JPH07328010A - Osteoporosis diagnostic device - Google Patents

Osteoporosis diagnostic device

Info

Publication number
JPH07328010A
JPH07328010A JP14402194A JP14402194A JPH07328010A JP H07328010 A JPH07328010 A JP H07328010A JP 14402194 A JP14402194 A JP 14402194A JP 14402194 A JP14402194 A JP 14402194A JP H07328010 A JPH07328010 A JP H07328010A
Authority
JP
Japan
Prior art keywords
bone
wave
skin
frequency distribution
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14402194A
Other languages
Japanese (ja)
Inventor
Koichiro Takano
宏一郎 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUGO MISO KK
Original Assignee
MARUGO MISO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUGO MISO KK filed Critical MARUGO MISO KK
Priority to JP14402194A priority Critical patent/JPH07328010A/en
Publication of JPH07328010A publication Critical patent/JPH07328010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To provide a osteoporosis diagnostic device allowing repetitive inspections with no invasion into a living body, capable of easily comparing diagnostic data, and having a simple structure at a low cost. CONSTITUTION:This osteoporosis diagnostic device is constituted of a tapper 2 tapping the skin of an examinee to give an impact to the bone, a wave receiver 3 receiving the transmitted wave propagated on the bone by the impact from above the skin, a high-speed Fourier transformer 5 outputting the frequency distribution data of the transmitted wave, and a microprocessor 6 discriminating the peak frequency of the transmitted wave from the frequency distribution data of the transmitted wave and calculating the bone density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は骨粗鬆症を診断する装置
に関する。
FIELD OF THE INVENTION The present invention relates to a device for diagnosing osteoporosis.

【0002】[0002]

【従来の技術】骨中のたんぱく質やカルシウムの減少に
より骨の密度が低下してもろくなる骨粗鬆症は高齢者に
おける骨折や腰痛等の基礎疾患であり、早期発見による
初期段階での治療および予防が重要である。従来、骨粗
鬆症の診断装置には主にX線や粒子線等による画像を基
に診断するもの等がある。
2. Description of the Related Art Osteoporosis, which becomes brittle even when bone density decreases due to a decrease in protein and calcium in bone, is a basic disease such as bone fracture and low back pain in the elderly, and it is important to treat and prevent it at an early stage by early detection. Is. 2. Description of the Related Art Conventionally, there are diagnostic devices for osteoporosis that mainly diagnose images based on images such as X-rays and particle beams.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
骨粗鬆症の診断装置はいずれも高額で、とても定期的な
予防診断などに使えるものではなく、しかも放射線被爆
等の生体侵襲があるので、反復検査が困難で早期発見を
妨げていた。また、従来の装置では骨粗鬆症の進行を主
に画像の陰影から診断していたので、診断データの比較
が困難であった。
However, all of the conventional diagnostic devices for osteoporosis are expensive and cannot be used for very regular preventive diagnosis, and because they are invasive such as radiation exposure, repetitive examinations are required. Difficult and hindered early detection. Moreover, since the conventional apparatus diagnoses the progression of osteoporosis mainly from the shadow of the image, it is difficult to compare the diagnostic data.

【0004】本発明の目的は、生体無侵襲で反復検査が
でき、しかも診断データの比較が容易であり、かつ構造
が簡便で低コストな診断装置を提供することにある。
It is an object of the present invention to provide a diagnostic device which can perform repeated examinations in a non-invasive manner, facilitates comparison of diagnostic data, has a simple structure, and is low in cost.

【0005】[0005]

【課題を解決するための手段】本発明を実施するための
手段および実施態様は次のとおりである。
Means and Embodiments for carrying out the present invention are as follows.

【0006】<手段>被測定者の皮膚を叩打して骨に対
して直角方向から一定の強さおよび時間的間隔で衝撃を
与えるタッピングヘッドを備える叩打器と、前記衝撃に
より骨を伝播する伝導波を皮膚の上から受波し、電気信
号に変換する受波器と、受波器からの電気信号を分析し
て前記伝導波の周波数分布データを出力する高速フーリ
エ変換器と、前記伝導波の周波数分布データから伝導波
のピーク周波数を判別して骨密度を演算するマイクロプ
ロセッサで構成する。
<Means> A tapping machine equipped with a tapping head that taps the skin of a person to be measured to give a shock to the bone at a constant strength and at a time interval from a direction perpendicular to the bone, and a conduction propagating through the bone by the shock. A wave receiver that receives a wave from above the skin and converts it into an electric signal, a fast Fourier transformer that analyzes the electric signal from the wave receiver and outputs frequency distribution data of the conducted wave, and the conducted wave It is composed of a microprocessor that calculates the bone density by discriminating the peak frequency of the conduction wave from the frequency distribution data of.

