JPH073281A - Production of electroviscous fluid - Google Patents

Production of electroviscous fluid

Info

Publication number
JPH073281A
JPH073281A JP5145173A JP14517393A JPH073281A JP H073281 A JPH073281 A JP H073281A JP 5145173 A JP5145173 A JP 5145173A JP 14517393 A JP14517393 A JP 14517393A JP H073281 A JPH073281 A JP H073281A
Authority
JP
Japan
Prior art keywords
dispersion
polymerization
monomer
particles
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5145173A
Other languages
Japanese (ja)
Other versions
JP3352759B2 (en
Inventor
Ryoichi Yoshimura
村 良 一 吉
Mitsusachi Mikami
上 光 幸 三
Takatoshi Akatsuka
塚 孝 寿 赤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP14517393A priority Critical patent/JP3352759B2/en
Publication of JPH073281A publication Critical patent/JPH073281A/en
Application granted granted Critical
Publication of JP3352759B2 publication Critical patent/JP3352759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To safely obtain the subject fluid having improved dispersibility and excellent electroviscous effect by forming a micro emulsion of fine particles by ultrasonic wave, polymerizing, heating a dispersion containing a disperse phase at a temperature higher than the polymerization temperature. CONSTITUTION:In dispersing a hydrophilic monomer [e.g. (meth)acrylic acid] or a monomer solution containing a polymerization initiator as a disperse phase into a disperse medium composed of a hydrophobic electric insulating liquid (e.g. silicone oil or toluene) containing a surfactant, a water-in-oil type micro emulsion having <1 micron particles diameter is formed by ultrasonic wave by using an ultrasonic oscillator made of a nonmetal material such as preferably ceramic and polymerized. The dispersion containing the disperse phase is heated to a temperature higher than the polymerization temperature to give the objective electroviscous fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な電気粘性流体の製
造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a novel method for producing an electrorheological fluid.

【0002】[0002]

【従来の技術と解決しようとする課題】電気粘性流体
は、親水性の固体粒子からなる分散相を電気絶縁性の分
散媒の中に分散せしめてなる懸濁液で、電場の作用の
下、可逆的にその流体のみかけ粘度を変化させることの
できるものであり、2個の導電性部材の表面間にこの流
体をおき、そこに電圧を印加することによりその流体に
粘性の可逆的増減をおこさせて導電性部材が回転体の場
合には、両部材表面間にトルクを制御して伝達させるこ
とができる。この電気粘性流体は種々の応用が考えられ
るが、例えば自動車のエンジンユウント、クラッチ、ブ
レーキ、ショックアブソーバなどに用いることができ
る。
An electrorheological fluid is a suspension prepared by dispersing a dispersed phase composed of hydrophilic solid particles in an electrically insulating dispersion medium. The apparent viscosity of the fluid can be reversibly changed. By placing this fluid between the surfaces of two conductive members and applying a voltage thereto, the fluid can be reversibly increased or decreased in viscosity. When the conductive member is a rotating body, the torque can be controlled and transmitted between the surfaces of both members. The electrorheological fluid can be used in various applications, and can be used in, for example, automobile engine units, clutches, brakes, shock absorbers, and the like.

【0003】このような電気粘性流体としては従来各種
分散相からなるものが提案され、例えば多価アルコール
粒子を分散させた流体(特開昭51−33783号公
報)やアクリレート乃至メタクリレート系ポリマーの固
体粒子を分散させた流体(特公昭63−26151号公
報)などが知られている。
As such an electrorheological fluid, there have conventionally been proposed fluids composed of various dispersed phases. For example, a fluid in which polyhydric alcohol particles are dispersed (JP-A-51-33783) or a solid of an acrylate or methacrylate polymer. A fluid in which particles are dispersed (Japanese Patent Publication No. Sho 63-26151) is known.

