JPH073272B2 - Valve assembly for controlling liquid flow - Google Patents

Valve assembly for controlling liquid flow

Info

Publication number
JPH073272B2
JPH073272B2 JP15849085A JP15849085A JPH073272B2 JP H073272 B2 JPH073272 B2 JP H073272B2 JP 15849085 A JP15849085 A JP 15849085A JP 15849085 A JP15849085 A JP 15849085A JP H073272 B2 JPH073272 B2 JP H073272B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
flow
main
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15849085A
Other languages
Japanese (ja)
Other versions
JPS6220976A (en
Inventor
リアントニオ ビト
Original Assignee
タ−ゲツト ロツク コ−ポレイシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タ−ゲツト ロツク コ−ポレイシヨン filed Critical タ−ゲツト ロツク コ−ポレイシヨン
Priority to JP15849085A priority Critical patent/JPH073272B2/en
Publication of JPS6220976A publication Critical patent/JPS6220976A/en
Publication of JPH073272B2 publication Critical patent/JPH073272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体流を制御する弁に関し、殊にキャビテーシ
ョン防止手段を備えた弁装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a valve for controlling a liquid flow, and more particularly to a valve device having cavitation preventing means.

〔従来技術〕[Prior art]

従来からソレノイドで作動するパイロット弁等において
は、該弁をガスを抜いていない液体に使用した場合にキ
ャビテーションと呼ばれる現象が発生する。キャビテー
ションは液体が急激に流れて部分的に気泡(この気泡は
後につぶれる)を作るような場合に発生する。このよう
な急激な流れは液圧が蒸気圧以下に低下した時に起り、
又気泡の崩壊は液圧が蒸気圧以上に戻った時に起る。キ
ャビテーションが発生すると、流体機械の効率を低下す
る丈でなく腐食、騒音を発生し又液体の流れを妨げる。
弁装置において開放した弁の周りで液圧が蒸気圧よりも
低下するような急激な圧力低下を生じてキャビテーショ
ンを起すことが知られている。又キャビテーションは殊
に537℃(1000゜F)及び700kg/cm2(10,000p.s.i)以上
でかつ頻繁に開閉を繰返えすソレノイドで作動するパイ
ロット弁の場合に起り易い。
Conventionally, in a pilot valve or the like operated by a solenoid, a phenomenon called cavitation occurs when the valve is used for a liquid that is not degassed. Cavitation occurs when the liquid rapidly flows and partially creates bubbles (the bubbles later collapse). Such a sudden flow occurs when the liquid pressure drops below the vapor pressure,
Further, the collapse of bubbles occurs when the liquid pressure returns to the vapor pressure or more. When cavitation occurs, it lowers the efficiency of the fluid machine and causes corrosion, noise, and impedes the flow of liquid.
It is known that in a valve device, cavitation occurs by causing a rapid pressure drop such that a liquid pressure becomes lower than a vapor pressure around an opened valve. Further, cavitation is likely to occur especially in the case of a pilot valve operated by a solenoid that repeatedly opens and closes at 537 ° C (1000 ° F) and 700 kg / cm 2 (10,000 psi) or more.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ソレノイドで作動するパイロット弁においてキャビテー
ションをなくすことは、このようなパイロット弁は通常
の切換弁に比較して移動距離が極めて小さいので困難で
ある。この望ましくないキャビテーション現象は本発明
の弁装置によって実質的に除去することができる。本発
明の目的は、キャビテーションを実質的に除去した液体
流制御用弁装置を提供することである。本発明の別の目
的は従来の公知の液体流制御用弁装置よりも腐食を受け
ることが少なくかつ作動時の騒音の少ない液体流制御用
弁装置を提供することである。本発明の又別の目的は液
体が比較的自由に流れる液体流制御用弁装置を提供する
ことである。
Eliminating cavitation in solenoid operated pilot valves is difficult because such pilot valves have an extremely small travel distance compared to conventional switching valves. This unwanted cavitation phenomenon can be substantially eliminated by the valve device of the present invention. It is an object of the present invention to provide a liquid flow control valve device which is substantially free of cavitation. Another object of the present invention is to provide a liquid flow control valve device that is less susceptible to corrosion and less noisy during operation than conventional known liquid flow control valve devices. Yet another object of the present invention is to provide a valve device for liquid flow control in which liquid flows relatively freely.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成する本発明は液体流制御用弁装置であ
って、その広い概念では、液体源に連通した流入口と、
弁装置から液体を排出する流出口とを有し、また上記流
入口と流出口間に設けられた少なくとも一つの弁座を有
する。弁体内には可動弁部材が設けられて、上記可動弁
部材は上記流入口から流出口に至る液体の流れを阻止す
べく上記弁座に着座した位置から上記弁座から離隔した
全開位置間に亘って往復移動して流入口から流出口に液
体を流す。上記流入口と弁座間には開口手段が設けられ
ていて、該開口手段は可動弁部材と協同して上記可動弁
部材と弁座間の可変流路に正比例した可変液体流路絞り
を構成する。
The present invention for achieving the above object is a valve device for liquid flow control, and in its broad concept, an inlet communicating with a liquid source,
An outlet for discharging the liquid from the valve device, and at least one valve seat provided between the inlet and the outlet. A movable valve member is provided in the valve body, and the movable valve member is provided between a position at which the movable valve member is seated on the valve seat and a fully open position at which the liquid valve member is separated from the valve seat so as to prevent the liquid from flowing from the inflow port to the outflow port. The liquid reciprocates over and the liquid flows from the inflow port to the outflow port. An opening means is provided between the inflow port and the valve seat, and the opening means cooperates with the movable valve member to form a variable liquid flow path throttle that is directly proportional to the variable flow path between the movable valve member and the valve seat.

本発明の狭い概念では、開口手段は、弁座に対して離隔
接近状に往復移動する可動弁部材を内部に有し、又円周
方向に間隔をあけた複数の孔を有する静止状スリーブを
含む。開口手段の流路断面積は弁座に対して離隔接近す
る可動弁部材の位置に従って寸法が変化する。上記開口
手段は又弁体上であって弁座の下流に配設された孔と、
弁座を超して上記孔内に突出該孔に対して摺動移動が可
能な可動弁部材の延出部とを備える。可動弁部材の延出
部は、上記孔の端部と延出部間に少なくとも一つの第2
の開口が形成されるような構造になっていて、上記可動
弁部材が弁座から離隔する距離に正比例して流体流路の
寸法を変化するようになっている。第1、第2開口手段
は可動弁部材及び弁座と協同して連続した比較的小量の
圧力低下を起し、夫々の開口手段において弁体の流入口
における液体の蒸発圧以下に液圧が低下するのを防止す
る。従って上記によってキャビテーション現象発生の可
能性を減少させることができる。
In a narrow concept of the invention, the opening means comprises a stationary sleeve having a movable valve member therein which reciprocates in a spaced-apart and close manner relative to the valve seat, and having a plurality of circumferentially spaced holes. Including. The flow passage cross-sectional area of the opening means varies in size according to the position of the movable valve member that is spaced apart from and close to the valve seat. The opening means also includes a hole disposed on the valve body and downstream of the valve seat;
A movable valve member extending beyond the valve seat into the hole and slidably movable with respect to the hole. The extending portion of the movable valve member has at least one second portion between the end portion of the hole and the extending portion.
Is formed so that the size of the fluid flow passage is changed in direct proportion to the distance at which the movable valve member is separated from the valve seat. The first and second opening means cooperate with the movable valve member and the valve seat to cause a continuous and relatively small amount of pressure drop, and in each opening means, the hydraulic pressure is equal to or lower than the evaporation pressure of the liquid at the inlet of the valve body. To prevent the drop. Therefore, the above can reduce the possibility of occurrence of the cavitation phenomenon.

本発明の特徴は、可動弁部材が、静止状スリーブ内を摺
動可能なディスク状体であって、第1、第2の縮径部分
を備えることである。第1縮径部分は弁座に着座するよ
うに形成され、又第2縮径部の直径方向の溝を形成して
該第2縮径部が摺動状に嵌合する孔の端部と協同して流
入口から流出口に向って流れる液体の順次の圧力低下部
の最終部に対する可変開口を形成する。
A feature of the present invention is that the movable valve member is a disk-shaped body that is slidable in the stationary sleeve, and has first and second reduced diameter portions. The first reduced diameter portion is formed so as to be seated on the valve seat, and a diametrical groove of the second reduced diameter portion is formed to form an end portion of a hole into which the second reduced diameter portion is slidably fitted. Together they form a variable opening to the end of the sequential pressure drop of the liquid flowing from the inlet towards the outlet.

本発明の実施例において、静止状スリーブが、つる巻ば
ねを配設すべき環状空間から形成するようにディスク状
体の第1縮径部分から間隔をあけて形成され、該つる巻
ばねのコイル間の隙間によって可変液体流路の複数の絞
り部を形成する。つる巻ばねはディスク状体に接触して
いて、該ディスク状体が移移動するとコイル間の隙間が
変化するように形成されている。従ってディスク状体の
第1縮径部が、弁座に着座した位置からの距離を変化す
るとその距離に正比例して平行の複数の開口が流路断面
積を変化することになる。
In an embodiment of the invention, a stationary sleeve is formed spaced apart from the first reduced diameter portion of the disk-shaped body to form an annular space in which the helical spring is to be placed, the coil of the helical spring being A plurality of narrowed portions of the variable liquid flow path are formed by the gaps therebetween. The spiral spring is in contact with the disk-shaped body, and is formed so that the gap between the coils changes when the disk-shaped body moves. Therefore, when the distance from the position where the first reduced diameter portion of the disk-shaped member is seated on the valve seat changes, the plurality of parallel openings change the flow passage cross-sectional area in direct proportion to the distance.

〔実施例〕〔Example〕

以下添付図面について本発明を詳細に説明する。 The present invention will be described in detail below with reference to the accompanying drawings.

殊に第1図及び第2図に示すように、符号10は本発明の
第1実施例にかかる弁装置を全体的に示すものである。
本明細書では弁装置10をソレノイドで作動する調節型液
流制御用パイロット弁について説明する。本発明は殊に
ソレノイドで作動する調節弁に適したものであるが、必
らずしもそれに限定されるものではない。
In particular, as shown in FIGS. 1 and 2, reference numeral 10 generally indicates a valve device according to the first embodiment of the present invention.
In the present specification, a pilot valve for adjusting type liquid flow control in which the valve device 10 is operated by a solenoid will be described. The present invention is particularly, but not necessarily, suitable for solenoid operated control valves.

従って以下本発明をソレノイドで作動する調節型液流制
御用パイロット弁について説明するが、本発明は、多く
の液流制御弁、殊に高温・高圧の液体であってかつ弁の
移動距離が僅小の制御用弁に、本発明の範囲及び精神か
ら外れることなく適用できるものである。
Accordingly, the present invention will be described below with reference to a solenoid-operated pilot valve for controlling a regulated liquid flow. However, the present invention is applicable to many liquid flow control valves, especially for high-temperature and high-pressure liquids having a small valve travel distance. It is applicable to small control valves without departing from the scope and spirit of the invention.

第1図及び第2図に示す弁装置は、流体流路14が形成さ
れた弁体12を含み、該液体流路14の一端には流入口16
が、又反対側の他端には流出口18が設けられている。流
入口16と流出口18間の液体流路14内に主弁座20が設けら
れている。主弁座20よりも上流の液体流路14の部分を流
入流路14aと称し、下流の液体流路の部分を流出流路14b
と称す。弁部材22(主ディスクとも呼ばれる)が弁体12
内で往復運動するように設けられていて、該主弁部材22
が弁座20に当接することによって液体が液体流路14内を
流れることを阻止し、又該主弁部材22が弁座20から最大
間隔をあけることによって液体流路14を全開にする。本
弁装置10はソレノイドで作動する調節型式の弁なので、
主弁部材22の孔内にはパイロット弁24が往復運動するよ
うに設けられている。電磁石装置27がボンネット装置28
上に支持されている。該ボンネット装置28は弁体12に一
体的に接続している。通常ボンネット装置28は、弁体12
の円筒状部分34の開口端部32に位置した非磁性体の長い
筒状部材30を備え、該円筒状部分34は、流路14が貫通す
る弁部分に対してある角度を有して延びている。筒状部
材30は、弁座20から間隔をあけかつ弁座20と共軸状に円
筒部分34内に設けられている。
The valve device shown in FIGS. 1 and 2 includes a valve body 12 in which a fluid channel 14 is formed, and an inlet 16 is provided at one end of the liquid channel 14.
However, an outflow port 18 is provided at the other end on the opposite side. A main valve seat 20 is provided in the liquid flow path 14 between the inflow port 16 and the outflow port 18. A portion of the liquid flow passage 14 upstream of the main valve seat 20 is referred to as an inflow passage 14a, and a portion of the liquid flow passage downstream of the main valve seat 20 is an outflow passage 14b.
Called. The valve member 22 (also called the main disc) is the valve body 12
Is provided for reciprocating movement within the main valve member 22
Abutting against the valve seat 20 prevents the liquid from flowing in the liquid flow passage 14, and the main valve member 22 makes a maximum distance from the valve seat 20 to fully open the liquid flow passage 14. Since this valve device 10 is a solenoid operated valve,
A pilot valve 24 is provided in the hole of the main valve member 22 so as to reciprocate. Electromagnet device 27 is bonnet device 28
Supported above. The bonnet device 28 is integrally connected to the valve body 12. Normally, the bonnet device 28 has a valve body 12
A long non-magnetic tubular member 30 positioned at the open end 32 of the cylindrical portion 34 of the cylindrical portion 34, the cylindrical portion 34 extending at an angle to the valve portion through which the flow passage 14 extends. ing. The tubular member 30 is provided in the cylindrical portion 34 so as to be spaced from the valve seat 20 and coaxial with the valve seat 20.

弁装置10の作動に当って、供給源(図示せず)から流入
口16を介して流路14に供給された液体は、小孔流路25及
び26を通って弁内に入りパイロット弁24及び主弁部材22
の全表面に流入圧力を及ぼす。ばね42及び戻しばね44に
よって図示の閉止位置に向けてパイロット弁24及び主弁
部材22を付勢する。主弁部材22を開放したい場合には適
宜電気動力源(図示せず)により電磁石装置27を付勢す
る。この付勢により発生した磁束によって戻しばね44の
力に抗してアーマチュア38を軸線方向に移動させる。上
記の戻しばね44の付勢力に抗したアーマチュア38の軸線
方向の移動は主弁部材22に何等の影響を及ぼさないでパ
イロット弁24を弁座から離す。これはピン48とこれに協
同する溝孔46間及びアーマチュアのピン49とこれに協同
する溝孔50間に夫々遊びが設けられているためである。
引続いた電磁石装置の付勢及びアーマチュアの軸線方向
の移動により主弁部材22は、該弁部材に亘っての圧力差
により全開位置に離される。上記の主弁部材22に亘って
圧力差は、弁内部と流出口18とを連通したパイロット弁
24の開放により発生し、弁座20と向う方向に主弁部材22
に作用する液体圧力が弁座20に向うにつれて減少する。
従って静止状スリーブ56の小孔流路25を介して面52に作
用する液圧と、主弁部材22の反対向きの面に作用する液
圧の合力が主弁部材22に該主弁部材を弁座から離す方向
に作用する。主弁部材22に亘って液圧が一度平衡状態に
なると流入流路又は流出流路における液圧変化によって
主弁部材22に亘って圧力差を生じ、そのような圧力差に
応答した移動を起す。弁座20を通って流出流路14bに流
れる液体中における大きく急激な圧力低下、その結果を
生ずるキャビテーションの発生は、以下に詳細に述べる
本発明の弁装置10によって防止される。
Upon operation of the valve device 10, the liquid supplied from the supply source (not shown) to the flow path 14 through the inflow port 16 enters the valve through the small hole flow paths 25 and 26 and the pilot valve 24. And main valve member 22
Exerts inflow pressure on all surfaces of. The spring 42 and the return spring 44 urge the pilot valve 24 and the main valve member 22 toward the closed position shown. When it is desired to open the main valve member 22, the electromagnet device 27 is appropriately biased by an electric power source (not shown). The magnetic flux generated by this bias moves the armature 38 in the axial direction against the force of the return spring 44. The axial movement of the armature 38 against the biasing force of the return spring 44 causes the pilot valve 24 to move away from the valve seat without affecting the main valve member 22. This is because there is play between the pin 48 and its associated slot 46 and between the armature pin 49 and its associated slot 50, respectively.
Due to the subsequent biasing of the electromagnet device and the axial movement of the armature, the main valve member 22 is moved to the fully open position due to the pressure difference across the valve member. The pressure difference across the main valve member 22 is due to the pilot valve connecting the inside of the valve with the outlet 18.
It is generated by opening 24, and the main valve member 22
The liquid pressure acting on the valve decreases as it moves toward the valve seat 20.
Therefore, the resultant force of the hydraulic pressure acting on the surface 52 through the small hole passage 25 of the stationary sleeve 56 and the hydraulic pressure acting on the opposite surface of the main valve member 22 causes the main valve member 22 to move the main valve member. Acts away from the valve seat. Once the hydraulic pressure across the main valve member 22 reaches an equilibrium state, a pressure difference is generated across the main valve member 22 due to a change in hydraulic pressure in the inflow passage or the outflow passage, and movement in response to such a pressure difference occurs. . Large and sudden pressure drops in the liquid flowing through the valve seat 20 into the outflow passage 14b and the resulting cavitation are prevented by the valve device 10 of the present invention, which is described in detail below.

図2図に示すように、弁装置10の主弁部材22は円柱状部
58と、第1縮径部60と、第2縮径部62とを備え、該第2
縮径部の端部は弁座20に着座するのに適した形状・寸法
に形成されている。主弁部材22は又第3縮径部64と拡径
端部66とを備える。筒状部材30の開口端部32と弁座20間
に配設された静止状スリーブ56は、主弁部材22の部分5
8,60の外周面が該スリーブ56の内周面を摺動するような
寸法に形成されている。弁装置10の弁体12に適宜の手段
で取付けたリング部材68の内縁に沿って弁座20が形成さ
れている。リング部材68の内面には大径環状内面を有す
る凹孔部70を縮径した環状内面74が形成される。環状内
面74は主弁部材22の拡径端部66の外周面に摺動状に係合
する。第2及び第3縮径部62,64、拡径端部66及び凹孔
部70の環状内面で環状の第2流入室76を画定する。主弁
部材22の拡径端部66には直径方向の溝78が形成されてい
る。この溝78は環状内面74の上端縁部80と協同して、第
2流入室76を流出流路14bに連通した可変変流れ断面積
のオリフィスを画定する。
As shown in FIG. 2, the main valve member 22 of the valve device 10 has a cylindrical portion.
58, a first reduced diameter portion 60, and a second reduced diameter portion 62,
The end of the reduced diameter portion is formed in a shape and size suitable for seating on the valve seat 20. The main valve member 22 also includes a third reduced diameter portion 64 and an enlarged diameter end portion 66. The stationary sleeve 56 disposed between the open end 32 of the tubular member 30 and the valve seat 20 serves as the portion 5 of the main valve member 22.
The outer peripheral surfaces of 8, 60 are formed so as to slide on the inner peripheral surface of the sleeve 56. The valve seat 20 is formed along the inner edge of the ring member 68 attached to the valve body 12 of the valve device 10 by appropriate means. An annular inner surface 74 is formed on the inner surface of the ring member 68 by reducing the diameter of the concave hole portion 70 having a large-diameter annular inner surface. The annular inner surface 74 slidably engages with the outer peripheral surface of the enlarged diameter end portion 66 of the main valve member 22. An annular second inflow chamber 76 is defined by the annular inner surfaces of the second and third reduced diameter portions 62, 64, the enlarged diameter end portion 66 and the recessed hole portion 70. A diametrical groove 78 is formed in the enlarged diameter end 66 of the main valve member 22. The groove 78 cooperates with the upper edge 80 of the annular inner surface 74 to define an orifice of variable variable flow cross-section that connects the second inflow chamber 76 to the outflow passage 14b.

静止状スリーブ56は縮径端部82を備え、該縮径端部82の
内周面は主弁部材22の第1縮径部60に摺動状に係合す
る。第1縮径部60と静止状スリーブ56間の空間をO−リ
ング81でシールし、主弁部材22の部分58と静止状スリー
ブ56との対向面をO−リング83でシールする。縮径端部
82には円周方向に間隔をあけて複数の孔84を設ける。こ
れらの孔84は主弁部材22の第1縮径端部60と協同して、
流入流路14aをスリーブ56の縮径端部82、リング部材68
及び主弁部材22の第1、第2縮径部60,62とによって構
成した環状空間88に連通する。
The stationary sleeve 56 includes a reduced diameter end portion 82, the inner peripheral surface of which is slidably engaged with the first reduced diameter portion 60 of the main valve member 22. The space between the first reduced diameter portion 60 and the stationary sleeve 56 is sealed with an O-ring 81, and the facing surface between the portion 58 of the main valve member 22 and the stationary sleeve 56 is sealed with an O-ring 83. Reduced end
A plurality of holes 84 are provided in 82 at intervals in the circumferential direction. These holes 84 cooperate with the first reduced diameter end 60 of the main valve member 22,
The inflow passage 14a is connected to the reduced diameter end portion 82 of the sleeve 56 and the ring member 68.
And the annular space 88 formed by the first and second reduced diameter portions 60, 62 of the main valve member 22.

作動に当って、孔84と主弁部材22の端縁部86とで形成さ
れたオリフィスは弁座20の上流における第1の可変流量
絞りの作用をし、溝78と端縁部80とで形成されたオリフ
ィスは弁座下流における第2の可変流量絞りの作用をす
る。第1及び第2の可変流量絞り装置が、流入流路14a
から流出流路14bに至る液体の所定の全圧力低下に関連
して寸法を定めているので、夫々の第1及び第2の可変
流量絞り装置において液圧を蒸気圧より低下することな
く圧力低下させることができ、従ってキャビテーション
現象を防止することができる。第1、第2可変流量絞り
装置における絞り断面積は、弁座20に接近、離隔する主
弁部材22の移動に正比例する。従って弁装置10は流入流
路14aと流出流路14bにおける液体間の圧力差を変えてキ
ャビテーションを防止する。
In operation, the orifice formed by the hole 84 and the edge portion 86 of the main valve member 22 acts as a first variable flow restrictor upstream of the valve seat 20, with the groove 78 and the edge portion 80. The formed orifice acts as a second variable flow restrictor downstream of the valve seat. The first and second variable flow restrictors are used for the inflow passage 14a.
Since the dimensions are determined in relation to the predetermined total pressure drop of the liquid from the outlet flow passage 14b to the outflow passage 14b, the pressure drop can be achieved without lowering the liquid pressure below the vapor pressure in each of the first and second variable flow restrictors. Therefore, the cavitation phenomenon can be prevented. The throttle cross-sectional areas in the first and second variable flow throttle devices are directly proportional to the movement of the main valve member 22 that approaches and separates from the valve seat 20. Therefore, the valve device 10 changes the pressure difference between the liquids in the inflow passage 14a and the outflow passage 14b to prevent cavitation.

第3図は本発明の弁装置の第2実施例を示す。弁装置90
は、第1実施例の弁装置10に述べた主弁部材22の第1縮
径部60と孔84とを協同作用の代りにつる巻状に捲回した
ばね92によって第1の可変流量絞り装置を形成した点の
みが本質的に異なっている。従って弁装置10の部品に相
似の弁装置90の部品は同一の符号にAを付けて示してい
る。
FIG. 3 shows a second embodiment of the valve device of the present invention. Valve device 90
The first variable flow restrictor is formed by a spring 92 in which the first reduced diameter portion 60 and the hole 84 of the main valve member 22 described in the valve device 10 of the first embodiment are wound in a spiral shape instead of the cooperative action. The only difference is that the device is formed. Therefore, parts of the valve device 90 that are similar to parts of the valve device 10 are designated by the same reference numerals with an A attached.

第3図に示すように静止状スリーブ56Aは静止状スリー
ブ56の如き縮径端部82を備えず、ほぼ一様な直径に形成
されていて静止状スリーブ56Aの内周面と第1縮径部60A
の外周部間に環状空間94を形成している。環状空間94内
には好ましくは角形断面のつる巻ばね92が配設されてい
る。主弁部材22が全開及び全閉位置間に亘って移動する
と隣接したばねコイル間の隙間は主弁部材22Aの移動に
正比例した移動をする。隙間96は孔84Aを介して、ばね9
2のコイルの内周面と主弁部材22Aの第1縮径部60A及び
環状空間88Aとの間に形成された環状空間94内の領域と
流入流路14aAとを連通する可変流量絞り装置の働らきを
する。
As shown in FIG. 3, the stationary sleeve 56A does not have a diameter-reducing end portion 82 unlike the stationary sleeve 56, but is formed to have a substantially uniform diameter, and the inner peripheral surface of the stationary sleeve 56A and the first diameter reduction. Part 60A
An annular space 94 is formed between the outer peripheral portions of the. A helical spring 92, preferably of rectangular cross section, is arranged in the annular space 94. When the main valve member 22 moves between the fully open and fully closed positions, the gap between the adjacent spring coils moves in direct proportion to the movement of the main valve member 22A. The gap 96 is connected to the spring 9 through the hole 84A.
Of the variable flow restrictor that communicates the area inside the annular space 94 formed between the inner peripheral surface of the second coil and the first reduced diameter portion 60A of the main valve member 22A and the annular space 88A with the inflow passage 14aA. Work hard.

弁装置90は弁装置10と同様に作動して、流入流路14aAと
流出流路14bA間の液体流の圧力低下を連続的に制御し、
弁座20Aにおいて蒸気圧以下に低下せしめないのでキャ
ビテーションの発生を除去するものである。
The valve device 90 operates similarly to the valve device 10, and continuously controls the pressure drop of the liquid flow between the inflow passage 14aA and the outflow passage 14bA,
Cavitation is eliminated because the vapor pressure does not drop below the vapor pressure at the valve seat 20A.

〔発明の効果〕〔The invention's effect〕

本発明はガスを抜いていない液体に使用してキャビテー
ションの発生を減少又は完全に除去した新規の弁装置を
提供することができる。本発明の弁装置は腐食及び損傷
を受けることが少ないので運転が静かであり、かつ長期
に亘って使用することができる。本発明はまたキャビテ
ーションの発生を除去したソレノイドで作動する調節弁
を提供することができる。
The present invention can provide a novel valve device that can be used with non-degassed liquids to reduce or completely eliminate the occurrence of cavitation. Since the valve device of the present invention is less likely to be corroded and damaged, it is quiet in operation and can be used for a long period of time. The present invention can also provide a solenoid operated control valve that eliminates the occurrence of cavitation.

本発明はその図面及び説明に限定されるものでない。上
記の図面及び説明は本発明の概念及び原理を表わす丈の
ものであって、当該技術者は本発明の開示の範囲内にお
いて任意に変更し得るものである。又図面は現寸に比例
して書かれてなく、むしろ明確にするために若干誇張し
て示されている。従って本文にその好ましい実施例を例
示したが、本発明の請求の範囲から外れることな種々の
変形態様を実施し得るものである。
The invention is not limited to the drawings and the description. The drawings and the description above are for the purpose of representing the concept and principle of the present invention, and those skilled in the art can arbitrarily change them within the scope of the disclosure of the present invention. Also, the drawings are not drawn to scale and are rather exaggerated for clarity. Thus, while the preferred embodiment has been illustrated herein, various modifications may be made without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示す弁装置の断面図、第
2図は第1図の要部を示す部分破断の拡大図、第3図は
本発明の第2実施例を示す第2図と類似の図である。 10……弁装置、12、12A……弁体、16……流入口、18…
…流出口、20……弁座、22,22A……主弁部材、56,56A…
…静止状のスリーブ、60……第1の部分、62……縮径部
分、66……第2縮径部分、74……孔、78……溝、80……
孔の端部、84,84A……孔、92……つる巻ばね、94……環
状空間。
FIG. 1 is a sectional view of a valve device showing a first embodiment of the present invention, FIG. 2 is an enlarged view of a partial cutaway showing an essential part of FIG. 1, and FIG. 3 shows a second embodiment of the present invention. It is a figure similar to FIG. 10 ... Valve device, 12, 12A ... Valve element, 16 ... Inlet, 18 ...
… Outlet, 20 …… Valve seat, 22,22A …… Main valve member, 56,56A…
… Stationary sleeve, 60 …… First part, 62 …… Reduced diameter part, 66 …… Second reduced diameter part, 74 …… Hole, 78 …… Groove, 80 ……
The end of the hole, 84, 84A ... hole, 92 ... spiral spring, 94 ... annular space.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】液体の流れを制御する弁組立体であって、 (a)液体源に連通する流入口(16)と弁組立体からの
液体を通過させる流出口(18)とを有する弁体(12)
と、 (b)前記流入口(16)と前記流出口(18)との間にお
いて弁体(12)の本体部分(56)に設けられた少なくと
も1つの弁座(20)と、 (c)軸方向に移動可能な円筒状の主弁部材(22)であ
って、 (i)弁体の本体部分(56)内に設けられ、前記流入口
(16)から前記流出口(18)への流れを阻止するよう前
記弁座(20)に当接する位置と前記流入口(16)から前
記流出口(18)へ流体を流すよう前記弁座(20)から離
れる全開位置との間で往復動する弁座係合部分(62)
と、 (ii)弁座係合部分(62)の流入口側に設けられ、弁座
係合部分(62)より大きな直径を有し、本体部分の一部
(82)と共に第1の室(88)を区画形成する、第2の流
れ制御円筒状部分(60)と、 (iii)前記弁座係合部分(62)の流出口側に設けら
れ、弁座係合部分(62)より小さな直径を有し、本体部
分の一部(68)と共に弁座(20)と弁座係合部分(62)
とにより第1の室(88)から隔離された第2の室(76)
を区画形成する第3の流れ制御円筒状部分(64)、 とを有する、軸方向移動可能円筒状主弁部材(22)と、 (d)前記流入口(16)と第1の室(88)との間に設け
られ移動可能主弁部材(22)と共働して、前記弁座係合
部分(62)と弁座(20)との間の可変流路断面積に正比
例して流路断面積を自動的に変化させ第1の室(88)に
流入する液体の流れを可変的に制御する、第1の開口手
段(84)と、 (e)前記流出口(18)と第2の室(76)との間に設け
られ主弁部材(22)の第3の流れ制御円筒部分(64)と
共働して、上記弁座係合部分(62)と弁座(20)との間
の可変流路断面積に比例して流路断面積を自動的に変化
させ第2の室(76)から流出する流体流を液体中にキャ
ビテーションが発生しない程度に可変的に制御する、第
2の開口手段(78)、 とを具備している液体の流れを制御する弁組立体。
1. A valve assembly for controlling the flow of a liquid, the valve assembly comprising: (a) an inlet (16) communicating with a liquid source and an outlet (18) for passing the liquid from the valve assembly. Body (12)
(B) at least one valve seat (20) provided in the main body portion (56) of the valve body (12) between the inflow port (16) and the outflow port (18), and (c) A cylindrical main valve member (22) that is movable in the axial direction, and (i) is provided in the main body portion (56) of the valve body and extends from the inflow port (16) to the outflow port (18). Reciprocating between a position in contact with the valve seat (20) so as to prevent flow and a fully open position away from the valve seat (20) so as to flow fluid from the inflow port (16) to the outflow port (18) Valve seat engaging portion (62)
(Ii) is provided on the inlet side of the valve seat engaging portion (62) and has a diameter larger than that of the valve seat engaging portion (62), and together with a part (82) of the main body portion, the first chamber ( A second flow control cylindrical portion (60) which defines and defines (88), and (iii) is provided on the outlet side of the valve seat engaging portion (62) and is smaller than the valve seat engaging portion (62). A valve seat (20) and a valve seat engaging portion (62) having a diameter and a portion (68) of the body portion
A second chamber (76) separated from the first chamber (88) by and
An axially movable cylindrical main valve member (22) having a third flow control cylindrical portion (64) partitioning and forming (d) the inlet (16) and the first chamber (88). ) In cooperation with the movable main valve member (22), the flow rate is directly proportional to the variable flow passage cross-sectional area between the valve seat engaging portion (62) and the valve seat (20). First opening means (84) for automatically changing the cross-sectional area of the road to variably control the flow of the liquid flowing into the first chamber (88); and (e) the outlet (18) and the first opening means (84). The valve seat engaging portion (62) and the valve seat (20) in cooperation with the third flow control cylindrical portion (64) of the main valve member (22) provided between the second chamber (76). The flow passage cross-sectional area is automatically changed in proportion to the variable flow passage cross-sectional area, and the fluid flow flowing out of the second chamber (76) is variably controlled to the extent that cavitation does not occur in the liquid. Second opening means (78) , A valve assembly for controlling the flow of liquid comprising :.
【請求項2】前記弁体(12)の本体部分が、静止したス
リーブ(56)であって、該スリーブの内部に主弁部材
(22)が往復動するよう配設され、前記スリーブ部材
(56)が円周方向に間隔をあけて設けた複数の開口(8
4)を有し、該開口(84)の流路断面積が主弁部材(2
2)の前記弁座(20)から離れた位置によってその大き
さが変化するようにしている特許請求の範囲第1項記載
の弁組立体。
2. A main body portion of the valve body (12) is a stationary sleeve (56), and a main valve member (22) is arranged inside the sleeve so as to reciprocate, and the sleeve member (56). 56) multiple openings (8) spaced circumferentially
4), and the flow passage cross-sectional area of the opening (84) is the main valve member (2
2. The valve assembly according to claim 1, wherein the size of the valve assembly changes according to the position of 2) away from the valve seat (20).
【請求項3】前記弁体(12)の本体部分が、主弁体部分
(22A)を取巻きかつ半径方向に離間し主弁体部分(22
A)との間に環状空間(88A)を区画形成する静止スリー
ブ(56A)を具備し、該スリーブ(56A)が円周方向に間
隔をあけて設けた複数の開口(84A)を有し、また前記
環状空間(88A)内に配設されかつ主弁部材(22A)に連
結されたつる巻ばね(92)を備え、主弁部材(22A)が
移動するにしたがってつる巻ばね(92)が相互に接近離
隔して主弁部材(22A)の開いた位置に比例して流路断
面積を変化させる前記流入口(16)から流出口(18)へ
の複数の流路を形成するようにしている特許請求の範囲
第1項に記載の弁組立体。
3. A main valve body portion (22) in which a main body portion of the valve body (12) surrounds the main valve body portion (22A) and is spaced apart in a radial direction.
A) is provided with a stationary sleeve (56A) that defines an annular space (88A) between the sleeve (56A) and a plurality of openings (84A) provided at intervals in the circumferential direction, Further, the spiral spring (92) disposed in the annular space (88A) and connected to the main valve member (22A) is provided, and the spiral spring (92) moves as the main valve member (22A) moves. A plurality of flow paths from the inflow port (16) to the outflow port (18) are formed so as to approach and separate from each other and change the flow path cross-sectional area in proportion to the opened position of the main valve member (22A). A valve assembly as set forth in claim 1.
JP15849085A 1985-07-19 1985-07-19 Valve assembly for controlling liquid flow Expired - Lifetime JPH073272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15849085A JPH073272B2 (en) 1985-07-19 1985-07-19 Valve assembly for controlling liquid flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15849085A JPH073272B2 (en) 1985-07-19 1985-07-19 Valve assembly for controlling liquid flow

Publications (2)

Publication Number Publication Date
JPS6220976A JPS6220976A (en) 1987-01-29
JPH073272B2 true JPH073272B2 (en) 1995-01-18

Family

ID=15672876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15849085A Expired - Lifetime JPH073272B2 (en) 1985-07-19 1985-07-19 Valve assembly for controlling liquid flow

Country Status (1)

Country Link
JP (1) JPH073272B2 (en)

Also Published As

Publication number Publication date
JPS6220976A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
US3741241A (en) Hydraulic fuse
US4494726A (en) Control valve
US4848721A (en) Hydraulic valve with integrated solenoid
US5918852A (en) Wide flow range proportional flow valve
US6026847A (en) Magnetostrictively actuated valve
JP4226662B2 (en) Wide range valve
US4793589A (en) Piston valve with proportional solenoid controlled pilot valve
JPS6152477A (en) Pressure response pilot operation type control valve
US8469053B2 (en) Flow control valve
US5114116A (en) Electromagnetically actuated quick-action switching valve
US4650155A (en) Anti-cavitation valve assembly
EP3098493B1 (en) Solenoid valve
JPH0364747B2 (en)
US5584323A (en) Fluid control valve
EP1054152A2 (en) Electrically controlled valve having mechanism for controlling a nonlinear force
JP2016153692A (en) Control valve with annular poppet check valve
KR20070118960A (en) Pressure regulating valve
US4095611A (en) Modulating flow control valve assembly
EP0643245B1 (en) Flow control valve
US5000220A (en) Metering valve with follow-up servo
JPH073272B2 (en) Valve assembly for controlling liquid flow
EP1486712B1 (en) Three-way valve
JPH0214586B2 (en)
KR100285080B1 (en) Fluid Pressure Device
CA1212886A (en) Anti-cavitation valve assembly