【0007】<実施態様>上記手段における叩打器の下
部に、下端縁を被測定部位の皮膚に密着させることによ
りタッピングヘッドが骨に対して直角に当たるようにす
るガイドを設ける。
<Embodiment> In the lower part of the tapping device in the above means, a guide is provided so that the tapping head hits the bone at a right angle by bringing the lower end edge into close contact with the skin of the site to be measured.

【0008】[0008]

【作用】叩打器から骨に与えられた衝撃により骨を伝播
する伝導波は、受波器で拾われて電気信号に変換され、
高速フーリエ変換器に送られる。伝導波の電気信号は高
速フーリエ変換器において周波数分布が分析され、その
データがマイクロプロセッサに送られる。
[Function] The conduction wave propagating through the bone due to the impact given to the bone from the beating device is picked up by the wave receiver and converted into an electric signal,
It is sent to the fast Fourier transformer. The electrical signal of the conduction wave is analyzed for frequency distribution in a fast Fourier transformer, and the data is sent to the microprocessor.

【0009】マイクロプロセッサでは高速フーリエ変換
器から送られる周波数分布から伝導波のピーク周波数が
判別され、ピーク周波数の高低から骨密度が演算されて
骨粗鬆症の診断がなされる。
In the microprocessor, the peak frequency of the conduction wave is discriminated from the frequency distribution sent from the fast Fourier transformer, and the bone density is calculated from the height of the peak frequency to diagnose osteoporosis.

【0010】[0010]

【実施例】以下本発明に係る装置の具体例を図1〜5に
基づいて詳細に説明する。図1は本装置の基本原理を示
しており、図中の符号2は皮膚を叩打して骨1に衝撃を
与える叩打器、3は骨を伝播する伝導波4を拾う受波器
を示している。
EXAMPLES Specific examples of the apparatus according to the present invention will be described in detail below with reference to FIGS. FIG. 1 shows the basic principle of the present apparatus. In the figure, reference numeral 2 denotes a beating device that strikes the skin to impact the bone 1, and 3 denotes a wave receiver that picks up a conduction wave 4 propagating in the bone. There is.

【0011】骨1が体表面から比較的浅位にある部位
(図では下腿部前面)に叩打器2と受波器3とを適当な
間隔をあけて皮膚の上から当て、叩打器2で皮膚を叩打
して骨1に軽い衝撃を与えると、この衝撃によって骨1
を伝導波4が伝播し、この伝導波は受波器3で拾われ
る。
A tapping device 2 and a wave receiver 3 are applied from above the skin at a position where the bone 1 is relatively shallow from the body surface (front of the lower leg in the figure), and the tapping device 2 is tapped. When the skin is tapped with and a light shock is applied to the bone 1, the bone 1 is affected by this shock.
The conduction wave 4 propagates through and the conduction wave 4 is picked up by the wave receiver 3.

【0012】図2は受波器3で得られた伝導波4の周波
数分布Aと、叩打器2が骨に与えた伝播前における衝撃
の周波数分布Bとを比較して示すグラフである。このグ
ラフに示されるように、叩打器2から皮膚を介して骨に
与えられた衝撃は骨を伝播すると周波数分布が変化し、
伝導波4の周波数分布Aには叩打器が骨1に与えた衝撃
の周波数分布Bにはない周波数成分の卓越した部分(ピ
ーク)Pが高周波領域に現れる。
FIG. 2 is a graph showing a comparison between the frequency distribution A of the conduction wave 4 obtained by the wave receiver 3 and the frequency distribution B of the shock given to the bone by the tapping device 2 before the propagation. As shown in this graph, the impact given to the bone from the beating device 2 through the skin changes the frequency distribution as it propagates through the bone,
In the frequency distribution A of the conduction wave 4, a prominent portion (peak) P of the frequency component which is not in the frequency distribution B of the impact given to the bone 1 by the tapper appears in the high frequency region.

【0013】このピークPの周波数の高低は骨1の密度
に依存し、骨密度が高い場合にはピークPがより高い周
波数領域に現れ、一方骨密度が低い場合にはピークPが
より低い周波数領域に現れる。すなわち、グラフ上のP
を健常者のピークとすると、骨密度が低い骨粗鬆症患者
のピークPL はグラフ上仮想線で示すようにPよりも低
い周波数領域に現われる。
The frequency of the peak P depends on the density of the bone 1. When the bone density is high, the peak P appears in a higher frequency region, while when the bone density is low, the peak P is lower. Appears in the area. That is, P on the graph
Is the peak of the healthy person, the peak PL of the osteoporosis patient with low bone density appears in the frequency region lower than P as shown by the virtual line on the graph.

【0014】図3は本発明に係る装置の具体的構成を示
しており、図中の符号5は伝導波4の周波数分布を分析
する高速フーリエ変換器、6は伝導波の周波数分布デー
タから前述のピーク周波数を判別して骨密度を演算する
マイクロプロセッサである。叩打器2は図4に示すよう
に、ソレノイドプランジャ7で構成してある。ソレノイ
ドプランジャはそのプランジャロッド8の先端に硬質ゴ
ムやプラスチック等よりなるタッピングヘッド9を設け
たものとしてある。叩打器2の下部には下部開口の筒状
に形成されたガイド2aを設けてあり、ガイド2aの下
端縁を被測定部位の皮膚に密着させることにより、タッ
ピンクヘッド9を骨に対してほぼ直角方向から当接させ
るようになっている。ソレノイドプランジャ7には電源
装置を兼ねる制御装置10からパルス電流が供給される
ようにしてあり、このパルス電流の強弱および周波数に
より叩打する強弱や速さを適宜調節できるようになって
いる。
FIG. 3 shows a specific configuration of the apparatus according to the present invention. In the figure, reference numeral 5 is a fast Fourier transformer for analyzing the frequency distribution of the conducted wave 4, and 6 is the above-mentioned from the frequency distribution data of the conducted wave. It is a microprocessor for calculating the bone density by discriminating the peak frequency of. As shown in FIG. 4, the tapping machine 2 is composed of a solenoid plunger 7. The solenoid plunger has a plunger rod 8 provided at its tip with a tapping head 9 made of hard rubber or plastic. A guide 2a formed in a cylindrical shape with a lower opening is provided in the lower part of the tapping device 2, and the lower end edge of the guide 2a is brought into close contact with the skin of the site to be measured, so that the tapping head 9 is almost attached to the bone. The contact is made from a right angle direction. A pulse current is supplied to the solenoid plunger 7 from a control device 10 which also functions as a power supply device, and the strength and speed of tapping can be appropriately adjusted depending on the strength and frequency of the pulse current.

【0015】図5は伝導波4を拾う受波器3の一例を示
しており、受波器は骨1からの伝導波を拾って電気信号
に変換する加速度ピックアップ11を先端に備え、この
電気信号を信号線12を介して高速フーリエ変換器に送
るものとしてある。
FIG. 5 shows an example of the wave receiver 3 for picking up the conduction wave 4. The wave receiver is provided with an acceleration pickup 11 for picking up the conduction wave from the bone 1 and converting it into an electric signal. The signal is sent to the fast Fourier transformer via the signal line 12.

【0016】なお、伝導波を正確に捉えるには受波器3
の加速度ピックアップ11を骨に対してほぼ直角方向か
ら一定の圧力(0.2〜3.0kg/cm2 )で皮膚に
当接させる必要があるので、受波器3は加速度ピックア
ップ11を伸縮性を有するベルトや割りばね等によって
挟圧力を付されたクランプの挟持片等に設けて被測定部
位に装着できるようにすればより精度の高い診断を行う
ことができる。
In order to accurately capture the conduction wave, the wave receiver 3
Since it is necessary to bring the accelerometer 11 of FIG. 1 into contact with the skin from a direction substantially perpendicular to the bone with a constant pressure (0.2 to 3.0 kg / cm 2), the wave receiver 3 stretches the accelerometer 11. A more accurate diagnosis can be carried out by providing the clamp on a clamping piece or the like that is clamped by a belt or a split spring, which is provided, so that the clamp can be mounted on the measurement site.

【0017】高速フーリエ変換器5は高速フーリエ解析
により伝導波の周波数分布を分析するものとしてあり、
受波器3から送られる信号を周波数分布データに変換
し、信号線13を介してマイクロプロセッサ6へ出力す
る。
The fast Fourier transformer 5 is for analyzing the frequency distribution of the conduction wave by fast Fourier analysis.
The signal sent from the wave receiver 3 is converted into frequency distribution data and output to the microprocessor 6 via the signal line 13.

【0018】マイクロプロセッサ6は高速フーリエ変換
器5から出力された周波数分布データから、ピーク周波
数を判別してその平均値を求め、予め入力された被測定
者の年齢、性別、体重等の個人データに応じた基準値と
の比較による診断を行うものとしてあり、診断結果をC
RTで表示したり、マイクロプロセッサ7に接続された
プリンタ14等の出力装置からプリントアウトできるよ
うにしてある。
The microprocessor 6 discriminates the peak frequency from the frequency distribution data output from the fast Fourier transformer 5 and obtains an average value thereof, and personal data such as the age, sex, and weight of the person to be measured inputted in advance. The diagnosis result is compared with the reference value according to
It can be displayed at RT or printed out from an output device such as the printer 14 connected to the microprocessor 7.

【0019】また、マイクロプロセッサ6には患者の履
歴データや健常者のデータ等を予めデータベース化して
おき、得られたデータとデータベースに蓄積されている
データとを比較したり、また診断結果に応じた食事や運
動等のアドバイスを蓄積しておき、診断結果とともに出
力する。
Further, in the microprocessor 6, the historical data of the patient, the data of the healthy person, and the like are made into a database in advance, and the obtained data is compared with the data accumulated in the database, or the diagnosis result is determined. Accumulate advice such as meals and exercise, and output it together with the diagnosis result.

【0020】上述のように構成した本発明の装置は次の
ように使用する。被測定者の年齢、性別、体重等の個人
データをマイクロプロセッサ6に入力し、叩打器2およ
び受波器3を、骨が体表面から比較的浅位にある部位、
例えば椎骨の棘突起や脛骨の前縁どうし、あるいは前腕
遠位端の橈骨および尺骨の各茎状突起または踵骨の内外
側等へ皮膚の上から骨に対してほぼ直角となるように当
て、手で保持するかあるいは適宜ベルトやクランプ等で
固定する。
The device of the present invention constructed as described above is used as follows. Personal data such as the age, sex, and weight of the person to be measured are input to the microprocessor 6, and the tapping device 2 and the wave receiver 3 are connected to the bone where the bone is relatively shallow from the body surface.
For example, the spinous processes of the vertebrae, the anterior edges of the tibia, or the radial and ulnar pedicles of the forearm distal end or the medial and lateral sides of the calcaneus, etc. are applied from above the skin almost at right angles to the bone, Hold it by hand, or fix it with a belt or clamp as appropriate.

【0021】なお、受波器3は前述したように皮膚へ一
定の圧力で当接させる必要があるので、ベルトやクラン
プで固定する場合にはそれぞれ伸縮性を有する素材のも
のや、割りばね等によって挟圧力を付されたものを使用
し、加速度ピックアップ11が上述の圧力範囲で皮膚へ
押し付けられるようにする。
Since the wave receiver 3 needs to be brought into contact with the skin at a constant pressure as described above, when it is fixed by a belt or a clamp, it is made of an elastic material, a split spring, or the like. The clamping force is applied to the accelerometer 11 so that the accelerometer 11 is pressed against the skin in the above pressure range.

【0022】叩打器2におけるガイド2aの下端縁を被
測定部位の皮膚に密着させ、タッピングヘッド9が骨に
対して直角方向から当たるようにし、叩打器を駆動させ
て骨1に適宜回数の衝撃を与える。受波器3の加速度ピ
ックアップ11が伝導波4を拾うと、高速フーリエ変換
器5で伝導波の周波数分布が分析され、周波数分布デー
タがマイクロプロセッサ6に送られる。
The lower end edge of the guide 2a of the beating tool 2 is brought into close contact with the skin of the site to be measured so that the tapping head 9 hits the bone in a direction perpendicular to the bone, and the beating machine is driven to give an appropriate number of impacts to the bone 1. give. When the acceleration pickup 11 of the wave receiver 3 picks up the conduction wave 4, the fast Fourier transformer 5 analyzes the frequency distribution of the conduction wave and sends the frequency distribution data to the microprocessor 6.

【0023】マイクロプロセッサ6では複数の周波数分
布データからピーク周波数を判別してその平均値を求
め、この値から骨密度の演算および被測定者の年齢、性
別、体重等の個人データに応じた基準値データとの比較
による診断が行われ、プリンタ14から診断結果が出力
される。
The microprocessor 6 discriminates the peak frequency from a plurality of frequency distribution data and obtains an average value thereof, and calculates the bone density from this value and a standard corresponding to personal data such as age, sex and weight of the subject. Diagnosis is performed by comparison with the value data, and the diagnosis result is output from the printer 14.

【0024】なお、マイクロプロセッサ6では前述した
ピークの周波数平均値を求める際、ピーク周波数のばら
つきが大きい場合には叩打器や受波器の取り付けが不良
であるとして、例えばマイクロプロセッサのCRTから
取り付け不良の警告表示あるいは警告音等を出力し再測
定を促すようにしてある。
In the microprocessor 6, when the average frequency value of the peaks described above is obtained, if the variation in the peak frequency is large, it is determined that the tapping device or the wave receiver is not properly attached, and the microprocessor 6 is attached from the CRT, for example. A defective warning display or warning sound is output to prompt remeasurement.

【0025】[0025]

【発明の効果】本発明に係る骨粗鬆症診断装置は上述し
た構成のものとしてあるので、次の効果を奏し得る。叩
打器および受波器を皮膚の上から当てて骨に軽い衝撃を
与えるだけで、苦痛を伴わず、しかも放射線等を使用し
ないので、放射線被爆の恐れも全くなく、無侵襲な診断
を行うことができる。
Since the osteoporosis diagnostic apparatus according to the present invention has the above-mentioned configuration, the following effects can be obtained. Just hit the beater and wave receiver from above the skin and give a slight impact to the bone without causing any pain and without using radiation etc. You can

【0026】また、従来のように画像を診断するのでは
なく骨密度を数値として出力することができ、基準デー
タや被測定者の履歴データとの比較診断が容易である。
さらに、装置構成が簡便で低コストなので、血圧測定器
等のようにスポーツジムや家庭等への導入が容易であ
る。
Further, the bone density can be output as a numerical value instead of diagnosing an image as in the conventional case, and comparison diagnosis with reference data and history data of a person to be measured is easy.
Furthermore, since the device configuration is simple and low cost, it can be easily introduced into a sports gym, home, etc. like a blood pressure measuring instrument.

【0027】したがって、定期的な反復測定が可能で骨
粗鬆症を早期に発見することができ、骨粗鬆症の早期治
療および予防ができる。
Therefore, it is possible to detect the osteoporosis at an early stage by carrying out the periodic repeated measurement, and it is possible to treat and prevent the osteoporosis at an early stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る装置の原理を示す図。FIG. 1 is a diagram showing the principle of an apparatus according to the present invention.

【図2】伝導波の周波数分布を示すグラフ。FIG. 2 is a graph showing the frequency distribution of a conducted wave.

【図3】本発明に係る装置の構成図。FIG. 3 is a configuration diagram of an apparatus according to the present invention.

【図4】叩打器の一例を示す縦断面図。FIG. 4 is a vertical cross-sectional view showing an example of a beating device.

【図5】受波器の一例を示す正面図。FIG. 5 is a front view showing an example of a wave receiver.