【0004】これら粒子を用いた電気粘性流体の実用化
に向けての問題点の1つとして、電気粘性効果の安定性
が乏しいことが挙げられる。この様な電気粘性効果の変
動の要因としては、構成粒子の沈降の影響があり、対策
として構成粒子と分散媒との比重の一致または構成粒子
の微粒子化が考えられる。前者の構成粒子と分散媒との
比重に関しては、比重の他に熱膨脹率も一致させる必要
があるが、両者を完全に一致させることは困難であり、
また完全に一致させることが出来ない限り、ERFの温
度が変化すると構成粒子と分散媒との僅かの比重差が大
きくなってしまい粒子の沈降または浮遊を抑制できない
状態になってしまう。一方後者は、ストークスの式から
導かれる構成粒子の沈降度,ブラウン運動の式から導か
れる構成粒子の移動度,構成粒子の密度,分散媒の密度
・粘度から、構成粒子の沈降を抑制しうる粒子径が計算
される。この値よりも粒子径を小さくすることができれ
ば、粒子の沈降速度を飛躍的に小さくすることが出来る
が、特公昭63−26151にあるように、粒子径は1
ミクロン以上が好ましく、1ミクロン未満では電気粘性
効果による粘性変化が著しく小さくなると考えられてき
た。
One of the problems in putting an electrorheological fluid using these particles to practical use is that the stability of the electrorheological effect is poor. The cause of such a change in the electrorheological effect is the influence of sedimentation of the constituent particles, and as a countermeasure, it is conceivable that the specific gravities of the constituent particles and the dispersion medium match or the constituent particles become finer. Regarding the specific gravity of the former constituent particles and the dispersion medium, it is necessary to match the thermal expansion coefficient in addition to the specific gravity, but it is difficult to completely match the two.
Unless they can be completely matched, a slight difference in specific gravity between the constituent particles and the dispersion medium becomes large when the ERF temperature changes, and it becomes impossible to prevent the particles from settling or floating. On the other hand, the latter can suppress the sedimentation of the constituent particles from the settling degree of the constituent particles derived from the Stokes equation, the mobility of the constituent particles derived from the Brownian equation, the density of the constituent particles, and the density / viscosity of the dispersion medium. The particle size is calculated. If the particle size can be made smaller than this value, the sedimentation velocity of the particles can be dramatically reduced. However, as disclosed in JP-B-63-26151, the particle size is 1
Micron or more is preferable, and if it is less than 1 micron, it has been considered that the viscosity change due to the electrorheological effect is significantly reduced.

【0005】しかしながら本発明者らは1ミクロン未満
の微粒子に着目し、これを用いて充分な電気粘性効果に
よる粘性変化を示す電気粘性流体を開発するべく、種々
実験、研究を重ねた。上記の粒子の沈降による問題と
は、測定装置(二重円筒型回転粘性計)内の測定部に沈
降した粒子が堆積し、電気粘性効果が時間の経過ととも
に大きくなっていくことである。これを改良するには1
ミクロン未満の微粒子を使うことが考えられるが1ミク
ロン未満の微粒子の物質分散系では充分な電気粘性効果
は得られないとされていた。
However, the present inventors have paid attention to fine particles of less than 1 micron, and have carried out various experiments and studies to develop an electrorheological fluid exhibiting a sufficient viscosity change due to the electrorheological effect. The problem due to the settling of the particles is that the settling particles are deposited on the measuring portion in the measuring device (double cylinder type rotational viscometer), and the electrorheological effect increases with the passage of time. To improve this 1
It is considered to use fine particles of less than micron, but it has been said that a sufficient electrorheological effect cannot be obtained in a substance dispersion system of fine particles of less than 1 micron.

【0006】それに、この様な微小粒子径の親水性電気
粘性流体構成粒子を油相中の逆相懸濁重合法により合成
することは非常に困難であり、通常の羽根攪拌またはタ
ービン羽根によるホモジナイザー等の機械的攪拌手段で
は、粒度分布幅が大きく、また長時間攪拌では可溶化の
現象も発生し合成できなかった又前記のようにアクリレ
ート等の親水性モノマー又はモノマー溶液から油相中の
逆相懸濁法で重合させらえれたポリマーの固体粒子を分
散させて電気粘性流体をつくる場合は重合時に過硫酸カ
リウム等の重合開始剤が添加されるが、このようなはげ
しい反応性の化合物をつかうと爆発する危険性もはらん
でいた。更に重合後放置していると分散相が凝集し粒子
径が大きくなる傾向があった。
In addition, it is very difficult to synthesize such particles of hydrophilic electrorheological fluid having a fine particle size by the reverse phase suspension polymerization method in an oil phase, and a normal blade stirring or turbine blade homogenizer is used. In the mechanical stirring means such as, the particle size distribution width was large, and the phenomenon of solubilization occurred in stirring for a long time and the synthesis could not be performed. Further, as described above, the hydrophilic monomer such as acrylate or the reverse solution in the oil phase from the monomer solution was used. When solid particles of polymer polymerized by the phase suspension method are dispersed to form an electrorheological fluid, a polymerization initiator such as potassium persulfate is added at the time of polymerization. There was also a risk of explosion when used. Further, if left standing after the polymerization, the dispersed phase tends to aggregate and the particle size tends to increase.

【0007】かくて、本発明は油相中の逆相懸濁重合法
によって機械的攪拌手段を用いずに沈降を生ぜしめず、
又爆発するおそれもなく、重合後放置しても分散相が凝
集せず分散性が良好な1ミクロン未満の微小粒子の分散
液をつくり、充分な電気粘性効果を有する電気粘性流体
を製造する方法を提供することを目的とするものであ
り、本発明者らの研究、実験の結果、分散液をつくるに
当って超音波を用い、重合後上記分散相を含む分散液を
重合温度よりも高い温度で加熱することによりその目的
が達成しうることが見出されたのである。
Thus, the present invention does not cause sedimentation by the reverse phase suspension polymerization method in the oil phase without the use of mechanical stirring means,
A method for producing an electrorheological fluid having a sufficient electrorheological effect by producing a dispersion liquid of fine particles of less than 1 micron, which has a good dispersibility in which the disperse phase does not aggregate even if left undisturbed after polymerization without fear of explosion. The purpose of the present invention is to provide a dispersion liquid containing the above disperse phase higher than the polymerization temperature after polymerization by using ultrasonic waves in the research and experiment results of the present inventors. It has been found that the purpose can be achieved by heating at temperature.

【0008】[0008]

【課題を解決するための手段】よって本発明は界面活性
剤を含む疎水性、電気絶縁性液体からなる分散媒に分散
相として重合開始剤を含む親水性モンマー又はモノマー
溶液を分散させて逆ミセルあるいは油中水滴型エマルシ
ョンをつくり後上記モノマーを重合せしめて電気粘性流
体を製造する方法において、前記分散に当り、超音波を
用いて1ミクロン未満の粒子を有するミクロエマルショ
ンを形成し、重合後上記分散相を含む分散液を重合温度
よりも高い温度で加熱することを特徴とする電気粘性流
体の製造方法を提供するものである。
Therefore, the present invention provides a reverse micelle by dispersing a hydrophilic monmer or a monomer solution containing a polymerization initiator as a dispersed phase in a dispersion medium composed of a hydrophobic and electrically insulating liquid containing a surfactant. Alternatively, in the method of producing an electrorheological fluid by polymerizing the above monomers after forming a water-in-oil emulsion, in the dispersion, ultrasonic waves are used to form a microemulsion having particles of less than 1 micron, and after polymerization, It is intended to provide a method for producing an electrorheological fluid, which comprises heating a dispersion liquid containing a dispersed phase at a temperature higher than a polymerization temperature.

【0009】以下本発明について詳しく説明する。まず
本発明にて分散媒として用いられる疎水性、電気絶縁性
液体としてはトルエン、シリコーンオイル、フッ素オイ
ル等があげられる。この分散媒には分散剤たとえばポリ
グリセリンの脂肪酸エステル等を添加し、溶解させる。
The present invention will be described in detail below. First, examples of the hydrophobic and electrically insulating liquid used as the dispersion medium in the present invention include toluene, silicone oil, fluorine oil and the like. To this dispersion medium, a dispersant such as a fatty acid ester of polyglycerin is added and dissolved.

