent represented by

【0017】実施例4 実施例1と同様にして得た組成式 (MgAl)0.31.45
・2.2H2Oで表される吸着剤を用いた以外は、実施例1
と同様にして、吸着剤と接触後のフラスコ内の気体中の
ヨウ素濃度を求めた。 実施例5 加熱器内の温度を200℃とし、蓋付きフラスコ内の底
部に蒸留水入りのガラス管を置かなかった(フラスコ内
は高温ではあるが、高湿度雰囲気ではない。)以外は、
実施例1と同様にして、吸着剤と接触後のフラスコ内の
気体中のヨウ素濃度を求めた。
Example 4 Compositional formula (MgAl) 0.3 O 1.45 obtained in the same manner as in Example 1
· 2.2H except for using an adsorbent represented by 2 O, Example 1
The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in. Example 5 Except that the temperature in the heater was set to 200 ° C. and the glass tube containing distilled water was not placed at the bottom of the flask with a lid (the flask has a high temperature but is not in a high humidity atmosphere).
In the same manner as in Example 1, the iodine concentration in the gas in the flask after contact with the adsorbent was determined.

【0018】実施例6 実施例2において得られた吸着剤を用いた以外は、実施
例5と同様にして、吸着剤と接触後のフラスコ内の気体
中のヨウ素濃度を求めた。 実施例7 実施例3において得られた吸着剤を用いた以外は、実施
例5と同様にして、吸着剤と接触後のフラスコ内の気体
中のヨウ素濃度を求めた。
Example 6 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that the adsorbent obtained in Example 2 was used. Example 7 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that the adsorbent obtained in Example 3 was used.

【0019】実施例8 実施例4において得られた吸着剤を用いた以外は、実施
例5と同様にして、吸着剤と接触後のフラスコ内の気体
中のヨウ素濃度を求めた。 実施例9 MgとAlの原子比が7/3となる量の炭酸マグネシウ
ムと炭酸アルミニウムを混合し、pHが10の水溶液中
で加水分解して組成式Mg0.7Al0.3(OH)2(C
30.15・0.5H2Oで表される吸着剤を得た。この吸
着剤を用いた以外は、実施例1と同様にして、吸着剤と
接触後のフラスコ内の気体中のヨウ素濃度を求めた。
Example 8 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that the adsorbent obtained in Example 4 was used. Example 9 Magnesium carbonate and aluminum carbonate in an amount such that the atomic ratio of Mg and Al was 7/3 were mixed and hydrolyzed in an aqueous solution having a pH of 10 to form a composition formula Mg 0.7 Al 0.3 (OH) 2 (C
O 3 ) An adsorbent represented by 0.15 · 0.5H 2 O was obtained. The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 1 except that this adsorbent was used.

【0020】実施例10 実施例9と同様にして得た組成式Mg0.75Al0.25(O
H)2(CO30.125・0.5H2Oで表される吸着剤を用
いた以外は、実施例1と同様にして、吸着剤と接触後の
フラスコ内の気体中のヨウ素濃度を求めた。 実施例11 実施例9において得られた吸着剤を用いた以外は、実施
例5と同様にして、吸着剤と接触後のフラスコ内の気体
中のヨウ素濃度を求めた。
Example 10 Composition formula Mg 0.75 Al 0.25 (O) obtained in the same manner as in Example 9
H) 2 (CO 3 ) 0.125 · 0.5H 2 O was used, and the iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 1 except that the adsorbent was used. . Example 11 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that the adsorbent obtained in Example 9 was used.

【0021】実施例12 実施例10において得られた吸着剤を用いた以外は、実
施例5と同様にして、吸着剤と接触後のフラスコ内の気
体中のヨウ素濃度を求めた。上記実施例1〜4〔組成式
(1)の吸着剤、高湿度雰囲気〕及び実施例9〜10
〔組成式(2)の吸着剤、高湿度雰囲気〕の結果を表1
に、また、実施例5〜8〔組成式(1)の吸着剤、高温
雰囲気〕及び実施例11〜12〔組成式(2)の吸着
剤、高温雰囲気〕の結果を表2に示す。
Example 12 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that the adsorbent obtained in Example 10 was used. Examples 1 to 4 (adsorbent of composition formula (1), high humidity atmosphere) and Examples 9 to 10
The results of [adsorbent of composition formula (2), high humidity atmosphere] are shown in Table 1.
Table 2 shows the results of Examples 5 to 8 [adsorbent of composition formula (1), high temperature atmosphere] and Examples 11 to 12 [adsorbent of composition formula (2), high temperature atmosphere].

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】比較例1 吸着剤として活性炭(クラレケミカル社製、商品名「ク
ラレコールGC−32−60」)を用いた以外は、実施
例1と同様にし、吸着剤と接触後のフラスコ内の気体中
のヨウ素濃度を求めた。 比較例2 吸着剤として銀添着量が60重量%の銀ゼオライト(ゼ
オライトは10X型)を用いた以外は、実施例1と同様
にし、吸着剤と接触後のフラスコ内の気体中のヨウ素濃
度を求めた。
Comparative Example 1 The procedure of Example 1 was repeated, except that activated carbon (Kuraray Chemical Co., Ltd., trade name "Kuraray Coal GC-32-60") was used as the adsorbent, and the contents of the flask after contact with the adsorbent were used. The iodine concentration in the gas was determined. Comparative Example 2 The same procedure as in Example 1 was carried out except that silver zeolite having a silver impregnation amount of 60% by weight (zeolite was 10X type) was used as the adsorbent, and the iodine concentration in the gas in the flask after contact with the adsorbent was adjusted. I asked.

【0025】比較例3 吸着剤として銀添着量が10重量%の銀シリカゲルを用
いた以外は、実施例1と同様にし、吸着剤と接触後のフ
ラスコ内の気体中のヨウ素濃度を求めた。 比較例4 吸着剤として銀添着量が10重量%の銀アルミナを用い
た以外は、実施例1と同様にし、吸着剤と接触後のフラ
スコ内の気体中のヨウ素濃度を求めた。
Comparative Example 3 The concentration of iodine in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 1 except that silver silica gel having a silver loading of 10% by weight was used as the adsorbent. Comparative Example 4 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 1 except that silver alumina having an adhering amount of silver of 10 wt% was used as the adsorbent.

【0026】比較例5 蓋付きフラスコ内に吸着剤を入れなかった以外は、実施
例1と同様にし、フラスコ内の気体中のヨウ素濃度を求
めた。 比較例6 吸着剤として活性炭(クラレケミカル社製、商品名「ク
ラレコールGC−32−60)を用いた以外は、実施例
5と同様にし、吸着剤と接触後のフラスコ内の気体中の
ヨウ素濃度を求めた。
Comparative Example 5 The iodine concentration in the gas in the flask was determined in the same manner as in Example 1 except that the adsorbent was not placed in the flask with a lid. Comparative Example 6 Iodine in the gas in the flask after contact with the adsorbent was performed in the same manner as in Example 5 except that activated carbon (Kuraray Chemical Co., Ltd., trade name "Kuraray Coal GC-32-60") was used as the adsorbent. The concentration was determined.

【0027】比較例7 吸着剤として銀添着量が60重量%の銀ゼオライト(ゼ
オライトは10X型)を用いた以外は、実施例5と同様
にし、吸着剤と接触後のフラスコ内の気体中のヨウ素濃
度を求めた。 比較例8 吸着剤として銀添着量が10重量%の銀シリカゲルを用
いた以外は、実施例5と同様にし、吸着剤と接触後のフ
ラスコ内の気体中のヨウ素濃度を求めた。
Comparative Example 7 The procedure of Example 5 was repeated except that silver zeolite having a silver impregnation amount of 60% by weight (zeolite was 10X type) was used as the adsorbent. The iodine concentration was determined. Comparative Example 8 The iodine concentration in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that silver silica gel having a silver loading of 10% by weight was used as the adsorbent.

【0028】比較例9 吸着剤として銀添着量が10重量%の銀アルミナを用い
た以外は、実施例5と同様にし、吸着剤と接触後のフラ
スコ内の気体中のヨウ素濃度を求めた。 比較例10 蓋付きフラスコ内に吸着剤を添加しない以外は、実施例
5と同様にし、フラスコ内の気体中のヨウ素濃度を求め
た。上記比較例1〜5(高湿度雰囲気)の結果を前記表
1に、比較例6〜10(高温雰囲気)の結果を前記表2
にそれぞれ併記する。
Comparative Example 9 The concentration of iodine in the gas in the flask after contact with the adsorbent was determined in the same manner as in Example 5 except that silver alumina having an adhering amount of silver of 10% by weight was used as the adsorbent. Comparative Example 10 The iodine concentration in the gas in the flask was determined in the same manner as in Example 5 except that the adsorbent was not added to the flask with a lid. The results of Comparative Examples 1 to 5 (high humidity atmosphere) are shown in Table 1 above, and the results of Comparative Examples 6 to 10 (high temperature atmosphere) are shown in Table 2 above.
Are also described in each.

【0029】表1は温度が120℃であり、高湿度(相
対湿度100%)雰囲気における性能評価の結果である
が、各実施例ではヨウ素濃度は5ppm未満であり、本
発明のヨウ素ガス吸着剤は優れた吸着性能を有すること
が分かる。一方、比較例1の活性炭ではヨウ素濃度は2
0ppmと高く、吸着性能に劣っており、比較例2〜4
の銀を添着した各吸着剤の場合は、吸着性能は優れてい
るものの、優れた性能を維持するためには多量の銀を添
着する必要があり、取り扱いが煩雑であるとともにコス
トが高いという問題がある。
Table 1 shows the results of performance evaluation in a high humidity (100% relative humidity) atmosphere at a temperature of 120 ° C. The iodine concentration in each Example was less than 5 ppm, and the iodine gas adsorbent of the present invention was obtained. It can be seen that has excellent adsorption performance. On the other hand, the activated carbon of Comparative Example 1 has an iodine concentration of 2
High as 0 ppm and inferior in adsorption performance, Comparative Examples 2 to 4
In the case of each of the adsorbents impregnated with silver, although the adsorption performance is excellent, it is necessary to impregnate a large amount of silver in order to maintain the excellent performance, and the handling is complicated and the cost is high. There is.

【0030】また、表2は高温(200℃)雰囲気(湿
度は低い。湿度:相対湿度1%未満)における評価結果
であるが、各実施例では表1の結果と同様優れた吸着性
能が発揮されていることが分かる。これに対して、比較
例5の活性炭では比較例1の結果に比べて更に吸着性能
が低下しており、比較例7〜9の銀を添着した各吸着剤
でも、表1の場合に比べてその性能は大きく低下してい
ることが分かる。このように本発明のヨウ素ガス吸着剤
は、200℃以上の高温においても優れた吸着性能を有
する。また、相対湿度90%以上の高湿度下であって
も、その性能に変わりはない。
Table 2 shows the evaluation results in a high temperature (200 ° C.) atmosphere (low humidity. Humidity: less than 1% relative humidity). In each Example, the same excellent adsorption performance as the results in Table 1 was exhibited. You can see that it is done. On the other hand, the activated carbon of Comparative Example 5 had a further lower adsorption performance than the results of Comparative Example 1, and the adsorbents impregnated with silver of Comparative Examples 7 to 9 were compared with those in Table 1. It can be seen that its performance is greatly reduced. As described above, the iodine gas adsorbent of the present invention has excellent adsorption performance even at a high temperature of 200 ° C. or higher. Further, the performance remains the same even under a high humidity of 90% or more in relative humidity.

【0031】[0031]

【発明の効果】第1発明のヨウ素ガス吸着剤は、活性炭
等従来の吸着剤に比較して、特に高温又は高湿度下での
ヨウ素ガス吸着性能に優れており、また、銀等の高価な
成分を含有しない経済的なものであり、気体中のヨウ素
ガス、例えば原子力プラントのオフガス中に含まれる放
射性ヨウ素を吸着除去するための吸着剤等として各種の
分野において有用なものである。更に、第2発明のよう
に特定の金属からなる化合物である場合には特に優れた
性能の吸着剤が得られ好ましい。
INDUSTRIAL APPLICABILITY The iodine gas adsorbent of the first invention is excellent in iodine gas adsorption performance particularly under high temperature or high humidity as compared with conventional adsorbents such as activated carbon, and is expensive such as silver. It is economical, containing no components, and is useful in various fields as an adsorbent for adsorbing and removing iodine gas in a gas, for example, radioactive iodine contained in offgas of a nuclear power plant. Further, in the case of a compound made of a specific metal as in the second invention, an adsorbent having particularly excellent performance is obtained, which is preferable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の組成式(1)又は(2)で表され
る化合物群より選ばれる少なくとも1種の化合物からな
ることを特徴とするヨウ素ガス吸着剤。 M12 x(2+3x)/2・mH2O (1) (ここで、M1は2価の金属であり、M2は3価の半金属
又は金属であり、x及びmは各々0<x≦1、0≦m≦
2.5を満たす数である。) M1 (1-y)2 y(OH)2p- y/p・nH2O (2) (ここで、M1は2価の金属であり、M2は3価の半金属
又は金属であり、y及びnは各々0<y≦0.5、0≦
n≦0.6を満たす数である。Ap-はp価のアニオンで
あり、pは正の整数である。)
1. An iodine gas adsorbent characterized by comprising at least one compound selected from the group of compounds represented by the following composition formulas (1) or (2). M 1 M 2 x O (2 + 3x) / 2 · mH 2 O (1) (where M 1 is a divalent metal, M 2 is a trivalent semimetal or metal, and x and m Are 0 <x ≦ 1, 0 ≦ m ≦, respectively.
It is a number that satisfies 2.5. ) M 1 (1-y) M 2 y (OH) 2 Ap - y / p · nH 2 O (2) (where M 1 is a divalent metal and M 2 is a trivalent semimetal Or metal and y and n are 0 <y ≦ 0.5 and 0 ≦, respectively.
It is a number that satisfies n ≦ 0.6. A p- is a p-valent anion, and p is a positive integer. )
【請求項2】 M1がMgであり、且つM2がAlである
ことを特徴とする請求項1記載のヨウ素ガス吸着剤。
2. The iodine gas adsorbent according to claim 1, wherein M 1 is Mg and M 2 is Al.
JP6145410A 1994-06-03 1994-06-03 Gaseous iodine adsorbent Pending JPH07328430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6145410A JPH07328430A (en) 1994-06-03 1994-06-03 Gaseous iodine adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6145410A JPH07328430A (en) 1994-06-03 1994-06-03 Gaseous iodine adsorbent

Publications (1)

Publication Number Publication Date
JPH07328430A true JPH07328430A (en) 1995-12-19

Family

ID=15384620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6145410A Pending JPH07328430A (en) 1994-06-03 1994-06-03 Gaseous iodine adsorbent

Country Status (1)

Country Link
JP (1) JPH07328430A (en)

Similar Documents

Publication Publication Date Title
JP5791510B2 (en) Hydrogen capture materials, preparation methods and uses
Cramer et al. Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host–guest encapsulation
US9409147B2 (en) Method for granulation of absorbent and adsorbent granules prepared by the same
US20060211908A1 (en) Low-temperature solidification of radioactive and hazardous wastes
TWI232849B (en) Exchanged zeolites X, in particular exchanged with lithium, their process of preparation and their use as adsorbents of nitrogen in the separation of the gases of the air
TW201416328A (en) Harmful substance treatment material, preparation method thereof and harmful substance treatment method
JP3217101B2 (en) Method for producing air purifier
KR100562020B1 (en) Adsorbent for carbon dioxide fixation and method for preparing the same
US20160067672A1 (en) Method for preparing granulated inorganic adsorbent for radionuclides
US5169825A (en) Ammonium ion- and ammonia-selective adsorbent and process for preparation of same
JPH07328432A (en) Gaseous iodine adsorbent
JP4782679B2 (en) Hydrogen scavenging compounds, their production and use
JPH07328430A (en) Gaseous iodine adsorbent
JPS60153940A (en) Adsorbent of dissolved fluorine ion
KR20050108370A (en) Soil conditioner
JP3828887B2 (en) Novel compound, stabilization method for Schwertmannite, purification method for contaminated water or soil, adsorption method for phosphoric acid
JP3015593B2 (en) Radioactive waste treatment method
JP3393916B2 (en) How to fix radioactive iodine
JP2004286739A (en) Metal element stabilization method
AU698925B2 (en) Process for treatment of a liquid medium intended for insolubilization of metallic impurities contained therein, and the production of a non-leachable residue
JP3173528B2 (en) Method for immobilizing carbonate ion or bicarbonate ion
JPS62277148A (en) Deoxidizer
JP4189652B2 (en) Adsorbent
TW304888B (en)
JPH074506B2 (en) Exhaust gas purification method