【符号の説明】[Explanation of symbols]

1 骨 2 叩打器 3 受波器 4 伝導波 5 高速フーリエ変換器 6 マイクロプロセッサ 7 ソレノイドプランジャ 8 プランジャロッド 9 タッピングヘッド 10 制御装置 11 加速度ピックアップ 12、13 信号線 14 プリンタ DESCRIPTION OF SYMBOLS 1 Bone 2 Striker 3 Wave receiver 4 Conductive wave 5 Fast Fourier transformer 6 Microprocessor 7 Solenoid plunger 8 Plunger rod 9 Tapping head 10 Controller 11 Accelerometer 12, 13 Signal line 14 Printer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a) 被測定者の皮膚を叩打して骨に対して
直角方向から一定の強さおよび時間的間隔で衝撃を与え
るタッピングヘッドを備える叩打器 (b) 前記衝撃により骨を伝播する伝導波を皮膚の上から
受波し、電気信号に変換する受波器 (c) 受波器からの電気信号を分析して前記伝導波の周波
数分布データを出力する高速フーリエ変換器 (d) 前記伝導波の周波数分布データから伝導波のピーク
周波数を判別して骨密度を演算するマイクロプロセッサ 上記(a) 〜(d) 構成よりなる骨粗鬆症診断装置。
1. A tapping device comprising: (a) a tapping head that taps the skin of a person to be measured to give a shock to the bone at a constant strength and at a time interval from a direction perpendicular to the bone. Receiver that receives the propagated conduction wave from above the skin and converts it to an electrical signal (c) Fast Fourier transformer that analyzes the electrical signal from the receiver and outputs the frequency distribution data of the conduction wave ( d) Microprocessor for calculating the bone density by discriminating the peak frequency of the conduction wave from the frequency distribution data of the conduction wave. The osteoporosis diagnostic device having the above configurations (a) to (d).
JP14402194A 1994-06-02 1994-06-02 Osteoporosis diagnostic device Pending JPH07328010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14402194A JPH07328010A (en) 1994-06-02 1994-06-02 Osteoporosis diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14402194A JPH07328010A (en) 1994-06-02 1994-06-02 Osteoporosis diagnostic device

Publications (1)

Publication Number Publication Date
JPH07328010A true JPH07328010A (en) 1995-12-19

Family

ID=15352489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14402194A Pending JPH07328010A (en) 1994-06-02 1994-06-02 Osteoporosis diagnostic device

Country Status (1)

Country Link
JP (1) JPH07328010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193227A (en) * 2013-03-29 2014-10-09 Parama Tec:Kk Sphygmomanometry apparatus capable of estimating bone strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193227A (en) * 2013-03-29 2014-10-09 Parama Tec:Kk Sphygmomanometry apparatus capable of estimating bone strength

Similar Documents

Publication Publication Date Title
US5836876A (en) Method and apparatus for determining bone density and diagnosing osteoporosis
US6796985B2 (en) Method for drilling bone, in particular for setting a pedicle screw, equipment, instrument and control device for implementing said method
JPH10505519A (en) Structural analyzer especially suitable for medical implants
US5143087A (en) Analysis and treatment of swallowing dysfunction
US5239997A (en) Diagnostic apparatus utilizing low frequency sound waves
US20070038152A1 (en) Tactile breast imager and method for use
JPH07270385A (en) Ultrasonic measuring system for determining structure and density of bone and diagnostic method for determining structure and density of bone
WO1999025242A1 (en) Pulse wave detection method, artery position detection method and pulse wave detection apparatus
US20020133097A1 (en) Contour mapping system applicable as a spine analyzer, and probe useful therein
US6918763B2 (en) Apparatus for detecting the stability of a tooth in the gum or an implant in the body
GB2257253A (en) Ultrasound bone analyser
JP2008036248A (en) Vertebral pedicular arch probe navigation system and navigation method
US20170181688A1 (en) System and methods for dynamic bone structure interaction
Singh et al. Role of natural frequency of bone as a guide for detection of bone fracture healing
US11213207B2 (en) Device and method using damped harmonic analysis for automated pulmonary and abdominal examination
US9615814B2 (en) Ultrasonic bone assessment apparatus and method
JPH07328010A (en) Osteoporosis diagnostic device
JP4171121B2 (en) Bone strength measuring method and apparatus
CN107242894B (en) Positioning device for assisting pedicle screw perforation
Glinkowski et al. Clinical experiences with ultrasonometric measurement of fracture healing
US20080146927A1 (en) Ultrasonic bone assessment apparatus and method
KR101781896B1 (en) Handheld bone mineral density measurement device using phalanges
US7201721B2 (en) Measuring tissue mobility
CN109171657A (en) Kneecap health status real-time perception and diagnostic system
US5458118A (en) Quantitative neural percussion hammer