【0010】次にこの分散媒に分散相として分散される
親水性モノマーとしては特に限定しないが、アクリル酸
やメタクリル酸またはこれらの金属塩等の親水性モノマ
ーを用いることができる。通常このモノマーに対し更に
架橋剤、重合開始剤等が添加される。架橋剤としては例
えばN,N−メチレンビスアクリルアミドのような二官
能性又は多官能性の試薬が使用され、又重合開始剤とし
てはたとえば過硫酸カリウム等のようなペルオキシ化合
物が用いられる。
Next, the hydrophilic monomer dispersed as a dispersed phase in this dispersion medium is not particularly limited, but a hydrophilic monomer such as acrylic acid, methacrylic acid or a metal salt thereof can be used. Usually, a crosslinking agent, a polymerization initiator and the like are further added to this monomer. As the crosslinking agent, a bifunctional or polyfunctional reagent such as N, N-methylenebisacrylamide is used, and as the polymerization initiator, a peroxy compound such as potassium persulfate is used.

【0011】このように界面活性剤等を溶解させた分散
媒に、架橋剤、重合開始剤等を添加したモノマーを加え
て分散させるに当り、本発明では超音波を用いるのであ
る。この超音波としては特に限定しないが振動数20±
2KHzの範囲のものを用いるのが好ましい。超音波発
振部としては従来一般にステンレス等の金属でつくられ
た大きさの違う大小二つの円筒1,2をくっつけた形状
のものが用いられており(図4)、径の小さな円筒部2
の先端部a−a線より右側液中に浸漬せしめて使用され
ていたが、これでは上述の如き重合開始剤と金属が接触
して爆発する危険性があるため、本発明では図4のよう
に小さな径の金属製円筒部2の周囲をプラスチックやセ
ラミック等の非金属材料で被覆したものを用いるのが好
ましい。図5の例においては、液体にふれる小さな円筒
部2の最先端部表面にセラミック材3を接合し、その側
面にテトラフルオロエチレン(商品名テフロン)のコー
ト4を形成する。勿論、最先端表面と側面を同じ材料で
被覆してもよく、又小さな円筒部2をすべてこれら非金
属材料で形成したものを用いることもできる。超音波を
かける時間は1〜2分間である。
In the present invention, ultrasonic waves are used to add and disperse the monomer to which the crosslinking agent, the polymerization initiator and the like have been added to the dispersion medium in which the surfactant and the like have been dissolved. The ultrasonic wave is not particularly limited, but the vibration frequency is 20 ±
It is preferable to use one in the range of 2 KHz. As the ultrasonic wave oscillating section, conventionally, a shape in which two large and small cylinders 1 and 2 made of metal such as stainless steel and having different sizes are pasted together is used (Fig. 4).
It was used by immersing it in the liquid on the right side from the aa line of the tip part of the above. However, since there is a risk that the polymerization initiator and the metal come into contact with each other as described above and explode, in the present invention, as shown in FIG. It is preferable to use a metal cylindrical portion 2 having a small diameter which is coated with a non-metal material such as plastic or ceramic. In the example of FIG. 5, the ceramic material 3 is joined to the surface of the tip of the small cylindrical portion 2 that is exposed to the liquid, and the coat 4 of tetrafluoroethylene (trade name Teflon) is formed on the side surface thereof. Of course, the frontmost surface and the side surface may be coated with the same material, or the small cylindrical portion 2 formed of all these non-metallic materials may be used. The ultrasonic wave is applied for 1 to 2 minutes.

【0012】このように本発明においてモノマー又はモ
ノマー溶液を分散媒中に懸濁させる手段として機械的攪
拌手段によることなく超音波分散を行なうことによって
最大の問題ともいうべき沈降の問題を克服して逆ミセル
或いは油中水滴型エマルションの粒子の径を1ミクロン
未満にし且つシャープな粒度分布に制御することができ
る。特に非金属材料たとえばセラミック又はプラスチッ
ク或いはその両者を用いて形成した超音波発振部、又は
これらを用いてコーティングした超音波発振部を用いた
超音波分散を行なえば、従来のような爆発の危険性を回
避することができる。
Thus, in the present invention, ultrasonic dispersion is carried out as a means for suspending a monomer or a monomer solution in a dispersion medium without using a mechanical stirring means, thereby overcoming the problem of sedimentation, which is the greatest problem. The particle size of the reverse micelle or the water-in-oil emulsion can be controlled to be less than 1 micron and to have a sharp particle size distribution. Particularly, if ultrasonic wave dispersion is performed using an ultrasonic wave oscillating section formed by using a non-metallic material such as ceramics or plastics or both, there is a risk of explosion as in the conventional case. Can be avoided.

【0013】このようにモノマーを分散媒中に超音波で
よく分散して1ミクロン未満の径のミクロエマルション
を形成したのち重合槽に移し、適宜な温度、時間の条件
で重合を行なう。そして本発明では重合後に上記分散相
を含む分散液を重合時の温度(約60℃)よりも高い温
度で加熱するのである。通常は約120〜130℃の温
度で数時間加熱する。これにより分散相中の水分量を調
整し、又粒子分散性を確実にし粒子間の凝集を防ぎ非常
に分散性の良好な分散液を得ることができる。理論によ
り拘束されることは望まないが、これは重合後重合温度
で加熱することにより分散媒中に存在する界面活性剤の
官能基と合成粒子表面の官能基とが化学結合し、結合力
の低下を抑制しているのではないかと推測される。この
ようにしてえられた分散性の良好な微粒子のみの分散相
をもつ分散液はたとえば200Pa以上のずり応力を有
しており、1ミクロン未満の微小粒子にして充分な電気
粘性効果を有する電気粘性流体として有効に用いること
ができる。
As described above, the monomer is well dispersed in the dispersion medium by ultrasonic waves to form a microemulsion having a diameter of less than 1 micron, and the microemulsion is transferred to a polymerization tank and polymerization is carried out under appropriate temperature and time conditions. In the present invention, after the polymerization, the dispersion liquid containing the dispersed phase is heated at a temperature higher than the temperature at the time of polymerization (about 60 ° C.). It is usually heated at a temperature of about 120 to 130 ° C. for several hours. This makes it possible to adjust the amount of water in the dispersed phase, to ensure particle dispersibility, prevent aggregation between particles, and obtain a dispersion having very good dispersibility. Although not wishing to be bound by theory, this is because after the polymerization, the functional groups of the surfactant present in the dispersion medium and the functional groups of the surface of the synthetic particles are chemically bonded by heating at the polymerization temperature, resulting in It is speculated that the decrease may be suppressed. The dispersion liquid thus obtained, which has a disperse phase containing only fine particles having good dispersibility, has a shear stress of, for example, 200 Pa or more, and is made into fine particles of less than 1 micron, which is a sufficient electrorheological effect. It can be effectively used as a viscous fluid.

【0014】[0014]

【実施例】以下、実施例により本発明を説明するが、本
発明の範囲がこれら実施例のみに限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples, but the scope of the present invention is not limited to these examples.

【0015】容量500cm3 のセパラブルフラスコに
トルエン(和光純薬工業(株)製:液体クロマトグラフ
用)を450cm3 入れた。次に界面活性剤のデカグリ
セリンペンタオレエート(日光ケミカルズ(株)製:D
ecaglyn−5−0)0.86gをトルエンに溶解
させた。溶存酸素を除去するため、窒素の導入を1時間
以上行った。これを「分散媒」とする。
[0015] capacity 500 cm 3 separable flask in toluene (manufactured by Wako Pure Chemical Industries, Ltd.: liquid chromatograph grade) to 450 cm 3 was charged. Next, the surfactant decaglycerin pentaoleate (manufactured by Nikko Chemicals Co., Ltd .: D
0.86 g of ecaglyn-5-0) was dissolved in toluene. Nitrogen was introduced for 1 hour or more in order to remove dissolved oxygen. This is referred to as "dispersion medium".

【0016】次にアクリル酸(和光純薬工業(株)製)
5.9gに8.5gの水酸化ナトリウム(和光純薬工業
(株)製)の25.4%水溶液で氷冷しつつ中和し、ア
クリル酸ナトリウム水溶液に調整した。室温に戻したの
ち、過硫酸カリウム(和光純薬工業(株))1wt%、
N,N−メチレンビスアクリルアミド(和光純薬工業
(株)製)を0.1wt%溶解させた。溶存酸素を除去
するため、窒素の導入を1時間以上行った。これを「モ
ノマー」とする。
Next, acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
5.9 g was neutralized with 8.5 g of a 25.4% aqueous solution of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) while cooling with ice to prepare a sodium acrylate aqueous solution. After returning to room temperature, potassium persulfate (Wako Pure Chemical Industries, Ltd.) 1 wt%,
0.1 wt% of N, N-methylenebisacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved. Nitrogen was introduced for 1 hour or more in order to remove dissolved oxygen. This is referred to as "monomer".

【0017】200mlビーカーに「分散媒」を150
ml取り、「モノマー」を3.4g滴下しスターラーで
分散させ液滴を形成させた。ついで、超音波ホモジナイ
ザー((株)日本精機製作所製:US600−T)を用
い、セラミックでコートした超音波発振部で振動数20
±2KHzの超音波を1分間かけ、1μm未満の油中水
滴型ミクロエマルションを形成させた。超音波分散の
後、重合槽に分散液を移した。重合は、60℃にて40
分間を行った。この分散液を蒸溜装置に移し、120〜
130℃に加熱した。作製した分散液の粒度分布測定結
果を図1に示す。
Add 150 "dispersion medium" to a 200 ml beaker.
Then, 3.4 g of "monomer" was dropped and dispersed by a stirrer to form droplets. Then, using an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, Ltd .: US600-T), an ultrasonic wave oscillating section coated with ceramics has a frequency of 20.
Ultrasonic waves of ± 2 KHz were applied for 1 minute to form a water-in-oil type microemulsion of less than 1 μm. After ultrasonic dispersion, the dispersion was transferred to a polymerization tank. Polymerization is 40 at 60 ℃
Went for a minute. This dispersion is transferred to a distillation device,
Heated to 130 ° C. The result of particle size distribution measurement of the prepared dispersion liquid is shown in FIG.

【0018】ここに用いられた蒸溜装置の略図を図6に
示す。丸底フラスコ11と二股の首部12、13を有す
るいわゆるクライゼン14が用いられる。二つの首部1
2、13には夫々栓15、16が設けられる。一方の栓
16には温度計17が貫通しておりその首部13には一
定角度で下方に傾斜している枝管18が設けられてい
る。この枝管18にはいわゆるリービツヒ冷却管19が
接続しており、その周囲には水等の冷媒を通す側管20
が設けられている。その先端には受器21が設けられ大
きさの異なる二つのナスフラスコ22、23が取着けら
れている。上記丸底フラスコ11は槽24に充填された
オイル25中に浸漬させる。26は油浴である。
A schematic diagram of the distillation apparatus used here is shown in FIG. A so-called Claisen 14 is used which has a round bottom flask 11 and bifurcated necks 12, 13. Two necks 1
2 and 13 are provided with stoppers 15 and 16, respectively. A thermometer 17 penetrates through one of the plugs 16, and a neck portion 13 thereof is provided with a branch pipe 18 which is inclined downward at a constant angle. A so-called Liebig cooling pipe 19 is connected to the branch pipe 18, and a side pipe 20 through which a coolant such as water is passed around is connected to the side pipe 20.
Is provided. A receiver 21 is provided at the tip thereof, and two eggplant flasks 22 and 23 having different sizes are attached thereto. The round bottom flask 11 is immersed in the oil 25 filled in the tank 24. 26 is an oil bath.

【0019】さて、前記丸底フラスコ11中に上述のよ
うにしてえられた分散媒27を一定量加える。その際突
沸を防止するために通常数片の沸石28も入れておく。
上記丸底フラスコ11内を加熱する。側管20中に水を
循環して冷却すると上記ナス型フラスコ22、23に分
散媒と水29が得られる。
Now, a fixed amount of the dispersion medium 27 obtained as described above is added to the round bottom flask 11. At this time, usually several pieces of boiling stone 28 are also put in order to prevent bumping.
The inside of the round bottom flask 11 is heated. When water is circulated in the side tube 20 and cooled, the dispersion medium and water 29 are obtained in the eggplant-shaped flasks 22 and 23.

【0020】なお、常圧で加熱しているが、分散媒によ
っては減圧することも可能である。加熱処理後、この分
散液を電気粘性流体に調整し、その電気粘性効果を測定
した。得られた特性を図2と図3に、図2には電界強度
−ずり応力特性、図3には電界強度−電流密度特性が示
されている。
Although the heating is carried out at normal pressure, it is possible to reduce the pressure depending on the dispersion medium. After the heat treatment, this dispersion was adjusted to an electrorheological fluid, and its electrorheological effect was measured. The obtained characteristics are shown in FIGS. 2 and 3, FIG. 2 shows electric field strength-shear stress characteristics, and FIG. 3 shows electric field strength-current density characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において加熱処理後分散液の粒度分布測
定結果を示すグラフ。
FIG. 1 is a graph showing the results of particle size distribution measurement of a dispersion after heat treatment in Examples.

【図2】実施例で作製した電気粘性流体の電界強度−ず
り応力特性を示すグラフ。
FIG. 2 is a graph showing electric field strength-shear stress characteristics of electrorheological fluids manufactured in Examples.

【図3】同流体の電界強度−電流密度特性を示すグラ
フ。
FIG. 3 is a graph showing electric field strength-current density characteristics of the same fluid.

【図4】従来の超音波発振部の一例の説明図。FIG. 4 is an explanatory diagram of an example of a conventional ultrasonic oscillator.

【図5】本発明で用いるのが好ましい超音波発振部の一
例の説明図。
FIG. 5 is an explanatory diagram of an example of an ultrasonic wave oscillating unit that is preferably used in the present invention.

【図6】蒸溜装置の一例の略図。FIG. 6 is a schematic view of an example of a distilling device.

【符号の説明】[Explanation of symbols]

1 大きな径の円筒部 2 小さな径の円筒部 3 セラミック材 4 プラスチックコート 11 丸底フラスコ 17 温度計 19 リービツヒ冷却管 27 分散液 1 Large Diameter Cylindrical Part 2 Small Diameter Cylindrical Part 3 Ceramic Material 4 Plastic Coat 11 Round Bottom Flask 17 Thermometer 19 Liebic Cooling Tube 27 Dispersion Liquid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10N 20:06 Z 30:04 40:14 70:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C10N 20:06 Z 30:04 40:14 70:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】界面活性剤を含む疎水性、電気絶縁性液体
からなる分散媒に分散相として重合開始剤を含む親水性
モノマー又はモノマー溶液を分散させて逆ミセルあるい
は油中水滴型エマルションをつくり後上記モノマーを重
合せしめて電気粘性流体を製造する方法において、前記
分散に当り、超音波を用いて1ミクロン未満の粒子を有
するミクロエマルションを形成し重合後前記分散相を含
む分散液を重合温度よりも高い温度で加熱することを特
徴とする電気粘性流体の製造方法。
1. A reverse micelle or a water-in-oil emulsion is prepared by dispersing a hydrophilic monomer or a monomer solution containing a polymerization initiator as a dispersed phase in a dispersion medium composed of a hydrophobic and electrically insulating liquid containing a surfactant. After that, in the method of producing an electrorheological fluid by polymerizing the above-mentioned monomer, a microemulsion having particles of less than 1 micron is formed by using ultrasonic waves in the dispersion, and the dispersion containing the dispersed phase is polymerized at a polymerization temperature. A method for producing an electrorheological fluid, which comprises heating at a higher temperature.
【請求項2】超音波を用いて分散させるに当り、非金属
材料を用いて形成された、又は非金属材料でコーティン
グされた超音波発振部を用いることを特徴とする、請求
項1記載の方法。
2. The ultrasonic oscillating section formed of a non-metallic material or coated with a non-metallic material is used for dispersing by using an ultrasonic wave. Method.
【請求項3】前記モノマーとして、アクリル酸、アクリ
ル酸金属塩、メタクリル酸、メタクリル酸金属塩の中の
いずれか1つ又は数ケを用いることを特徴とする請求項
1記載の方法。
3. The method according to claim 1, wherein any one or several of acrylic acid, acrylic acid metal salt, methacrylic acid, and methacrylic acid metal salt are used as the monomer.
【請求項4】請求項1〜3の方法で作られた電気粘性流
体。
4. An electrorheological fluid made by the method of claims 1-3.
JP14517393A 1993-06-16 1993-06-16 Manufacturing method of electrorheological fluid Expired - Fee Related JP3352759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14517393A JP3352759B2 (en) 1993-06-16 1993-06-16 Manufacturing method of electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14517393A JP3352759B2 (en) 1993-06-16 1993-06-16 Manufacturing method of electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH073281A true JPH073281A (en) 1995-01-06
JP3352759B2 JP3352759B2 (en) 2002-12-03

Family

ID=15379130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14517393A Expired - Fee Related JP3352759B2 (en) 1993-06-16 1993-06-16 Manufacturing method of electrorheological fluid

Country Status (1)

Country Link
JP (1) JP3352759B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393186A (en) * 1977-01-21 1978-08-15 Secr Defence Brit Electrically viscous liquefied composition
JPH0379605A (en) * 1989-04-21 1991-04-04 Hercules Inc Manufacture of electrovisco- elastic fluid
JPH0388804A (en) * 1989-04-21 1991-04-15 Hercules Inc Manufacture of electrovisco- elastic fluid
JPH03162494A (en) * 1989-11-20 1991-07-12 Ricoh Co Ltd Electric field-responsive fluid
JPH03179095A (en) * 1989-12-07 1991-08-05 Ricoh Co Ltd Electroresponsive fluid
JPH03296599A (en) * 1990-04-17 1991-12-27 Ricoh Co Ltd Electroviscous fluid
JPH04255795A (en) * 1990-08-25 1992-09-10 Bayer Ag Electroviscous liquid based on dispersion of polymer together with disperse phase containing electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393186A (en) * 1977-01-21 1978-08-15 Secr Defence Brit Electrically viscous liquefied composition
JPH0379605A (en) * 1989-04-21 1991-04-04 Hercules Inc Manufacture of electrovisco- elastic fluid
JPH0388804A (en) * 1989-04-21 1991-04-15 Hercules Inc Manufacture of electrovisco- elastic fluid
JPH03162494A (en) * 1989-11-20 1991-07-12 Ricoh Co Ltd Electric field-responsive fluid
JPH03179095A (en) * 1989-12-07 1991-08-05 Ricoh Co Ltd Electroresponsive fluid
JPH03296599A (en) * 1990-04-17 1991-12-27 Ricoh Co Ltd Electroviscous fluid
JPH04255795A (en) * 1990-08-25 1992-09-10 Bayer Ag Electroviscous liquid based on dispersion of polymer together with disperse phase containing electrolyte

Also Published As

Publication number Publication date
JP3352759B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3754087B2 (en) Method for producing emulsion
Snabre et al. Cell disaggregation behavior in shear flow
Golemanov et al. Selection of surfactants for stable paraffin-in-water dispersions, undergoing solid− liquid transition of the dispersed particles
JP6914192B2 (en) Composition and method for emulsion formation
Ohlendorf et al. Surfactant systems for drag reduction: physico-chemical properties and rheological behaviour
Haase et al. Nanoparticle modification by weak polyelectrolytes for pH-sensitive pickering emulsions
Nallusamy et al. Investigation on carbon nanotubes over review on other heat transfer nano fluids
JP2002166158A (en) Encapsulation process
Burgess et al. Spontaneous formation of small sized albumin/acacia coacervate particles
Greiner et al. Spontaneous formation of a water-continuous emulsion from aw/o microemulsion
Fouconnier et al. Effect of [CTAB]–[SiO2] ratio on the formation and stability of hexadecane/water emulsions in the presence of NaCl
Chatterjee et al. Effect of phase change on the rheology and stability of paraffin wax-in-water Pickering emulsions
Ives Rate theories
Neumann et al. Stability of various silicone oil/water emulsion films as a function of surfactant and salt concentration
US20120112121A1 (en) Emulsions of heat transfer fluids including nanodroplets to enhance thermal conductivities of the fluids
Jin et al. Effects of salt-controlled self-assembly of triblock copolymers F68 on interaction forces between oil drops in aqueous solution
JPH0388804A (en) Manufacture of electrovisco- elastic fluid
Shah et al. Ultrasonication effect on thermophysical properties of Al2O3 nanofluids
JP2002233748A (en) Microcapsule composition
Frith et al. Microstructural origins of the rheology of fluid gels
JPH073281A (en) Production of electroviscous fluid
Duke et al. The rheology and structure of lecithin in concentrated solution and the liquid crystalline state
Zehm et al. On the Thermoresponsivity and Scalability of N, N‐Dimethylacrylamide Modified NIPAM Microgels
Choi et al. Effects of emulsifier on particle size of a phase change material in a mixture with water
JP3352760B2 (en) Manufacturing method of electrorheological fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees