JPH073272A - Method for converting hydrocarbon using crystalline silicate - Google Patents

Method for converting hydrocarbon using crystalline silicate

Info

Publication number
JPH073272A
JPH073272A JP5197624A JP19762493A JPH073272A JP H073272 A JPH073272 A JP H073272A JP 5197624 A JP5197624 A JP 5197624A JP 19762493 A JP19762493 A JP 19762493A JP H073272 A JPH073272 A JP H073272A
Authority
JP
Japan
Prior art keywords
crystalline silicate
metals
hydrocarbon
metal
lower hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5197624A
Other languages
Japanese (ja)
Other versions
JPH07116449B2 (en
Inventor
Haruhito Sato
治仁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP5197624A priority Critical patent/JPH07116449B2/en
Publication of JPH073272A publication Critical patent/JPH073272A/en
Publication of JPH07116449B2 publication Critical patent/JPH07116449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To convert a lower hydrocarbon to a liquid hydrocarbon suitable for field, etc., for petroleum refining industry in high conversion ratio and selectivity of gasoline fraction by bringing the lower hydrocarbon into contact with a specific crystalline silicate catalyst. CONSTITUTION:A lower hydrocarbon is brought into contact with a crystalline silicate catalyst obtained by reacting raw material mixture consisting of (A) a silicon compound, (B) an alkali (earth) metal, (C) one or more metallic compounds selected from metals of the group III, IV, V and VIB of periodic table, except when the metallic compound is Al alone and (D) water in the presence of a crystal nucleus consisting of mordenite, a X type zeolite at a temperature and for a time capable of forming the crystalline silicate, having a composition of oxides expressed by the formula [M is H or alkali (earth) metal; Z is one or more metals selected from metals of group III, IV, VIB and VII except when the metal is Al alone; m and n are each valences of M and Z; 0<(a)<=0.1; 0<(b)<=0.1] and having X ray diffraction pattern of the table to convert the lower hydrocarbon to a liquid hydrocarbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は結晶性シリケートを用い
た炭化水素の転化方法に関し、詳しくは原料混合物に特
定の結晶核を存在せしめることによって得られた結晶性
シリケートを触媒として用いて低級炭化水素を液状炭化
水素へ転化せしめる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for converting hydrocarbons using crystalline silicates, and more particularly, to a low carbonization method using a crystalline silicate obtained by allowing a specific crystal nucleus to exist in a raw material mixture as a catalyst. It relates to a method for converting hydrogen into liquid hydrocarbons.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ZSM−5系ゼオライトをはじめとして様々な組成,構
造の結晶性シリケートが開発されており、またその製造
法もいくつか知られている。しかし、これらの方法は、
シリケートの結晶を製造するにあたって、窒素,酸素含
有有機化合物等の結晶化剤を加えることが要求されてお
り、その結果、製造コストが上昇したり、あるいは得ら
れる結晶性シリケート中に窒素が残存し、様々な障害を
生じるなどの欠点があった。
2. Description of the Related Art In recent years,
Crystalline silicates having various compositions and structures such as ZSM-5 type zeolite have been developed, and some production methods thereof are known. But these methods
In producing a silicate crystal, it is required to add a crystallization agent such as an organic compound containing nitrogen or oxygen, and as a result, the production cost increases or nitrogen remains in the obtained crystalline silicate. There were drawbacks such as causing various obstacles.

【0003】[0003]

【課題を解決するための手段】本発明は、上述の如き結
晶化剤を使用することなく、代わりにモルデナイトおよ
び/またはX型ゼオライトからなる結晶核を用いること
により得られた結晶性シリケートを触媒として用いるこ
とを特徴とする炭化水素の転化方法である。
The present invention provides a catalyst for a crystalline silicate obtained by using a crystal nucleus consisting of mordenite and / or X-type zeolite instead of the above-mentioned crystallization agent. Is used as a hydrocarbon conversion method.

【0004】すなわち本発明は、低級炭化水素を触媒と
接触させて液状炭化水素に転化させる方法において、
(A)ケイ素化合物、(B)アルカリ金属および/また
はアルカリ土類金属の化合物、(C)周期律表第III,I
V, V,VIBおよびVIII族に属する金属から選ばれた1
種以上の金属(ただし、アルミニウム1種だけの場合を
除く。)の化合物および(D)水よりなる原料混合物を
モルデナイトおよび/またはX型ゼオライトからなる結
晶核の存在下で結晶性シリケートが生成するに必要な温
度および時間反応させて製造した、酸化物の形態の組成
が、一般式
That is, the present invention provides a method for converting a lower hydrocarbon into a liquid hydrocarbon by bringing it into contact with a catalyst,
(A) Silicon compound, (B) Alkali metal and / or alkaline earth metal compound, (C) Periodic table III, I
1 selected from metals belonging to groups V, V, VIB and VIII
A crystalline silicate is produced in the presence of a crystal nucleus composed of mordenite and / or X-type zeolite from a raw material mixture composed of a compound of one or more metals (excluding the case of only one kind of aluminum) and (D) water. The composition in the form of an oxide produced by reacting at the temperature and time required for

【0005】[0005]

【化2】 [Chemical 2]

【0006】(式中、Mは水素、アルカリ金属およびア
ルカリ土類金属から選ばれた1種以上の元素、Zは周期
律表第III,IV, V,VIBおよびVIII族に属する金属から
選ばれた1種以上の金属(ただし、アルミニウム1種だ
けの場合を除く。)を示す。またmはMの原子価、nは
Zの原子価を示し、a,bは次の範囲で選定されるもの
である。0<a≦0.1,0<b≦0.1)で表わさ
れ、かつ、後記第1表に示すX線回折パターンを示す構
造を有する結晶性シリケートを触媒として用いることを
特徴とする炭化水素の転化方法を提供するものである。
(Wherein M is one or more elements selected from hydrogen, alkali metals and alkaline earth metals, and Z is selected from metals belonging to Groups III, IV, V, VIB and VIII of the Periodic Table. 1 or more metals (excluding the case where only one type of aluminum is used), m is the valence of M, n is the valence of Z, and a and b are selected within the following range. Use of a crystalline silicate having a structure represented by 0 <a ≦ 0.1, 0 <b ≦ 0.1) and having an X-ray diffraction pattern shown in Table 1 below as a catalyst. The present invention provides a method for converting hydrocarbons characterized by:

【0007】本発明の方法における原料混合物の(A)
成分であるケイ素化合物としては、通常の結晶性ゼオラ
イトの合成に用いられるものであれば特に制限はなく、
シリカ粉末,ケイ酸,コロイド状シリカ,溶解シリカな
どがある。溶解シリカとしては、Na2 OまたはK2
を1モルに対して、SiO2 1〜5モルを含有する水ガ
ラスケイ酸塩,アルカリ金属ケイ酸塩などがあげられ
る。
(A) of the raw material mixture in the method of the present invention
The silicon compound as a component is not particularly limited as long as it is used in the synthesis of a usual crystalline zeolite,
Examples include silica powder, silicic acid, colloidal silica, and fused silica. Examples of the fused silica include Na 2 O and K 2 O
Examples thereof include water glass silicate and alkali metal silicate containing 1 to 5 mol of SiO 2 .

【0008】また、原料混合物の(B)成分は、アルカ
リ金属および/またはアルカリ土類金属の化合物である
が、ここでアルカリ金属化合物としては、一般に水酸化
ナトリウム,水酸化カリウムなどが用いられ、さらに、
ケイ酸ナトリウムとして(A)成分のケイ素化合物の供
給源を兼ねることもできる。特にアルカリ金属としては
ナトリウムが望ましく、このアルカリ金属はM2 Oとし
てシリカ(SiO2 )1モルに対して、0.01〜50
モル、好ましくは0.1〜10モルの割合で使用され
る。一方、アルカリ土類金属化合物としては、硝酸塩,
塩化物などの水溶性の化合物、例えば硝酸カルシウム,
塩化カルシウムなどがある。このアルカリ土類金属は、
MOとしてシリカ(SiO2 )1モルに対して、0.0
05〜25モルの割合で使用される。
The component (B) of the raw material mixture is a compound of an alkali metal and / or an alkaline earth metal. As the alkali metal compound, sodium hydroxide, potassium hydroxide, etc. are generally used. further,
The sodium silicate can also serve as the supply source of the silicon compound as the component (A). In particular, sodium is preferable as the alkali metal, and the alkali metal is 0.01 to 50 with respect to 1 mol of silica (SiO 2 ) as M 2 O.
It is used in a molar ratio, preferably 0.1 to 10 mol. On the other hand, as the alkaline earth metal compound, nitrate,
Water-soluble compounds such as chlorides, eg calcium nitrate,
For example, calcium chloride. This alkaline earth metal is
As MO, it is 0.0 with respect to 1 mol of silica (SiO 2 ).
It is used in a proportion of 05 to 25 mol.

【0009】続いて、(C)成分は周期律表第III,IV,
V,VIBおよびVIII族に属する1種以上の金属(ただ
し、アルミニウム1種だけの場合を除く。)の化合物で
ある。これらの金属の例としては、ホウ素,アルミニウ
ム,インジウム,白金,ヒ素,アンチモン,イットリウ
ム,ジルコニウム,バナジウム,クロム,モリブデン,
鉄,ルテニウム,パラジウムが好ましく、さらにガリウ
ム,ゲルマニウム,スズ,リン,ビスマス,ランタン,
チタン,タングステン,コバルト,ニッケル,ロジウ
ム,イリジウム,オスミウムなども使用することができ
る。これらの金属は、酸化物,水酸化物,塩化物,硝酸
塩あるいは硫酸塩として通常用いられる。これらの金属
はM2 3 として、シリカ(SiO2 )1モルに対し
て、0.01〜50モル、好ましくは0.1〜10モル
の範囲で使用される。
Subsequently, the component (C) is the periodic table III, IV,
It is a compound of one or more metals belonging to groups V, VIB and VIII (provided that only one kind of aluminum is excluded). Examples of these metals are boron, aluminum, indium, platinum, arsenic, antimony, yttrium, zirconium, vanadium, chromium, molybdenum,
Iron, ruthenium and palladium are preferable, and gallium, germanium, tin, phosphorus, bismuth, lanthanum,
Titanium, tungsten, cobalt, nickel, rhodium, iridium, osmium, etc. can also be used. These metals are usually used as oxides, hydroxides, chlorides, nitrates or sulfates. These metals are used as M 2 O 3 in the range of 0.01 to 50 mol, preferably 0.1 to 10 mol, based on 1 mol of silica (SiO 2 ).

【0010】本発明の製造方法では、まず上記の
(A),(B),(C)成分に、(D)成分として適量
の水を加えて原料混合物とし、これに結晶核を存在せし
めて、結晶性シリケートが生成するに必要な温度および
時間にて加熱反応させる。ここで加える結晶核は、シリ
ケートの結晶が生成する際の核となるものであり、結晶
の成長を著しく促進するものである。この結晶核として
は、モルデナイトおよび/またはX型ゼオライトを用い
る。なお、この結晶核の添加量は特に制限はなく、要す
るに結晶化を促進するに充分な量であればよいが、通常
は最終的に生成する結晶性シリケートの量の0.01〜
15重量%、好ましくは0.05〜5重量%とすべきで
ある。
In the production method of the present invention, first, an appropriate amount of water as the component (D) is added to the components (A), (B), and (C) to form a raw material mixture, and crystal nuclei are allowed to exist therein. The reaction is carried out by heating at the temperature and time necessary for producing the crystalline silicate. The crystal nuclei added here serve as nuclei when silicate crystals are generated, and remarkably promote the crystal growth. Mordenite and / or X-type zeolite is used as the crystal nuclei. The amount of the crystal nuclei added is not particularly limited as long as it is an amount sufficient to promote crystallization, but is usually 0.01 to 0.01% of the amount of the finally produced crystalline silicate.
It should be 15% by weight, preferably 0.05-5% by weight.

【0011】本発明における結晶性シリケートの製造
は、前記の(A),(B),(C),(D)成分よりな
る原料混合物を、結晶核の存在下で結晶性シリケートが
生成するに必要な温度および時間加熱することによって
行なわれるが、より具体的には反応温度は80〜300
℃、好ましくは120〜200℃の範囲であり、また、
反応時間は0.5〜10日間、好ましくは5時間〜5日
間である。圧力については特に制限はなく、通常は自己
圧力下で実施される。また、反応系は通常攪拌下におか
れ、雰囲気は必要により不活性ガスで置換してもよい。
In the production of the crystalline silicate in the present invention, the crystalline silicate is produced in the presence of crystal nuclei in the raw material mixture consisting of the components (A), (B), (C) and (D). It is carried out by heating at the required temperature and time, more specifically, the reaction temperature is 80 to 300.
℃, preferably in the range of 120 ~ 200 ℃,
The reaction time is 0.5 to 10 days, preferably 5 hours to 5 days. There is no particular limitation on the pressure, and it is usually carried out under self-pressure. The reaction system is usually placed under stirring, and the atmosphere may be replaced with an inert gas if necessary.

【0012】製造反応は原料混合物を結晶核の存在下
に、所望の温度に加熱して結晶性シリケートが充分生成
するまで継続される。結晶性シリケートの生成が完了し
た反応混合物は、室温まで冷却した後、濾過,デカンテ
ーション,遠心分離などにより結晶を分離し、水で充分
に洗浄し結晶を得る。この結晶を通常100℃以上で数
時間程度乾燥することにより、結晶性シリケートを得る
ことができる。
The production reaction is continued by heating the raw material mixture in the presence of crystal nuclei to a desired temperature until a crystalline silicate is sufficiently formed. The reaction mixture in which the formation of crystalline silicate is completed is cooled to room temperature, and then the crystals are separated by filtration, decantation, centrifugation, etc., and sufficiently washed with water to obtain crystals. A crystalline silicate can be obtained by usually drying this crystal at 100 ° C. or higher for several hours.

【0013】さらに、この結晶性シリケートを、使用前
に空気中で400〜600℃の温度で2〜10時間程度
焼成して活性化したり、結晶性シリケート中に存在する
アルカリ金属イオン等のカチオンを水素イオン、アンモ
ニウムイオン等の他のカチオンでイオン交換することも
有効である。イオン交換後、400〜600℃にて2〜
10時間程度さらに焼成することも可能である。
Further, before use, the crystalline silicate is fired in air at a temperature of 400 to 600 ° C. for about 2 to 10 hours to be activated, or cations such as alkali metal ions present in the crystalline silicate are activated. Ion exchange with other cations such as hydrogen ions and ammonium ions is also effective. 2 ~ at 400 ~ 600 ℃ after ion exchange
It is also possible to further bake for about 10 hours.

【0014】このようにして得られた結晶性シリケート
は、前述した如く、酸化物の形態の組成が、一般式
(1)、すなわち
As described above, the crystalline silicate thus obtained has a composition represented by the general formula (1):

【0015】[0015]

【化3】 [Chemical 3]

【0016】で表わされるものとなる。ここで上記一般
式(1)中のMは通常はアルカリ金属,アルカリ土類金
属であるが、上述した如く水素イオン、アンモニウムイ
オン等でイオン交換した場合には、アルカリ金属,アル
カリ土類金属の一部乃至全部が水素に置換されうる。
Is represented by Here, M in the general formula (1) is usually an alkali metal or an alkaline earth metal, but when ion-exchanged with a hydrogen ion, an ammonium ion or the like as described above, the M of the alkali metal or the alkaline earth metal is Part or all may be replaced with hydrogen.

【0017】かくして得られた一般式(1)で表わされ
る結晶性シリケートは、後記第2表に示すように特有の
X線回折図を有するものである。
The thus obtained crystalline silicate represented by the general formula (1) has a characteristic X-ray diffraction pattern as shown in Table 2 below.

【0018】このような方法によれば、モルホリン等の
高価な結晶化剤を用いる必要がなく、そのため安価に効
率よく結晶性シリケートを製造できると同時に、窒素等
の残存のおそれがなく、高品質のものとなる。
According to such a method, it is not necessary to use an expensive crystallization agent such as morpholine, and therefore, a crystalline silicate can be produced efficiently at low cost, and at the same time, there is no fear of nitrogen remaining and high quality is obtained. Will be the one.

【0019】本発明の方法は、このようにして得られた
一般式(1)で表わされる結晶性シリケートを触媒とし
て用い、これと低級炭化水素を接触させて、低級炭化水
素を液状炭化水素に転化する方法であるが、この転化方
法で原料として用いる低級炭化水素は、一般に常温,常
圧で気体状の炭化水素、具体的には炭素数4以下のパラ
フィン系あるいはオレフィン系炭化水素であり、好まし
くは炭素数2〜4のパラフィン系あるいはオレフィン系
炭化水素、つまりエタン,エチレン,プロパン,プロピ
レン,ブタン,ブテンである。
In the method of the present invention, the crystalline silicate represented by the general formula (1) thus obtained is used as a catalyst, and this is contacted with a lower hydrocarbon to convert the lower hydrocarbon into a liquid hydrocarbon. The lower hydrocarbon used as a raw material in this conversion method is generally a gaseous hydrocarbon at room temperature and atmospheric pressure, specifically a paraffinic or olefinic hydrocarbon having 4 or less carbon atoms, Preferred are paraffinic or olefinic hydrocarbons having 2 to 4 carbon atoms, that is, ethane, ethylene, propane, propylene, butane and butene.

【0020】上記結晶性シリケートを触媒として用い
て、低級炭化水素を液状炭化水素に転化させる際の反応
条件は特に制限はないが、例えば原料である低級炭化水
素を温度100〜600℃、好ましくは200〜500
℃、圧力は常圧〜200kg/cm2G、好ましくは常圧〜2
0kg/cm2G、重量空間速度(WHSV)1〜100hr
-1、好ましくは2〜50hr-1の操作条件にて上記触媒
と接触させればよい。この際の接触反応は、バッチ式で
行なうこともできるが、流通式で行なうことが好まし
い。
The reaction conditions for converting lower hydrocarbons to liquid hydrocarbons using the above-mentioned crystalline silicate as a catalyst are not particularly limited, but for example, the lower hydrocarbon as a raw material may be heated at a temperature of 100 to 600 ° C, preferably. 200-500
C, pressure is normal pressure to 200 kg / cm 2 G, preferably normal pressure to 2
0 kg / cm 2 G, weight space velocity (WHSV) 1 to 100 hr
-1 , preferably from 2 to 50 hr -1 under the operating conditions. The contact reaction at this time can be carried out in a batch system, but is preferably carried out in a flow system.

【0021】[0021]

【実施例】次に本発明を実施例によりさらに詳しく説明
する。 製造例1 硫酸アルミニウム(18水塩)6.6g、酸化ホウ素
3.4g、97%硫酸17.6gおよび水250mlよ
りなる溶液をI液とし、水ガラス(和光純薬(株)製、
SiO2 :37.6wt%、Na2 O:17.5wt
%、水分:44.9wt%)162gおよび水300m
lからなる溶液をII液とし、塩化ナトリウム79gおよ
び水122mlからなる溶液をIII 液とした。このIII
液中へ、I液およびII液を室温で攪拌しながら同時に徐
々に滴下して混合物を得た。次いで、この混合物中に結
晶核としてモルデナイト1gを添加した。
EXAMPLES The present invention will now be described in more detail with reference to examples. Production Example 1 A solution consisting of 6.6 g of aluminum sulfate (18-hydrate), 3.4 g of boron oxide, 17.6 g of 97% sulfuric acid and 250 ml of water was used as liquid I, and water glass (manufactured by Wako Pure Chemical Industries, Ltd.,
SiO 2 : 37.6 wt%, Na 2 O: 17.5 wt
%, Water content: 44.9 wt%) 162 g and water 300 m
The solution consisting of 1 was designated as solution II, and the solution consisting of 79 g of sodium chloride and 122 ml of water was designated as solution III. This III
Liquid I and liquid II were gradually dropped into the liquid at the same time while stirring at room temperature to obtain a mixture. Then, 1 g of mordenite was added to this mixture as a crystal nucleus.

【0022】続いて、結晶核を添加した混合物1リット
ルをオートクレーブに入れ、170℃にて300r.p.m.
の回転数で攪拌し、自己圧力下で20時間反応させた。
その後、反応混合物を冷却し、生成した結晶性シリケー
トをデカンテーションにより約1リットルの水で5回洗
浄し、最後に濾過により結晶性シリケートを取り出し、
さらに120℃で3時間乾燥した。その結果、52gの
結晶性シリケートが得られ、その組成はSiO2 100
重量部あたり、Na2 Oが24重量部、B2 3 が1.
3重量部、Al2 3 が20重量部であった。また、上
記結晶性シリケートのX線回折パターンは第2表に示す
範囲に入った。
Subsequently, 1 liter of the mixture containing crystal nuclei was placed in an autoclave and heated at 170 ° C. to 300 rpm.
The mixture was stirred at the number of revolutions of, and reacted for 20 hours under self-pressure.
Then, the reaction mixture is cooled, the formed crystalline silicate is washed by decantation with about 1 liter of water 5 times, and finally the crystalline silicate is taken out by filtration.
Furthermore, it dried at 120 degreeC for 3 hours. As a result, 52 g of crystalline silicate was obtained, the composition of which was SiO 2 100.
24 parts by weight of Na 2 O and 1. 2 parts by weight of B 2 O 3 per part by weight.
3 parts by weight and Al 2 O 3 were 20 parts by weight. The X-ray diffraction pattern of the above crystalline silicate was within the range shown in Table 2.

【0023】製造例2 製造例1において、結晶核としてのモルデナイトをゼオ
ライト13Xに代えたこと以外は、製造例1と同様の条
件で操作して、結晶性シリケート51.3gを得た。こ
のものの組成はSiO2 100重量部あたり、Na2
が2.2重量部、B2 3 が1.3重量部、Al2 3
が2.0重量部であった。また、この結晶性シリケート
のX線回折パターンは第2表に示す範囲に入った。
Production Example 2 51.3 g of a crystalline silicate was obtained by operating under the same conditions as in Production Example 1 except that Zeolite 13X was used instead of mordenite as a crystal nucleus. The composition of this product is Na 2 O per 100 parts by weight of SiO 2.
Is 2.2 parts by weight, B 2 O 3 is 1.3 parts by weight, Al 2 O 3
Was 2.0 parts by weight. The X-ray diffraction pattern of this crystalline silicate fell within the range shown in Table 2.

【0024】製造例3 製造例1において、I液を酸化ホウ素1.4g、97%
硫酸17.6gおよび水250mlよりなる溶液に代え
たこと以外は、製造例1と同様の条件で操作して、結晶
性シリケート49.5gを得た。このものの組成はSi
2 100重量部あたり、Na2 Oが1.4重量部、B
2 3 が0.9重量部であった。また、この結晶性シリ
ケートのX線回折パターンは第2表に示す範囲に入っ
た。
Production Example 3 In Production Example 1, the solution I was replaced with 1.4 g of boron oxide and 97%.
By operating under the same conditions as in Production Example 1 except that a solution consisting of 17.6 g of sulfuric acid and 250 ml of water was used, 49.5 g of a crystalline silicate was obtained. The composition of this is Si
1.4 parts by weight of Na 2 O per 100 parts by weight of O 2 , B
2 O 3 was 0.9 part by weight. The X-ray diffraction pattern of this crystalline silicate fell within the range shown in Table 2.

【0025】製造例4 製造例3において、結晶核としてのモルデナイトをゼオ
ライト13Xに代えたこと以外は、製造例3と同様の条
件で操作して、結晶性シリケート49.3gを得た。こ
のものの組成はSiO2 100重量部あたり、Na2
が1.3重量部、B2 3 が0.9重量部であった。ま
た、この結晶性シリケートのX線回折パターンは第2表
に示す範囲に入った。
Production Example 4 By operating under the same conditions as in Production Example 3 except that the mordenite as the crystal nucleus was replaced with zeolite 13X, 49.3 g of a crystalline silicate was obtained. The composition of this product is Na 2 O per 100 parts by weight of SiO 2.
Was 1.3 parts by weight and B 2 O 3 was 0.9 parts by weight. The X-ray diffraction pattern of this crystalline silicate fell within the range shown in Table 2.

【0026】製造例5 製造例3において、酸化ホウ素を三弗化アンチモン3.
57gに代えたこと以外は、製造例3と同様の条件で操
作して、結晶性シリケート52.1gを得た。このもの
の組成はSiO2 100重量部あたり、Na2 Oが1.
3重量部、Sb2 3 が2.9重量部であった。また、
この結晶性シリケートのX線回折パターンは第2表に示
す範囲に入った。
Production Example 5 In Production Example 3, boron oxide was mixed with antimony trifluoride 3.
By operating under the same conditions as in Production Example 3 except that the amount was changed to 57 g, 52.1 g of a crystalline silicate was obtained. This composition had a composition of Na 2 O of 1. 1 per 100 parts by weight of SiO 2 .
3 parts by weight, Sb 2 O 3 was 2.9 parts by weight. Also,
The X-ray diffraction pattern of this crystalline silicate fell within the range shown in Table 2.

【0027】製造例6 製造例5において、結晶核としてのモルデナイトをゼオ
ライト13Xに代えたこと以外は、製造例5と同様の条
件で操作して、結晶性シリケート51.8gを得た。こ
のものの組成はSiO2 100重量部あたり、Na2
が1.4重量部、Sb2 3 が2.8重量部であった。
また、この結晶性シリケートのX線回折パターンは第2
表に示す範囲に入った。
Production Example 6 51.8 g of a crystalline silicate was obtained by operating under the same conditions as in Production Example 5, except that zeolite 13X was used instead of mordenite as the crystal nucleus. The composition of this product is Na 2 O per 100 parts by weight of SiO 2.
Was 1.4 parts by weight and Sb 2 O 3 was 2.8 parts by weight.
In addition, the X-ray diffraction pattern of this crystalline silicate shows the second
It entered the range shown in the table.

【0028】製造例7 製造例1において、酸化ホウ素を加えなかったこと以外
は、製造例1と同様の条件で操作して、結晶性シリケー
ト53.2gを得た。このものの組成はSiO2 100
重量部あたり、Na2 Oが2.4重量部、Al2 3
2.2重量部であった。また、この結晶性シリケートの
X線回折パターンは第2表に示す範囲に入った。
Production Example 7 By operating under the same conditions as in Production Example 1 except that boron oxide was not added, 53.2 g of crystalline silicate was obtained. The composition of this product is SiO 2 100
The amount of Na 2 O was 2.4 parts by weight and the amount of Al 2 O 3 was 2.2 parts by weight per part by weight. The X-ray diffraction pattern of this crystalline silicate fell within the range shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】θ:入射角;照射:Cu−Kα;波長:0
15418nm
Θ: incident angle; irradiation: Cu-Kα; wavelength: 0
15418nm

【0031】実施例1 製造例1で製造した結晶性シリケートを550℃で6時
間焼成した後、1規定の硝酸アンモニウム溶液中で1日
攪拌した。その後、硝酸アンモニウム溶液を新しいもの
と取り替え、さらに1日攪拌した。次いで、このイオン
交換した結晶性シリケートを、約100倍の蒸留水で水
洗し、120℃で乾燥した後、550℃で焼成してH型
とした。続いて、このH型結晶性シリケートを触媒とし
て、温度300℃、圧力5kg/cm2G、WHSV3.0h
-1、反応時間5時間の条件にて、第3表に示す組成の
低級炭化水素の転化反応を行なった。結果を第4表に示
す。
Example 1 The crystalline silicate produced in Production Example 1 was calcined at 550 ° C. for 6 hours and then stirred in a 1N ammonium nitrate solution for 1 day. Then, the ammonium nitrate solution was replaced with a new one, and the solution was further stirred for 1 day. Next, this ion-exchanged crystalline silicate was washed with distilled water of about 100 times, dried at 120 ° C., and then baked at 550 ° C. to obtain an H type. Then, using this H-type crystalline silicate as a catalyst, the temperature was 300 ° C., the pressure was 5 kg / cm 2 G, and WHSV was 3.0 h.
The conversion reaction of the lower hydrocarbon having the composition shown in Table 3 was performed under the conditions of r -1 and reaction time of 5 hours. The results are shown in Table 4.

【0032】実施例2 製造例3で製造した結晶性シリケートを、実施例1と同
様にイオン交換処理してH型とした。続いて、このH型
結晶性シリケートを触媒として、温度370℃、圧力大
気圧、WHSV3.1hr-1、反応時間4時間の条件に
て、第3表に示す組成の低級炭化水素の転化反応を行な
った。結果を第4表に示す。
Example 2 The crystalline silicate produced in Production Example 3 was subjected to an ion exchange treatment in the same manner as in Example 1 to obtain H type. Then, using this H-type crystalline silicate as a catalyst, the conversion reaction of the lower hydrocarbon having the composition shown in Table 3 was conducted under the conditions of temperature of 370 ° C., atmospheric pressure, WHSV 3.1 hr −1 , and reaction time of 4 hours. I did. The results are shown in Table 4.

【0033】実施例3 製造例5で製造した結晶性シリケートを、実施例1と同
様にイオン交換処理してH型とした。続いて、このH型
結晶性シリケートを触媒として、温度300℃、圧力5
kg/cm2G、WHSV3.1hr-1、反応時間6時間の条
件にて、第3表に示す組成の低級炭化水素の転化反応を
行なった。結果を第4表に示す。
Example 3 The crystalline silicate produced in Production Example 5 was subjected to an ion exchange treatment in the same manner as in Example 1 to obtain H type. Then, using this H-type crystalline silicate as a catalyst, the temperature was 300 ° C. and the pressure was 5
The conversion reaction of the lower hydrocarbon having the composition shown in Table 3 was carried out under the conditions of kg / cm 2 G, WHSV 3.1 hr -1 , and reaction time 6 hours. The results are shown in Table 4.

【0034】参考例1 製造例7で製造した結晶性シリケートを、実施例1と同
様にイオン交換処理してH型とした。続いて、このH型
結晶性シリケートを触媒として、温度300℃、圧力5
kg/cm2G、WHSV3.0hr-1、反応時間5時間の条
件にて、第3表に示す組成の低級炭化水素の転化反応を
行なった。結果を第4表に示す。
Reference Example 1 The crystalline silicate produced in Production Example 7 was subjected to ion exchange treatment in the same manner as in Example 1 to obtain H type. Then, using this H-type crystalline silicate as a catalyst, the temperature was 300 ° C. and the pressure was 5
The conversion reaction of the lower hydrocarbon having the composition shown in Table 3 was carried out under the conditions of kg / cm 2 G, WHSV 3.0 hr -1 , and reaction time 5 hours. The results are shown in Table 4.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明の転化方法によれば、比較的温和
な条件下で反応が効率よく進行し、低級炭化水素の転化
率が高く、また炭素数5以上の液状炭化水素の収率が非
常に高い。特にガソリン留分の選択率が著しく高いとい
う利点がある。従って、本発明の転化方法は、化学工
業,石油精製工業の分野等において広く利用することが
できる。
According to the conversion method of the present invention, the reaction proceeds efficiently under relatively mild conditions, the conversion rate of lower hydrocarbons is high, and the yield of liquid hydrocarbons having 5 or more carbon atoms is high. Very expensive. In particular, there is an advantage that the selectivity of the gasoline fraction is extremely high. Therefore, the conversion method of the present invention can be widely used in the fields of chemical industry, petroleum refining industry and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低級炭化水素を触媒と接触させて液状炭
化水素に転化させる方法において、(A)ケイ素化合
物、(B)アルカリ金属および/またはアルカリ土類金
属の化合物、(C)周期律表第III,IV, V,VIBおよび
VIII族に属する金属から選ばれた1種以上の金属(ただ
し、アルミニウム1種だけの場合を除く。)の化合物お
よび(D)水よりなる原料混合物をモルデナイトおよび
/またはX型ゼオライトからなる結晶核の存在下で結晶
性シリケートが生成するに必要な温度および時間反応さ
せて製造した、酸化物の形態の組成が、一般式 【化1】 (式中、Mは水素、アルカリ金属およびアルカリ土類金
属から選ばれた1種以上の元素、Zは周期律表第III,I
V, V,VIBおよびVIII族に属する金属から選ばれた1
種以上の金属(ただし、アルミニウム1種だけの場合を
除く。)を示す。またmはMの原子価、nはZの原子価
を示し、a,bは次の範囲で選定されるものである。0
<a≦0.1,0<b≦0.1)で表わされ、かつ、次
のX線回折パターンを示す構造を有する結晶性シリケー
トを触媒として用いることを特徴とする炭化水素の転化
方法。 【表1】 θ:入射角;照射:Cu−Kα;波長:015418n
1. A method of converting a lower hydrocarbon into a liquid hydrocarbon by bringing it into contact with a catalyst, wherein (A) a silicon compound, (B) an alkali metal and / or alkaline earth metal compound, and (C) a periodic table. III, IV, V, VIB and
A raw material mixture consisting of a compound of at least one metal selected from Group VIII metals (excluding the case of only one aluminum) and (D) water is used as a crystal nucleus consisting of mordenite and / or X-type zeolite. The composition in the form of an oxide prepared by reacting for the temperature and time necessary to form a crystalline silicate in the presence of (In the formula, M is at least one element selected from hydrogen, alkali metals and alkaline earth metals, and Z is III, I of the periodic table.
1 selected from metals belonging to groups V, V, VIB and VIII
At least one metal (excluding the case of only one kind of aluminum) is shown. Further, m is the valence of M, n is the valence of Z, and a and b are selected within the following range. 0
<A ≦ 0.1, 0 <b ≦ 0.1) and a method for converting hydrocarbons, characterized in that a crystalline silicate having a structure showing the following X-ray diffraction pattern is used as a catalyst. . [Table 1] θ: incident angle; irradiation: Cu-Kα; wavelength: 015418n
m
【請求項2】 低級炭化水素が、炭素数2〜4のパラフ
ィン系あるいはオレフィン系炭化水素である請求項1記
載の転化方法。
2. The conversion method according to claim 1, wherein the lower hydrocarbon is a paraffinic or olefinic hydrocarbon having 2 to 4 carbon atoms.
JP5197624A 1993-07-16 1993-07-16 Hydrocarbon conversion method using crystalline silicate Expired - Lifetime JPH07116449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197624A JPH07116449B2 (en) 1993-07-16 1993-07-16 Hydrocarbon conversion method using crystalline silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197624A JPH07116449B2 (en) 1993-07-16 1993-07-16 Hydrocarbon conversion method using crystalline silicate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57024303A Division JPH062572B2 (en) 1982-02-19 1982-02-19 Method for producing crystalline silicate

Publications (2)

Publication Number Publication Date
JPH073272A true JPH073272A (en) 1995-01-06
JPH07116449B2 JPH07116449B2 (en) 1995-12-13

Family

ID=16377584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197624A Expired - Lifetime JPH07116449B2 (en) 1993-07-16 1993-07-16 Hydrocarbon conversion method using crystalline silicate

Country Status (1)

Country Link
JP (1) JPH07116449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783451B1 (en) * 2006-12-26 2007-12-11 전자부품연구원 Motor assembly for driving air blower in fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783451B1 (en) * 2006-12-26 2007-12-11 전자부품연구원 Motor assembly for driving air blower in fuel cell system

Also Published As

Publication number Publication date
JPH07116449B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US4333859A (en) High silica faujasite polymorph - CSZ-3 and method of synthesizing
EP0102497B1 (en) Crystalline silicates and process for the production thereof
JP2527583B2 (en) Novel method for synthesizing ferric silicate type zeolite, obtained substance and use thereof
EP1338561B1 (en) Zeolite itq-16
JPS6042228A (en) Treatment of zeolites
JPS623090B2 (en)
EP0087017B1 (en) Process for producing a crystalline silicate
US5304601A (en) Catalysts based on a faujasite and its application
JPH0257524B2 (en)
EP0203619B1 (en) Production of liquid hydrocarbon from gas containing lower hydrocarbon
US5321179A (en) Process for preparing of aromatic hydrocarbons
JPS61289049A (en) Production of propylene
JPH073272A (en) Method for converting hydrocarbon using crystalline silicate
JP2759099B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbon oils and fluid catalytic cracking using the same
JPH04504857A (en) Isoparaffin-olefin alkylation process
JPH0339009B2 (en)
US20040038804A1 (en) Process for conversion of organic compounds
JPH035436B2 (en)
EP0299392B1 (en) Process for production of crystalline galloalumino silicate and process for production of aromatic hydrocarbons
JP3068347B2 (en) Method for producing high octane gasoline base material
JPH062572B2 (en) Method for producing crystalline silicate
JPS617218A (en) Catalytic conversion of hydrocarbon
JPH032850B2 (en)
JP2501868B2 (en) Method for producing crystalline galloaluminosilicate and method for producing aromatic hydrocarbon
JPS6121926B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604