JPH073264A - Grout material - Google Patents
Grout materialInfo
- Publication number
- JPH073264A JPH073264A JP25477492A JP25477492A JPH073264A JP H073264 A JPH073264 A JP H073264A JP 25477492 A JP25477492 A JP 25477492A JP 25477492 A JP25477492 A JP 25477492A JP H073264 A JPH073264 A JP H073264A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- grout material
- injection
- water
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、土質地盤、岩盤の間隙
に原地盤を破壊することなく、速やかに注入充填するこ
とができ、ブリージングの程度が低く、更に固化後の安
定性等に優れたグラウト材に関する。INDUSTRIAL APPLICABILITY The present invention enables rapid filling and filling without breaking the original ground in the space between soil and rock, has a low degree of breathing, and is excellent in stability after solidification. Regarding grout material.
【0002】[0002]
【従来の技術】グラウト材は、土質地盤、岩盤の間隙に
注入充填することにより硬化して、ダム基礎等、地盤の
漏水量を減少させること等ができる。このようなグラウ
ト材は、注入充填の際には、地盤等の破壊を生じること
なく、狭く且つ様々な形状の間隙であっても速やかに充
填することができ、しかも長期的に安定化させる必要が
ある。このためその材料成分は、小孔、割れ目等を通過
できる程度の微粒子又は溶液等であるものが望まれてい
る。また硬化に際しては、収縮量が少なく、しかも硬化
後十分な強度を有するものが望まれている。このため注
入充填時に亀裂、浸透性破壊を生じさせないように低圧
力、低速度で浸透注入する方法にも適用可能な優れた流
動性を備えることが望まれている。このようなグラウト
材としては、従来セメント系グラウト材が種々提案され
ている。具体的には例えば、セメント−水系グラウト
材、セメント−粘土(ベントナイト、ローム等)−水系
グラウト材、セメント−アスファルト系グラウト材、超
微粒子セメント−水系グラウト材等が知られており、ま
た必要性に応じて、例えばワーカビリチーの改善のため
に軽石、珪藻土等を、硬化時間の短縮のためにカルシウ
ム塩、高アルミナセメント、石膏等を、経済性を高める
ために粘土、砂、岩粉等の添加物又は高分子材料等を添
加することも知られている。2. Description of the Related Art Grout materials can be hardened by injecting and filling them into a space between soil and rock to reduce the amount of water leaked to the ground such as a dam foundation. When such a grout material is injected and filled, it is possible to quickly fill even a narrow and variously shaped gap without causing damage to the ground or the like, and it is necessary to stabilize it for a long period of time. There is. Therefore, it is desired that the material component be fine particles or a solution that can pass through small holes, cracks and the like. Further, upon curing, it is desired that the amount of shrinkage is small and that it has sufficient strength after curing. Therefore, it is desired to have excellent fluidity that can be applied to a method of osmotic injection at low pressure and low speed so as not to cause cracking and osmotic fracture during injection filling. Various cement-based grout materials have been proposed as such grout materials. Specifically, for example, cement-water-based grout material, cement-clay (bentonite, loam, etc.)-Water-based grout material, cement-asphalt-based grout material, ultrafine-grain cement-water-based grout material, etc. are known and necessary. Pumice, diatomaceous earth, etc. for improving workability, calcium salt, high-alumina cement, gypsum, etc. for shortening hardening time, and clay, sand, rock powder, etc. for improving economic efficiency. It is also known to add materials or polymer materials.
【0003】しかしながら、従来のセメント系グラウト
材では、超微粒子セメントを除いて、粒径が比較的大き
いために、グラウトの難易の程度を示すグラウタビリテ
ィが低く、狭い間隙への注入が困難となり、しかもブリ
ージングが大きいため、特に長時間連続注入が要求され
る土質地盤への注入効果が十分でないという欠点があ
る。However, in the conventional cement-based grout material, except for the ultrafine particle cement, since the particle size is relatively large, the groutability indicating the degree of difficulty of the grout is low, and it becomes difficult to inject it into a narrow gap. Moreover, since there is a large amount of breathing, there is a drawback in that the effect of injecting into the soil, which requires continuous injection for a long time, is not sufficient.
【0004】ブリージング率を低減させるために、単位
水量を減少させたり、前記セメント−粘土−水系グラウ
ト材の使用が行われている。しかしながら、このような
水量の減少または粘土の使用は、グラウト材自体の粘度
上昇が生じるため施工性に問題が生じ、しかも低圧力、
低速度が要求される浸透注入には使用できないという欠
点があり、その使用範囲が限定されているのが現状であ
る。更にこのような粘土を添加物としたグラウト材は、
硬化物の強度の発揮が余り期待されていない例えば空胴
のグラウト施工、大きい割目を有している岩盤、沖積層
のシーリングマットの形成等に用いられているのが実状
である。In order to reduce the breathing rate, the unit amount of water is reduced and the cement-clay-water-based grout material is used. However, such a decrease in the amount of water or the use of clay causes a problem in workability because the viscosity of the grout material itself increases, and low pressure,
It has a drawback that it cannot be used for osmotic injection requiring a low speed, and at present, its use range is limited. Furthermore, the grout material with such clay as an additive,
It is actually used for grouting of cavities, rock with large crevices, formation of alluvium sealing mat, etc., where the strength of the cured product is not so expected.
【0005】また超微粒子セメント−水系グラウト材で
は、超微粒子セメント自体の粒径がグラウト材として好
ましいものであるにもかかわらず、水への均一分散が困
難であるため、注入充填時に材料の沈澱等による作業性
の低下を生じ、更には注入後の硬化物の強度等が場所に
よって異なるという欠点がある。Further, in the case of the ultrafine particle cement-water grout material, even though the particle diameter of the ultrafine particle cement itself is preferable as the grout material, it is difficult to uniformly disperse it in water, so that the material precipitates at the time of injection and filling. However, there is a drawback that the workability is deteriorated due to such problems as described above, and the strength of the cured product after injection differs depending on the location.
【0006】一方、微粒子粘土の一種であるアルミノケ
イ酸塩鉱物の一種であるカオリナイト粘土については、
窯業原料、耐火粘土セメント原料、顔料、塩化ビニル系
樹脂用充填剤等に使用することが知られている。しかし
このカオリナイト粘土をグラウト材成分として用いるこ
とについては全く知られていないのが実状である。On the other hand, regarding kaolinite clay which is a kind of aluminosilicate mineral which is a kind of fine particle clay,
It is known to be used as a ceramic raw material, a refractory clay cement raw material, a pigment, a filler for vinyl chloride resin, and the like. However, the fact is that nothing is known about using this kaolinite clay as a grout material component.
【0007】[0007]
【発明が解決しようとする課題】従って、本発明の目的
は、グラウト材中の材料の分離が少なく、土質地盤、岩
盤の狭い間隙であっても注入充填が容易であるグラウト
材を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a grout material in which the separation of the material in the grout material is small and the filling and filling can be easily performed even in a narrow space of soil or rock. It is in.
【0008】また本発明の別の目的は、硬化時の収縮性
が少なく、地盤等の破壊、パイピング等を起こすことな
く速やかに狭い間隙に注入することができ、しかも硬化
後に均等に十分な強度が得られるグラウト材を提供する
ことにある。Another object of the present invention is that it has little shrinkage upon curing, can be quickly injected into a narrow gap without causing damage to the ground, piping, etc., and has sufficient strength evenly after curing. It is to provide a grout material that can be obtained.
【0009】[0009]
【課題を解決するための手段】すなわち本発明は、上記
目的に鑑みてなされたものであり、その要旨は、セメン
ト、カオリナイト粘土及び水を必須成分として含むこと
を特徴とするグラウト材にある。That is, the present invention has been made in view of the above object, and the gist thereof is a grout material characterized by containing cement, kaolinite clay, and water as essential components. .
【0010】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.
【0011】本発明のグラウト材において、必須材料成
分として用いるセメントは、通常セメント系グラウト材
に使用される普通ポルトランドセメント、超微粒子セメ
ント等を用いることができ、特に粒径の小さい超微粒子
セメントの使用が好ましい。該セメントの最大粒径は
0.1mm、特に0.01mmであるのが好ましい。In the grout material of the present invention, the cement used as an essential material component may be ordinary portland cement, ultrafine particle cement or the like which is usually used in cement-based grout material, and particularly of ultrafine particle cement having a small particle size. Use is preferred. The maximum particle size of the cement is preferably 0.1 mm, especially 0.01 mm.
【0012】本発明のグラウト材において、必須材料成
分として用いるカオリナイト粘土は、アルミノケイ酸塩
鉱物の一種であって、その化学組成の例としては、Si
O2:56〜58重量%、Al2O3:26〜28重量
%、K2O:6.5重量%以下、CaO・MgO:2重
量%以下のもの等が挙げられる。該カオリナイト粘土の
好ましい最大粒径は、0.005mmであり、具体的に
は例えば商品名「ジークライトMC」(ジークライト社
製)等の市販品があり、これらについてはそのまま用い
ることもできる。粒径が前記範囲外の場合には、狭い間
隙に対してグラウト材のグラウタビリティの確保が困難
であるので好ましくない。該カオリナイト粘土の配合割
合は、前記セメントに対し、乾燥重量比でセメント:カ
オリナイト粘土=1:0.2〜5、特に1:0.5〜1
であるのが好ましい。前記カオリナイト粘土の配合割合
が0.2未満の場合には、セメント−水系グラウト材と
同様に材料分離性(ブリージング率が大きい)に問題が
生じ、5を超える場合には、粘土による流動性の低下及
び硬化後の強度不足が生じるので好ましくない。In the grout material of the present invention, kaolinite clay used as an essential material component is a kind of aluminosilicate mineral, and its chemical composition is, for example, Si.
O 2: 56 to 58 wt%, Al 2 O 3: 26~28 wt%, K 2 O: 6.5 wt% or less, CaO · MgO: like 2 wt% or less are mentioned. The preferable maximum particle size of the kaolinite clay is 0.005 mm, and specifically, there are commercially available products such as the trade name "Zyklite MC" (manufactured by Zyklite Inc.), and these can be used as they are. . If the particle size is out of the above range, it is difficult to secure the groutability of the grout material for a narrow gap, which is not preferable. The blending ratio of the kaolinite clay is as follows: cement: kaolinite clay = 1: 0.2 to 5, especially 1: 0.5 to 1 in dry weight ratio to the cement.
Is preferred. When the compounding ratio of the kaolinite clay is less than 0.2, there is a problem in the material separability (the breathing rate is large) like the cement-water grout material, and when it exceeds 5, the fluidity by the clay is high. And the strength after curing is insufficient, which is not preferable.
【0013】本発明において、必須材料成分である前記
セメントとカオリナイト粘土との混合物に対する水の配
合割合は、注入充填する地盤等に応じて適宜選択するこ
とができるが、好ましくは(水/セメント+カオリナイ
ト粘土)比が、1:0.1〜0.5、特に1:1/8〜
1/6であるのが望ましい。この際(セメント+カオリ
ナイト粘土)が0.1未満の場合には、セメント及びカ
オリナイト粘土の分散性が低下し、0.5を超えると、
粘度が上昇し、施工性が低下するので好ましくない。In the present invention, the blending ratio of water to the mixture of the cement, which is an essential material component, and kaolinite clay can be appropriately selected according to the ground to be poured and filled, but is preferably (water / cement). + Kaolinite clay) ratio is 1: 0.1-0.5, especially 1: 1 / 8-
It is preferably 1/6. At this time, when the (cement + kaolinite clay) is less than 0.1, the dispersibility of the cement and the kaolinite clay is reduced, and when it exceeds 0.5,
It is not preferable because the viscosity increases and the workability decreases.
【0014】本発明のグラウト材には、前記必須材料成
分の他に、例えば注入充填する土質地盤、岩盤に合わせ
て、グラウト材自体の流動性及び硬化時間を調整するた
めに、商品名「マイティ150」(花王株式会社製)、
商品名「ポゾリスNo8」(ポゾリス社製)等の減水剤
を添加することもできる。該減水剤の配合割合は、グラ
ウト材中のセメント重量に対して0.5〜1.5重量%
の範囲で配合するのが好ましい。In addition to the above-mentioned essential material components, the grout material of the present invention has a trade name of "Mighty" in order to adjust the fluidity and hardening time of the grout material itself in accordance with, for example, the soil or rock ground to be filled. 150 "(manufactured by Kao Corporation),
It is also possible to add a water reducing agent such as the product name "Pozoris No8" (manufactured by Pozoris). The mixing ratio of the water reducing agent is 0.5 to 1.5% by weight with respect to the weight of cement in the grout material.
It is preferable to blend in the range of.
【0015】本発明のグラウト材を調製するには、例え
ば前記配合割合となるように水にセメント及びカオリナ
イト粘土、並びに必要に応じて他の添加剤等を、撹拌し
ながら添加し、添加終了後、更に全ての材料成分が均一
に分散するように混合撹拌する方法等により得ることが
できる。To prepare the grout material of the present invention, for example, cement and kaolinite clay and, if necessary, other additives are added to water with stirring so that the above mixing ratio is obtained, and the addition is completed. After that, it can be obtained by a method of mixing and stirring so that all the material components are uniformly dispersed.
【0016】本発明のグラウト材は、通常のグラウトポ
ンプ、グラウトミキサー等を用いて間隙の狭い場所であ
っても速やかに注入充填することができ、特に従来のグ
ラウト材では注入が困難な地盤(透水係数k=10~4c
m/s程度)においても有効に注入充填することができ
る。The grout material of the present invention can be rapidly injected and filled using a normal grout pump, grout mixer or the like even in a place having a narrow gap, and in particular, it is difficult to inject the grout material with the conventional grout material ( Permeability coefficient k = 10 ~ 4 c
Injecting and filling can be effectively performed even at (m / s).
【0017】[0017]
【発明の効果】本発明のグラウト材は、セメント、カオ
リナイト粘土及び水を必須材料成分として含有するの
で、グラウタビリティや流動性が優れており、またグラ
ウト材中の材料の分離が少なく、土質地盤、岩盤の狭い
間隙であっても注入充填が容易である。また低圧力、低
速度の注入ができ、地盤等の破壊、パイピング等が起こ
らず、しかも硬化後に十分な強度が得られる。更に減水
剤を添加することにより、注入充填する土質地盤、岩盤
に合わせて、グラウト材自体の流動性及び硬化時間を調
整することもできる。Since the grout material of the present invention contains cement, kaolinite clay and water as essential material components, it has excellent groutability and fluidity, and the separation of the material in the grout material is small and the soil quality is low. Pouring and filling is easy even in a narrow gap between the ground and rock. Further, the injection can be performed at a low pressure and a low speed, so that the ground or the like will not be broken, piping, etc., and sufficient strength can be obtained after curing. Further, by adding a water-reducing agent, it is possible to adjust the fluidity and hardening time of the grout material itself according to the soil and rock to be injected and filled.
【0018】[0018]
【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
【0019】[0019]
【実施例1〜4】 (1)グラウト材の調製 70リットルのポリバケツに、水30リットルと、減水
剤として表1に示す配合量の商品名「マイティ150」
(花王株式会社製)とを入れ、ハンドミキサーを用いて
1分間混合した後、撹拌しながら超微粒子セメントとし
て、最大粒径0.01mmの商品名「スーパーファイ
ン」(日鐡セメント株式会社製)を、次いでカオリナイ
ト粘土として、最大粒径0.005mmの商品名「ジー
クライトMC」(ジークライト社製)を順に投入し、更
に3分間混合撹拌してグラウト材を製造した。夫々の材
料成分の配合割合は、表1に示す割合で行った。Examples 1 to 4 (1) Preparation of grout material 30 liters of water in a 70 liter poly bucket, and a trade name of "Mighty 150" with a blending amount shown in Table 1 as a water reducing agent
(Manufactured by Kao Co., Ltd.) and mixed for 1 minute using a hand mixer, and then as superfine particle cement while stirring, with a maximum particle size of 0.01 mm, trade name “Super Fine” (manufactured by Nittsu Cement Co., Ltd.) Then, as a kaolinite clay, a product name “Sikhlite MC” (manufactured by Sieglite Co., Ltd.) having a maximum particle diameter of 0.005 mm was sequentially charged, and further mixed and stirred for 3 minutes to produce a grout material. The mixing ratio of each material component was the ratio shown in Table 1.
【0020】(2)供試体の作製 グラウト施工対象現場から採取した土質材料を、粒径
4.76〜2mm、2〜0.42mm、0.42〜0.
074mm及び0.074mm以下の試料に水洗いしな
がらフルイで分級し、その後含水比が各々分級した粒度
での自然含水比となるまで自然乾燥を行った。これらの
地盤材料試料を、予め室内透水試験により得られた、地
盤の透水係数と粒度、密度の関係から、各々の粒径材料
を適当な比率で混合し、直径56cm、高さ75cmの
ドラム缶に入れ、重さ10Kgのバイブレーティングダ
ンパーにより締め固め、夫々図1に示す30mmφの注
入パイプ11が設置された透水係数2.4×10~2、
1.5×10~2、7.6×10~4及び1.9×10~4c
m/sの供試体装置1を作製した。また比較のために、
3.2×10~3、2.4×10~3、6.3×10~3の供
試体を作成した。該供試体装置1は、図1に示すとお
り、供試体10の下方に高さ5cmの粘土層13を、更
にその下方に高さ10cmのコンクリート層12を、上
方に粘土層13を、周辺部に0.42mm厚の砂利層1
4を夫々備え、内部には塩化ビニル製の注入パイプ11
(φ=3cm)を挿入した状態で設置する。また上方に
設けた粘土層13には、流出水量測定用の流出水管15
が設けられている。[0020] (2) the soil material taken from a prepared grout construction object site of the specimen, the particle size 4.76~2mm, 2~0.42mm, 0.42~0.
Samples of 074 mm and 0.074 mm or less were classified with a sieve while washing with water, and then naturally dried until the water content ratio reached the natural water content ratio in each classified particle size. These ground material samples were mixed in an appropriate ratio for each particle size material from the relationship between the ground water permeability coefficient, particle size, and density, which were obtained in advance by an indoor water permeability test, and then formed into a drum with a diameter of 56 cm and a height of 75 cm. It was put in and compacted by a vibrating damper having a weight of 10 Kg, and a permeability coefficient of 2.4 × 10 2 with a 30 mmφ injection pipe 11 shown in FIG. 1 installed.
1.5 × 10 ~ 2, 7.6 × 10 ~ 4 and 1.9 × 10 ~ 4 c
A sample device 1 of m / s was produced. For comparison,
3.2 × 10 ~ 3, 2.4 × 10 ~ 3, were prepared specimens of 6.3 × 10 ~ 3. As shown in FIG. 1, the specimen apparatus 1 includes a clay layer 13 having a height of 5 cm below the specimen 10, a concrete layer 12 having a height of 10 cm below the clay layer 13, and a clay layer 13 above. 0.42mm thick gravel layer 1
4, each of which has a vinyl chloride injection pipe 11 inside
Install with (φ = 3 cm) inserted. In addition, the clay layer 13 provided above is provided with an outflow water pipe 15 for measuring the outflow water amount.
Is provided.
【0021】(3)注入試験 図1に示す供試体装置1の注入パイプ11から前記調製
したグラウト材を、最大圧力0.18kgf/cm2と
し、0.04kgf/cm2刻みで昇圧して、各圧力で
10分間保持しながら注入した。この際最大注入速度
は、0.6リットル/分/注入区間30cmとした。注
入終了後、3日間養生した供試体の透水係数、注入率、
注入材透液係数を以下のとおり測定した。その結果を表
1に示す。また注入前の地盤の透水係数Ksと、注入後
の地盤の透水係数K1との関係を図2に、注入率と、注
入前の地盤の透水係数Ksとの関係を図3に、注入後と
注入前の地盤の透水係数比(K1/Ks)と、注入前の
地盤の透水係数Ksとの関係を図4に示す。(3) Injection test The grout material prepared from the injection pipe 11 of the specimen device 1 shown in FIG. 1 was subjected to a maximum pressure of 0.18 kgf / cm 2 and a pressure of 0.04 kgf / cm 2 was increased. Injection was performed while holding each pressure for 10 minutes. At this time, the maximum injection rate was 0.6 liter / minute / injection section 30 cm. After completion of the injection, the permeability coefficient, injection rate, and
The liquid permeability coefficient of the injection material was measured as follows. The results are shown in Table 1. Further, the relationship between the hydraulic conductivity Ks of the ground before the injection and the hydraulic conductivity K1 of the ground after the injection is shown in FIG. 2, the relationship between the injection rate and the hydraulic conductivity Ks of the ground before the injection is shown in FIG. 3, and after the injection. FIG. 4 shows the relationship between the hydraulic conductivity ratio (K1 / Ks) of the ground before the injection and the hydraulic conductivity Ks of the ground before the injection.
【0022】透水係数 注入前と後に行ったもので、圧力0.02kgf/cm
2で注入パイプを通じて水を注入し、供試体から流出水
量を測定する。次いで流出水量と注水時間の関係からダ
ルシー則に基づき、下記数1に従って透水係数を計算す
る。Water permeability was performed before and after the injection, and the pressure was 0.02 kgf / cm.
Inject water through the injection pipe in 2 and measure the amount of runoff water from the specimen. Then, the permeability coefficient is calculated according to the following equation 1 based on the Darcy's law from the relationship between the amount of runoff water and the injection time.
【0023】[0023]
【数1】 [Equation 1]
【0024】注入率 あらかじめ計算した供試体の間隙(水と空気が占める体
積)に対する注入された注入材の体積の比を下記数2に
より測定する。 Injection ratio The ratio of the volume of the injected injection material to the gap (volume occupied by water and air) of the specimen calculated in advance is measured by the following mathematical formula 2.
【0025】[0025]
【数2】 [Equation 2]
【0026】粘度 注入試験前に、B型粘度計又はファンネル粘度計により
測定した。Before the viscosity injection test, the viscosity was measured with a B type viscometer or a funnel viscometer.
【0027】[0027]
【比較例1〜3】カオリナイト粘土の代わりに、ベント
ナイトを用い(比較例1)、カオリナイト粘土を用いな
い(比較例2)、超微粒子セメントを用いない(比較例
3)以外は、実施例1と同様にグラウト材を調製し、表
1に示す透水係数の供試体にそれぞれ注入し、各注入試
験を行った。その結果を表1に示す。また注入前の地盤
の透水係数Ksと、注入後の地盤の透水係数K1との関
係を図2に、注入率と、注入前の地盤の透水係数Ksと
の関係を図3に、注入後と注入前の地盤の透水係数比
(K1/Ks)と、注入前の地盤の透水係数Ksとの関
係を図4に示す。[Comparative Examples 1 to 3] Bentonite was used instead of kaolinite clay (Comparative Example 1), kaolinite clay was not used (Comparative Example 2), and ultrafine particle cement was not used (Comparative Example 3). A grout material was prepared in the same manner as in Example 1, and the grout material was injected into each of the specimens having the water permeability shown in Table 1 to perform each injection test. The results are shown in Table 1. Further, the relationship between the hydraulic conductivity Ks of the ground before the injection and the hydraulic conductivity K1 of the ground after the injection is shown in FIG. 2, the relationship between the injection rate and the hydraulic conductivity Ks of the ground before the injection is shown in FIG. 3, and after the injection. FIG. 4 shows the relationship between the hydraulic conductivity ratio (K1 / Ks) of the ground before the injection and the hydraulic conductivity Ks of the ground before the injection.
【0028】[0028]
【表1】 [Table 1]
【図1】図1は、本発明の実施例で作製した供試体の概
略図である。FIG. 1 is a schematic view of a specimen manufactured in an example of the present invention.
【図2】図2は、実施例及び比較例における注入前の地
盤の透水係数Ksと、注入後の地盤の透水係数K1との
関係を示すグラフである。FIG. 2 is a graph showing the relationship between the hydraulic conductivity Ks of the ground before the injection and the hydraulic conductivity K1 of the ground after the injection in Examples and Comparative Examples.
【図3】図3は、実施例及び比較例における注入率と、
注入前の地盤の透水係数Ksとの関係を示すグラフであ
る。FIG. 3 is an injection rate in Examples and Comparative Examples,
It is a graph which shows the relationship with the hydraulic conductivity Ks of the ground before injection.
【図4】図4は、実施例及び比較例における注入後と注
入前の地盤の透水係数比(K1/Ks)と、注入前の地
盤の透水係数Ksとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the permeability coefficient ratio (K1 / Ks) of the ground after injection and before the injection and the water permeability coefficient Ks of the ground before the injection in Examples and Comparative Examples.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 民夫 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 井上 素行 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 千代田 将明 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 河澄 守 山梨県甲府市丸の内1丁目10番7号 東京 電力株式会社山梨支店内 (72)発明者 大野 睦雄 東京都港区北青山2−5−8 株式会社間 組内 (72)発明者 トラン デュク フィ オアン 東京都港区北青山2−5−8 株式会社間 組内 (72)発明者 沖 昭夫 東京都渋谷区桜丘町十五番十七号 日本基 礎技術株式会社東京本社内 (72)発明者 安部 章正 東京都渋谷区桜丘町十五番十七号 日本基 礎技術株式会社東京本社内 (72)発明者 滝沢 紀夫 東京都中央区銀座8丁目14番14号 日特建 設株式会社内 (72)発明者 横井 一秀 東京都中央区銀座8丁目14番14号 日特建 設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tamio Masuda 1-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inoue Motoyuki 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Kyoden Electric Co., Ltd. (72) Inventor Masaaki Chiyoda 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. (72) Mori Kawasumi 1-10-7 Marunouchi, Kofu-shi, Yamanashi TEPCO In Yamanashi Branch (72) Inventor Mutsuu Ono 2-5-8 Kita-Aoyama, Minato-ku, Tokyo In-house Group (72) Inventor Tran Duc Fioan 2-5-8 Kita-Aoyama, Minato-ku, Tokyo In-between Co., Ltd. (72) Inventor Akio Oki 15-15 Sakuragaoka-cho, Shibuya-ku, Tokyo Japan Fundamental Technology Co., Ltd.Tokyo Head Office (72) Inventor Akasa Abe Tokyo Shibu 15-15 Sakuragaoka-cho, Tokyo, Japan Fundamental Technology Co., Ltd.Tokyo Head Office (72) Inventor Norio Takizawa 8-14-14 Ginza, Chuo-ku, Tokyo Nissho Construction Co., Ltd. (72) Inventor Hajime Yokoi Hide 14-14 Ginza, Chuo-ku, Tokyo Nichiko Construction Co., Ltd.
Claims (1)
須成分として含むことを特徴とするグラウト材。1. A grout material containing cement, kaolinite clay and water as essential components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25477492A JP2984876B2 (en) | 1992-09-24 | 1992-09-24 | Grout wood |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25477492A JP2984876B2 (en) | 1992-09-24 | 1992-09-24 | Grout wood |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH073264A true JPH073264A (en) | 1995-01-06 |
JP2984876B2 JP2984876B2 (en) | 1999-11-29 |
Family
ID=17269700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25477492A Expired - Fee Related JP2984876B2 (en) | 1992-09-24 | 1992-09-24 | Grout wood |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2984876B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336220A (en) * | 2005-05-31 | 2006-12-14 | Shimizu Corp | Soil improvement method |
KR100660080B1 (en) * | 2004-11-18 | 2006-12-22 | 유겐가이샤 시모다기쥬쯔겐뀨죠 | Grout |
JP2010168421A (en) * | 2009-01-20 | 2010-08-05 | Toda Constr Co Ltd | Plastic grout material |
JP2018204349A (en) * | 2017-06-07 | 2018-12-27 | フジモリ産業株式会社 | Natural ground improvement evaluation test method and device |
JP2018204350A (en) * | 2017-06-07 | 2018-12-27 | フジモリ産業株式会社 | Improvement evaluation test of ground and method |
CN114292071A (en) * | 2022-01-10 | 2022-04-08 | 中国电建集团中南勘测设计研究院有限公司 | Quasi-colloidal slurry and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108716410B (en) * | 2018-05-21 | 2020-05-05 | 宁波大学 | Mechanical method connecting channel high-strength elastic wall post-grouting slurry and grouting method |
-
1992
- 1992-09-24 JP JP25477492A patent/JP2984876B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100660080B1 (en) * | 2004-11-18 | 2006-12-22 | 유겐가이샤 시모다기쥬쯔겐뀨죠 | Grout |
JP2006336220A (en) * | 2005-05-31 | 2006-12-14 | Shimizu Corp | Soil improvement method |
JP2010168421A (en) * | 2009-01-20 | 2010-08-05 | Toda Constr Co Ltd | Plastic grout material |
JP2018204349A (en) * | 2017-06-07 | 2018-12-27 | フジモリ産業株式会社 | Natural ground improvement evaluation test method and device |
JP2018204350A (en) * | 2017-06-07 | 2018-12-27 | フジモリ産業株式会社 | Improvement evaluation test of ground and method |
CN114292071A (en) * | 2022-01-10 | 2022-04-08 | 中国电建集团中南勘测设计研究院有限公司 | Quasi-colloidal slurry and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2984876B2 (en) | 1999-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1236699A1 (en) | Composite material and shaped article with thermal conductivity and specific gravity on demand | |
JP2011038104A (en) | Chemical agent for improving engineering properties of soil | |
Bayesteh et al. | Effect of stone powder on the rheological and mechanical performance of cement-stabilized marine clay/sand | |
Mohamad et al. | Fresh state and mechanical properties of self compacting concrete incorporating high volume fly ash | |
Muthupriya et al. | Strength study on fiber reinforced self-compacting concrete with fly ash and GGBFS | |
JPH073264A (en) | Grout material | |
CN108529934B (en) | Self-compacting concrete and preparation method thereof | |
US7678191B2 (en) | Fast-setting pourable mortars with high fluidity | |
Hatem et al. | Rheological properties of low pH cement-palygorskite injection grout | |
JP6508526B2 (en) | Weight fluidization treated soil | |
JP3291810B2 (en) | Deformed concrete block for breakwater and method of manufacturing the same | |
Anagnostopoulos | Physical and Mechanical Properties of Injected Sand with Latex—Superplasticized Grouts | |
JPH0335251B2 (en) | ||
JP3088628B2 (en) | Self-hardening stabilizer | |
JPH02102162A (en) | Grouting material | |
KR100624364B1 (en) | manufacturing method of readymix concrete | |
JP3101129B2 (en) | Method of manufacturing heavy concrete | |
KR102416477B1 (en) | Liquidity filling using stone aggregate wastewater treatment sludge | |
JP6762595B1 (en) | Two-component plastic grout material | |
JP2019099435A (en) | Fresh concrete, and manufacturing method of steel bar concrete hardened body using the same | |
JP7441685B2 (en) | Fluidized soil and its manufacturing method | |
JPS6358775B2 (en) | ||
JP3405350B2 (en) | Deformed concrete block for breakwater and method of manufacturing the same | |
JPS635243B2 (en) | ||
RU2165394C1 (en) | Method of preparation of concrete mix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |