JPH07325016A - Reflectance measuring apparatus - Google Patents

Reflectance measuring apparatus

Info

Publication number
JPH07325016A
JPH07325016A JP11870094A JP11870094A JPH07325016A JP H07325016 A JPH07325016 A JP H07325016A JP 11870094 A JP11870094 A JP 11870094A JP 11870094 A JP11870094 A JP 11870094A JP H07325016 A JPH07325016 A JP H07325016A
Authority
JP
Japan
Prior art keywords
sample
reflection
measurement
angle
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11870094A
Other languages
Japanese (ja)
Inventor
Osamu Ando
修 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11870094A priority Critical patent/JPH07325016A/en
Publication of JPH07325016A publication Critical patent/JPH07325016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out measurement for an unknown specimen while the incident angle of luminous fluxes to be measured being set correctly by setting an optical axis correctly by using an adjusting mark having a small hole and a reflection standard mirror before the measurement. CONSTITUTION:An adjusting mark 24 having a small hole 25 is set at a prescribed position in a reflecting optical measuring system 10. At that time, positioning is so carried out by moving the whole body of the reflecting optical measuring system 10 as to make the luminous fluxes to be measured pass the small hole 25. Meanwhile, a reflection standard mirror 21 is set at a position at which a specimen is to be installed. That is, if the angle between the specimen standard face 14 and the impinging light is 30 degrees, the reflection angle of the reflection standard mirror 21 is set precisely at 30 degrees. If there is difference, the reflected light comes out of the impinging light route and impinges against a wall face of the adjusting mark 24 without passing the small hole 25. Consequently, the incident angle of the light to the specimen can be corrected precisely by positioning the reflecting optical measuring system 10 while observing the reflected light of the wall face of the adjusting mark 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料の光学的反射率を測
定する装置に関し、さらに詳しくは試料への測定光束の
入射角度を校正できるようにした反射率測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the optical reflectance of a sample, and more particularly to a reflectance measuring apparatus capable of calibrating the incident angle of a measuring light beam on the sample.

【0002】[0002]

【従来の技術】試料、とくに固体試料の光学的特性の測
定のうち、反射率の測定は、光学素子(ミラー、レンズ
等)の性能評価・品質管理のほか、試料が半導体材料の
ようなものの場合には、反射率測定から、有益な物性的
情報がえられる重要な測定手法である。
2. Description of the Related Art Of the optical characteristics of a sample, especially a solid sample, the reflectance is measured not only for the performance evaluation and quality control of optical elements (mirrors, lenses, etc.), but also for samples such as semiconductor materials. In some cases, it is an important measurement method that can obtain useful physical property information from the reflectance measurement.

【0003】反射率測定装置としては、専用の測定装置
のほか、より簡便かつ汎用的に分光反射率特性を測定す
る方法として、汎用の分光光度計に特別な付属装置を取
り付けて測定する方法がある。
As a reflectance measuring device, in addition to a dedicated measuring device, as a method for measuring the spectral reflectance characteristic more simply and versatilely, a method in which a special accessory device is attached to a general-purpose spectrophotometer is used. is there.

【0004】また、反射率測定には、反射率を基準試料
に対する相対値として測定する相対反射率測定と、基準
試料を使用せず、反射率の絶対値を測定する絶対反射率
測定があり、それぞれ、いくつかの方法が知られてい
る。
The reflectance measurement includes a relative reflectance measurement for measuring the reflectance as a relative value with respect to a reference sample and an absolute reflectance measurement for measuring the absolute value of the reflectance without using the reference sample. Several methods are known for each.

【0005】図5は相対反射率測定装置の概略構成を示
す図である。外部光源からの測定光束は、第1ミラー1
1によって、試料方向に屈曲され試料Sに当てられる。
試料Sからの反射光は、第2ミラー12によって、外部
の測光光学系に導入される。測定は、あらかじめ用意し
た基準ミラーS0と未知の試料Sとを交互に測定し、試
料Sの反射率を基準ミラーS0の反射率に対する相対値
として求めることにより行う。
FIG. 5 is a diagram showing a schematic configuration of a relative reflectance measuring apparatus. The measurement light flux from the external light source is the first mirror 1
1, the sample S is bent in the sample direction and applied to the sample S.
The reflected light from the sample S is introduced into the external photometric optical system by the second mirror 12. The measurement is performed by alternately measuring the reference mirror S0 prepared in advance and the unknown sample S, and determining the reflectance of the sample S as a relative value with respect to the reflectance of the reference mirror S0.

【0006】反射率測定のもうひとつの方法として、絶
対反射率測定装置がある。この方法・装置の構成の詳細
は、本願と同じ発明者によって既に出願されたものにも
開示されているが、基本的には、試料測定時と基準測定
時に光路が完全に等価となるように反射率測定装置の各
ミラーの位置・角度を切り替えて、基準試料を使用せ
ず、試料の絶対的な反射率を測定するものである。
Another method of measuring reflectance is an absolute reflectance measuring device. The details of the configuration of this method / apparatus are also disclosed in the one already filed by the same inventor as the present application, but basically, in order to make the optical paths completely equivalent during sample measurement and reference measurement, The absolute reflectance of the sample is measured by switching the position and angle of each mirror of the reflectance measuring device without using the reference sample.

【0007】相対反射率測定であれ、絶対反射率測定で
あれ、試料の反射率は、試料への測定光束の入射角度に
よって変化するため、反射率測定装置では相対・絶対反
射率測定とも種々の角度の装置を用意し、測定目的に応
じて使い分けるのが、一般的である。
Whether the relative reflectance measurement or the absolute reflectance measurement, the reflectance of the sample changes depending on the incident angle of the measurement light beam to the sample. Generally, an angle device is prepared and used properly according to the purpose of measurement.

【0008】また、試料の反射率特性は、とくに試料へ
の光束の入射角が大きくなると、光束の偏光状態の影響
をうける。このため、反射率測定装置には、光束の偏光
状態を一定にするための偏光子を取り付けられるように
しておくのが一般的である。
The reflectance characteristic of the sample is affected by the polarization state of the beam, especially when the angle of incidence of the beam on the sample increases. For this reason, it is general that the reflectance measuring device is provided with a polarizer for keeping the polarization state of the light flux constant.

【0009】[0009]

【発明が解決しようとする課題】上記のように、試料の
反射率特性は、試料への測定光束の入射角に依存し、そ
の度合いは、一般に入射角が大きくなるほど大きくな
る。また、実際の反射率測定においては、たとえば、光
学素子の反射率特性を測定しようとする場合、素子の実
際の使用状態における反射率が測定できることが望まし
い。
As described above, the reflectance characteristic of the sample depends on the incident angle of the measurement light beam on the sample, and the degree thereof generally increases as the incident angle increases. Further, in the actual reflectance measurement, for example, when the reflectance characteristic of the optical element is to be measured, it is desirable to be able to measure the reflectance in the actual usage state of the element.

【0010】したがって、試料への入射角は、さまざま
な大きさが想定され、しかもその角度精度が反射率測定
の精度そのものに影響を与えることになる。
Therefore, various angles of incidence on the sample are assumed, and the angle accuracy affects the accuracy of reflectance measurement itself.

【0011】しかしながら、従来の反射率測定装置、と
くに、汎用の分光光度計の付属装置として用意された装
置においては、試料への測定光束の入射角度の校正がき
わめて困難である、という問題があった。これは、以下
のような理由による。
However, in the conventional reflectance measuring apparatus, especially in the apparatus prepared as an auxiliary apparatus of the general-purpose spectrophotometer, there is a problem that it is extremely difficult to calibrate the incident angle of the measuring light beam on the sample. It was This is for the following reasons.

【0012】ひとつには、試料への光束の入反射角度そ
のものを測定することが、きわめて困難であることによ
る。すなわち、この種の装置の光学調整では、一般に装
置を構成する各ミラー等の中心が、測定光束の中心に一
致するように各ミラーの位置・角度を調整することによ
って行われるのであるが、この方法では、装置全体とし
ての調整は可能であっても、肝心の試料への光束の入射
角そのものを調整することはできない。
One reason is that it is extremely difficult to measure the angle of incidence / reflection of the light beam on the sample. That is, the optical adjustment of this type of device is generally performed by adjusting the position and angle of each mirror so that the center of each mirror or the like that configures the device coincides with the center of the measurement light beam. According to the method, although the entire apparatus can be adjusted, it is not possible to adjust the incident angle itself of the light flux to the sample of interest.

【0013】図6に全体としてこの方法によって調整さ
れたにもかかわらず、試料への入射角が所定の角度から
ずれている状態を示す。この例は、試料への測定光束の
入射角が30度である相対反射率測定装置の場合につい
て示したものである。図5は、第1ミラー11が、試料
への測定光束の入射角を30度とするために必要な角
度、すなわち60度から3度ずれた状態を示している。
FIG. 6 shows a state in which the incident angle on the sample is deviated from a predetermined angle, although the angle is adjusted by this method as a whole. This example shows the case of a relative reflectance measuring device in which the incident angle of the measurement light beam on the sample is 30 degrees. FIG. 5 shows a state in which the first mirror 11 is deviated from the angle necessary for setting the incident angle of the measurement light beam on the sample to 30 degrees, that is, 60 degrees by 3 degrees.

【0014】光学調整は、第1ミラー11のこの誤差に
かかわらず、第1ミラー11および、第2ミラー12と
測定基準面14のそれぞれ中心に光束中心が一致するよ
うにセットされている。
The optical adjustment is set so that the center of the light beam coincides with the center of each of the first mirror 11, the second mirror 12 and the measurement reference surface 14 regardless of this error of the first mirror 11.

【0015】この結果、見かけ上の光学調整が完全にお
こなわれているようであっても、実際には、測定基準面
14が正規の位置に対して、左へ約7.5mm ずれ、かつ、
測定光の入射角は所定の角度である30度から、約0.4 度
ずれている。しかもこのズレを検出する方法はない(た
だし、この例のズレの値は第1ミラーと試料Sとの距離
を所定の値にセットしたときの値であり、この距離をさ
らに遠ざければズレの値はさらに大きくなる)。
As a result, even if the apparent optical adjustment seems to be perfectly performed, the measurement reference plane 14 is actually shifted to the left by about 7.5 mm from the normal position, and
The incident angle of the measurement light is deviated from the predetermined angle of 30 degrees by about 0.4 degrees. Moreover, there is no method for detecting this deviation (however, the deviation value in this example is a value when the distance between the first mirror and the sample S is set to a predetermined value, and if the distance is further increased, the deviation is The value will be even larger).

【0016】もうひとつのさらに大きな問題は、とくに
反射率測定装置が、分光光度計のような本体装置に対
し、その装置の付属品としての反射光学測定系を用いて
反射率測定装置が形成される場合に生ずる。すなわち、
反射率測定装置の反射光学測定系単独でかりに、完全な
調整がされた場合であっても、これを分光光度計などに
取り付けた場合、反射光学測定系と分光光度計との相対
関係が、理想的な状態になっていないことがありうる。
また、分光光度計側の光学調整が、反射率測定の要求角
度精度をみたせるほどに完全ではない場合も考えられ
る。
Another more serious problem is that the reflectance measuring device is formed by using a reflection optical measuring system as an accessory to the main body device such as a spectrophotometer. Occurs when That is,
Even if the reflection optical measuring system of the reflectance measuring device is used alone, even if it is completely adjusted, when it is attached to a spectrophotometer, etc., the relative relationship between the reflection optical measuring system and the spectrophotometer is It may not be in the ideal state.
It is also conceivable that the optical adjustment on the spectrophotometer side is not perfect enough to meet the required angle accuracy of reflectance measurement.

【0017】これらの場合には、せっかく反射光学測定
系単独で正確に調整してあっても、分光光度計に取り付
けることによって、試料への入射角が所定の角度からず
れてしまうことになる。
In these cases, even if the reflection optical measuring system alone is accurately adjusted, the angle of incidence on the sample will deviate from the predetermined angle by mounting it on the spectrophotometer.

【0018】図7は付属の反射光学測定系が分光光度計
に対して光軸がずれた状態でセットされたときの様子を
示すものである。この例も、図6と同様に、試料への光
束の入射角が30度である相対反射率測定装置の場合を
示している。
FIG. 7 shows a state in which the attached catoptric measurement system is set with the optical axis deviated from the spectrophotometer. This example also shows the case of the relative reflectance measuring apparatus in which the incident angle of the light flux on the sample is 30 degrees, as in FIG.

【0019】図7の場合、反射光学測定系の第1ミラー
11、第2ミラー12および、測定基準面14はすべて
設計どおりの位置角度に取り付けられ、この状態で固定
されているものとする。このように、反射光学測定系単
独での調整が完全であったとしても、図7のように光源
と反射光学測定系との相対的位置関係がずれており、第
1ミラー11への入射角が所定の角度に対して、1度ず
れているとすると、試料への測定光束の入射角にも1度
の誤差(たとえば31度で入射)を生ずることになる。
In the case of FIG. 7, it is assumed that the first mirror 11, the second mirror 12 and the measurement reference surface 14 of the catoptric optical measurement system are all mounted at the position angles as designed and are fixed in this state. As described above, even if the adjustment by the reflection optical measurement system alone is complete, the relative positional relationship between the light source and the reflection optical measurement system is displaced as shown in FIG. 7, and the incident angle on the first mirror 11 is changed. If is deviated by 1 degree with respect to a predetermined angle, an error of 1 degree (incident at 31 degrees, for example) will also occur in the incident angle of the measurement light beam on the sample.

【0020】以上のような、従来の反射率測定装置にお
いて、試料への入射角を所定の値となるようにするに
は、反射率測定装置の光学系、および、それが分光光度
計等の付属装置である場合には、本体側との相対位置関
係をも含めて校正する方法も考えられる。しかし、メー
カにおける生産時においても困難な調整作業を、ユーザ
側で据え付け・測定時におこなうのは、実際問題として
不可能であった。
In the conventional reflectance measuring apparatus as described above, in order to make the incident angle to the sample a predetermined value, the optical system of the reflectance measuring apparatus and the optical system of the spectrophotometer are used. In the case of an accessory device, a method of calibrating it including the relative positional relationship with the main body side is also conceivable. However, as a practical problem, it is impossible for the user to carry out the adjustment work, which is difficult even at the time of production at the manufacturer, during installation and measurement.

【0021】このため従来、試料への入射角度の校正
は、所定角度における反射率既知の試料を測定しなが
ら、その反射率が所定値となるように、装置の光学系を
調整する方法によっていた。
Therefore, conventionally, the calibration of the incident angle on the sample has been performed by measuring the sample with a known reflectance at a predetermined angle and adjusting the optical system of the apparatus so that the reflectance has a predetermined value. .

【0022】しかし、この方法では、必要な角度で反射
率既知の試料がない場合には、調整が不可能となるほ
か、調整自体も測定を行いながらの、やみくもなものと
なり、多大な時間と労力を要していた。
However, according to this method, if there is no sample of which reflectance is known at the required angle, adjustment becomes impossible, and the adjustment itself becomes a messy operation while performing the measurement, and it takes a lot of time and time. It took effort.

【0023】本発明はこのような問題を解決するために
なされたものであり、測定光束の入射角が正しく校正さ
れた状態で測定ができる反射率測定装置を提供すること
を目的とする。
The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a reflectance measuring apparatus capable of performing measurement in a state where the incident angle of a measurement light beam is correctly calibrated.

【0024】[0024]

【課題を解決するための手段】上記問題を解決するため
になされた本発明は、光源から反射測定光学系内に入射
された光束を、反射測定光学系内の試料基準面に合わせ
て取り付けた被測定試料面に入射させ、被測定試料面か
らの反射光を測光光学系に導入して測定する反射率測定
装置において、小開口を有する調整的と、光束がこの小
開口を通過するように調整的を反射測定光学系に取り付
けるための調整的位置決め手段と、被測定試料の替わり
に試料基準面に合わせて取り付けられ、試料基準面とな
す角が試料基準面への入射光束の入射角と同一角度に設
定された反射面を有する反射基準ミラーとを備え、調整
的位置決め手段に取り付けられた調整的の小開口を通過
した光束が、小開口を通過して反射基準ミラーの反射面
で反射させられ、調整的に戻った戻り光の位置から光軸
を合わせるようにしたことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, in which a light beam incident from a light source into a reflection measuring optical system is attached to a sample reference plane in the reflection measuring optical system. In a reflectance measuring device that is incident on the sample surface to be measured and introduces the reflected light from the sample surface to be measured into a photometric optical system, it is adjustable with a small aperture so that the light beam passes through this small aperture. Adjustable positioning means for attaching the adjustment to the reflection measurement optical system, and is attached according to the sample reference surface instead of the sample to be measured, and the angle formed with the sample reference surface is the incident angle of the incident light beam to the sample reference surface. A reflection reference mirror having a reflection surface set at the same angle, and a light beam passing through an adjustable small aperture attached to the adjustable positioning means passes through the small aperture and is reflected by the reflection surface of the reflection reference mirror. Made me Characterized in that so as to align the optical axis from the position of back the return light Seiteki.

【0025】以下、本発明の反射率測定装置がどのよう
に作用するかを説明する。
The operation of the reflectance measuring apparatus of the present invention will be described below.

【0026】[0026]

【作用】本発明の反射率測定装置では、未知試料の測定
前に、小開口を有する調整的および反射基準ミラーを使
用して光軸合わせを行うことにより、反射測定光学系を
正規の状態に精度よくセットする。光軸合わせは次のよ
うにして行う。
In the reflectance measuring apparatus of the present invention, the optical axis of the reflectance measuring system is adjusted to the normal state by performing the optical axis alignment using the adjustable and reflecting reference mirrors having a small aperture before measuring the unknown sample. Set accurately. The optical axis alignment is performed as follows.

【0027】小開口を有する調整的を反射光学測定系上
の所定の位置、たとえば光源からの測定光束が反射光学
測定系へ入射する入射端位置にセットする。このとき光
源からの測定光束は小開口を通過するように反射光学測
定系全体を動かして位置合わせをする。
An adjuster having a small aperture is set at a predetermined position on the reflection optical measurement system, for example, an incident end position where the measurement light beam from the light source enters the reflection optical measurement system. At this time, the entire reflection optical measurement system is moved so that the measurement light beam from the light source passes through the small aperture for alignment.

【0028】一方、反射基準ミラーは試料を取り付ける
位置にセットされる。反射基準ミラーの反射面は、光学
系が理想状態にセットされているときに反射基準ミラー
に入射する光束が入射光路と同じ光路を逆にたどって反
射されるようにその試料基準面と反射面とのなす角(反
射角)が設定されている。すなわち、試料基準面と入射
光とのなす角がたとえば30度であれば反射基準ミラー
の反射角も正確に30度に設定されている。
On the other hand, the reflection reference mirror is set at the position where the sample is attached. The reflection surface of the reflection reference mirror is such that the light beam incident on the reflection reference mirror when the optical system is set to the ideal state is reflected by tracing the same optical path as the incident light path in the opposite direction. The angle formed by and (the reflection angle) is set. That is, if the angle formed by the sample reference surface and the incident light is, for example, 30 degrees, the reflection angle of the reflection reference mirror is also accurately set to 30 degrees.

【0029】小開口を有する調整的および反射基準ミラ
ーを取り付けた状態で、光源から光を入射させると、入
射光は調整的の小開口を通過し、反射基準ミラーの反射
面に当たって反射される。反射測定光学系が正確にセッ
トされているときは反射基準ミラーで反射された光束は
正確に入射光と同じ光路をたどって調整的の小開口を通
過するが、もしもずれが生じていると反射光は入射光路
からずれ、調整的の小開口を通らずに調整的の壁面に当
たることになる。このとき、たとえ入射角のずれが微少
であっても光束が光路を往復する間にずれが増幅される
ので、調整的の壁面に当たった反射光の位置を観測すれ
ば容易にずれを知ることができる。
When light is incident from the light source with the adjusting and reflection reference mirrors having small apertures attached, the incident light passes through the small adjustment apertures and is reflected by the reflecting surface of the reflection reference mirror. When the reflection measurement optical system is set correctly, the light beam reflected by the reflection reference mirror follows the same optical path as the incident light and passes through the small aperture for adjustment, but is reflected if there is a deviation. The light deviates from the incident light path and hits the adjustable wall without passing through the small aperture. At this time, even if the deviation of the incident angle is small, the deviation is amplified while the light flux travels back and forth in the optical path, so it is easy to know the deviation by observing the position of the reflected light that hits the adjustable wall surface. You can

【0030】したがって、調整的壁面の反射光を観察し
ながら反射光学測定系の位置合わせをすることにより正
確に試料への入射角を校正することができ、正確に校正
された状態の反射率測定装置を容易に得ることができ
る。
Therefore, the incident angle to the sample can be accurately calibrated by aligning the reflection optical measurement system while observing the reflected light on the adjustable wall surface, and the reflectance measurement in the accurately calibrated state can be performed. The device can be easily obtained.

【0031】[0031]

【実施例】以下、本発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】図1は本発明の一実施例である反射率測定
装置の反射測定光学系の要部を示す構成図であり、図2
は、図1において反射基準ミラーおよび調整的をはずし
たときの反射率測定装置の全体図である。また、図3
は、本発明の反射基準ミラーを示す平面図(a)、正面
図(b)であり、図4は調整的を示す平面図(a)、右
側面図(b)である。なお、以下に示す本実施例は機構
が簡単で説明が容易な相対反射率測定装置の場合のもの
であるが、絶対反射率測定装置の場合も基本的には同様
の構成が可能である。
FIG. 1 is a block diagram showing a main part of a reflection measuring optical system of a reflectance measuring apparatus according to an embodiment of the present invention.
FIG. 2 is an overall view of the reflectance measuring apparatus when the reflection reference mirror and the adjustment are removed in FIG. 1. Also, FIG.
[Fig. 4] is a plan view (a) and a front view (b) showing a reflection reference mirror of the present invention, and Fig. 4 is a plan view (a) and a right side view (b) showing adjustment. The present embodiment described below is for a relative reflectance measuring device whose mechanism is simple and easy to explain, but basically the same configuration is also possible for an absolute reflectance measuring device.

【0033】図において10は反射光学測定系であり、
光源19と測光光学系20との間に挿入された状態で用
いられ、これらにより反射率測定装置1が構成される。
反射光学測定系10は、主に第1ミラー11、第2ミラ
ー12と試料位置決め部13とを有し、試料位置決め部
13の試料が接して取り付けられる側の面は試料基準面
14(この面に被測定試料の反射率測定面を当接するこ
とで試料への入射光があらかじめ設定された入射角で入
射できるようにされている面)を形成している。図に示
すように本実施例では一例として入射角30度での反射
率測定の場合を示している。
In the figure, 10 is a reflection optical measuring system,
It is used in a state of being inserted between the light source 19 and the photometric optical system 20, and these constitute the reflectance measuring device 1.
The catoptric optical measurement system 10 mainly includes a first mirror 11, a second mirror 12, and a sample positioning portion 13, and the surface of the sample positioning portion 13 on which the sample is in contact is attached to the sample reference surface 14 (this surface). By making contact with the reflectance measurement surface of the sample to be measured, a surface is formed so that the incident light on the sample can be incident at a preset incident angle. As shown in the drawing, in this embodiment, as an example, the case of measuring the reflectance at an incident angle of 30 degrees is shown.

【0034】この試料基準面14に合わせて基準試料1
5あるいは未知試料16が当接されることにより、被測
定試料面に対し簡単に所定の入射角で測定光を入射させ
ることができる。被測定試料としての基準試料15ある
いは未知試料16はバネ等で付勢された試料押圧アーム
17により固定される。
The reference sample 1 is aligned with the sample reference surface 14.
When 5 or the unknown sample 16 is brought into contact, the measurement light can be easily incident on the surface of the sample to be measured at a predetermined incident angle. The reference sample 15 or the unknown sample 16 as a sample to be measured is fixed by a sample pressing arm 17 biased by a spring or the like.

【0035】試料位置決め部13には、被測定試料を取
り付けたときの光の反射位置26、すなわち入反射中心
を中心に回転できるための周知の調整機構(例えば入反
射中心位置を中心に入反射面と垂直な面内で回転できる
ための回転軸により資料位置決め部が支持した構造のも
の)が設けられている。 反射測定光学系10の光源1
9側の端付近には、後述する調整的24を固定する位置
決めピン18aが設けられる。位置決めピン18aは、
調整的24を取り付けたときに調整的24が光路を遮る
ような位置であればよいのであるが、本願発明にとって
は被測定試料の光の反射位置26からなるべく遠ざかっ
た位置に設けるほうが効果的であるので、光源19側の
端部に取り付けている。
A well-known adjusting mechanism (for example, the center of the entrance / reflection center position) is used to rotate the sample positioning portion 13 at the light reflection position 26 when the sample to be measured is attached, that is, the center of the entrance / reflection. There is provided a structure in which the material positioning portion is supported by a rotation shaft capable of rotating in a plane perpendicular to the plane). Light source 1 of reflection measurement optical system 10
A positioning pin 18a for fixing an adjusting member 24 described later is provided near the end on the 9th side. The positioning pin 18a is
It suffices that the adjusting member 24 be positioned so as to block the optical path when the adjusting member 24 is attached, but for the present invention, it is more effective to provide the adjusting member 24 at a position as far as possible from the light reflection position 26 of the sample to be measured. Therefore, it is attached to the end portion on the light source 19 side.

【0036】反射基準ミラー21は、図3に示すように
基準面22を有し、この基準面22に対して例えば角度
誤差0.1度程度の高い角度精度で30度の角をなすよ
うに光学素子の製造技術を用いてその反射面23が加工
されている。この反射基準ミラー21は光軸合わせの際
に、基準試料15、未知試料16の替わりに試料押圧ア
ーム17によりその基準面22を位置決め部13の試料
基準面14に接するように取り付けられるので、基準面
22は取り付け時には試料基準面14と同一面になる。
The reflection reference mirror 21 has a reference surface 22 as shown in FIG. 3, and forms an angle of 30 degrees with respect to the reference surface 22 with a high angle accuracy of about 0.1 degree. The reflecting surface 23 is processed by using the optical element manufacturing technique. The reflection reference mirror 21 is attached so that the reference surface 22 of the reference sample 15 and the unknown sample 16 is brought into contact with the sample reference surface 14 of the positioning portion 13 by the sample pressing arm 17 instead of the reference sample 15 and the unknown sample 16 during the optical axis alignment. The surface 22 is flush with the sample reference surface 14 when mounted.

【0037】調整的24は図4に示すように、台部と、
これに対して垂直に立った壁部とからなるもので、壁部
には小開口25が設けられ、台部には位置決め孔18b
が設けられている。光軸合わせのときは、反射光学系の
位置決めピン18aをこの位置決め孔18bに挿入する
ようにして固定する。調整的24の小開口25は、調整
的24を位置決めピン18aと位置決め孔18bとによ
り固定した状態で光源19からの光束が小開口25を通
過するように設定されている。
As shown in FIG. 4, the adjusting member 24 has a base portion,
On the other hand, a small vertical opening 25 is provided in the wall, and a positioning hole 18b is provided in the base.
Is provided. When aligning the optical axes, the positioning pin 18a of the reflective optical system is inserted and fixed in the positioning hole 18b. The small opening 25 of the adjustable 24 is set so that the light flux from the light source 19 passes through the small opening 25 with the adjustable 24 fixed by the positioning pin 18a and the positioning hole 18b.

【0038】以上のような構成を有する反射率測定装置
の動作を説明する。まず、通常の測定を行うときは、基
準試料15あるいは未知試料16を試料押圧アーム17
により試料位置決め部13に当接する。このとき、調整
的24ははずしてあり、図2に示すように光源19から
の光束は第1ミラー11(本実施例では測光光束に対し
60度傾いて設置)で反射され、続いて入射角30度で
もって被測定試料に入射するとともに同角度で反射され
て第2ミラー12(本実施例では測光光束に対し60度
傾いて設置)により屈曲された後、測光光学系20に送
られる。そして、基準試料15と未知試料16とを交互
に測定し、これらの測光値の比率から、未知試料の基準
試料に対する相対反射率を測定することができる。
The operation of the reflectance measuring device having the above structure will be described. First, when performing a normal measurement, the reference sample 15 or the unknown sample 16 is attached to the sample pressing arm 17
It contacts the sample positioning part 13. At this time, the adjuster 24 is removed, and the light flux from the light source 19 is reflected by the first mirror 11 (installed at an angle of 60 degrees with respect to the photometric light flux in this embodiment) as shown in FIG. The light enters the sample to be measured at 30 degrees, is reflected at the same angle, is bent by the second mirror 12 (installed at an angle of 60 degrees with respect to the photometric light beam in this embodiment), and is then sent to the photometric optical system 20. Then, the reference sample 15 and the unknown sample 16 are alternately measured, and the relative reflectance of the unknown sample to the reference sample can be measured from the ratio of these photometric values.

【0039】一方、光源19と測光系20との間の所定
の位置から外してあった反射測定光学系を新しく取り付
ける場合などには測定開始前に光軸合わせを行う。試料
への入射角度を所定の値(本実施例では30度)にする
ために、前述のように第1ミラー11、第2ミラー1
2、は測定光束に対して60度にし、かつ位置決め部1
3の試料基準面14の相対角度を正確に定めるだけでな
く、光源19および測光部20の外部光学系との相対角
をも正確に調整することになる。
On the other hand, when a reflection measurement optical system, which has been removed from a predetermined position between the light source 19 and the photometric system 20, is newly attached, the optical axis is aligned before the measurement is started. In order to make the incident angle to the sample a predetermined value (30 degrees in this embodiment), the first mirror 11 and the second mirror 1 are set as described above.
2 is 60 degrees with respect to the measurement light beam, and the positioning unit 1
Not only the relative angle of the sample reference surface 14 of No. 3 is accurately determined, but also the relative angles of the light source 19 and the photometric unit 20 with the external optical system are accurately adjusted.

【0040】ところが、反射率測定光学系の構成を検討
すると、実際に必要なのは、装置全体、および装置外の
光学系との相対的角度関係のすべての調整を必要とする
のではなく、被反射測定試料への測定光の入射角を決定
するのは、試料への入射光線30が、試料基準面14と
なす角度であって、この部分さえ正確に調整されていれ
ば良いことがわかる。そのため、光軸合わせは次のよう
にして行う。
However, when considering the configuration of the reflectance measuring optical system, what is actually required is not all the adjustment of the relative angular relationship with the entire optical system and the optical system outside the device, but the reflection It is understood that the angle of incidence of the measurement light on the measurement sample is determined by the angle of the light beam 30 incident on the sample with respect to the sample reference surface 14, and it suffices that only this portion be adjusted accurately. Therefore, the optical axis alignment is performed as follows.

【0041】まず、位置決め孔18bに位置決めピン1
8aをはめ合わせるようにして、調整的24を反射光学
系10に固定する。このとき測定光束の中心が小開口の
中心と正確に一致してなくても後で調整するので問題な
い。
First, the positioning pin 1 is placed in the positioning hole 18b.
The adjusting member 24 is fixed to the reflection optical system 10 by fitting 8a. At this time, even if the center of the measurement light beam does not exactly coincide with the center of the small aperture, there is no problem because the adjustment will be performed later.

【0042】また、試料位置決め部13の試料基準面1
4に反射基準ミラー21の基準面22が当接するように
反射基準ミラー21を取り付け試料押圧アーム17にて
固定する。このとき、図1に示すように光源19からの
測定光束が反射基準ミラー21の反射面23に当たるよ
うにしてある。
Further, the sample reference surface 1 of the sample positioning portion 13
The reflection reference mirror 21 is attached so that the reference surface 22 of the reflection reference mirror 21 abuts on the surface 4, and is fixed by the sample pressing arm 17. At this time, as shown in FIG. 1, the measurement light beam from the light source 19 strikes the reflection surface 23 of the reflection reference mirror 21.

【0043】調整用的24の小開口25は、分光器等の
光源19からの測定光束が、その中心を通過するような
設計上の位置に取り付けられているが、実際には、微妙
な調整誤差および、反射測定光学系10と光源19との
相対的な位置ズレによって、必ずしも測定光束と一致し
ない。
The small aperture 25 of the adjusting device 24 is mounted at a designed position such that the measurement light beam from the light source 19 such as a spectroscope passes through its center. Due to an error and a relative positional deviation between the reflection measurement optical system 10 and the light source 19, the measurement light flux does not always match.

【0044】この場合には、光源19側を調整すること
なく、反射測定光学系10全体を光源に対して相対的に
調整し、測定光束が、調整用的の小開口25の中心を通
過するようにする。
In this case, the entire reflection measuring optical system 10 is adjusted relative to the light source without adjusting the light source 19 side, and the measurement light beam passes through the center of the small opening 25 for adjustment. To do so.

【0045】測定光束は、小開口25を通過後、図1の
矢印Aのように進行し、反射測定光学系10の第1ミラ
ー11によって反射され、光路30を進んで反射基準ミ
ラー21の反射面23に当たる。
After passing through the small aperture 25, the measurement light beam travels as shown by arrow A in FIG. 1, is reflected by the first mirror 11 of the reflection measurement optical system 10, travels along the optical path 30, and is reflected by the reflection reference mirror 21. Hit surface 23.

【0046】反射角度基準ミラー21は、前述のよう
に、反射基準ミラー21の基準面22(試料基準面14
と同一面)に対して高い角度精度で30度に加工されて
おり、測定光束は、第1ミラー11によって反射される
が、このとき、測定光束が試料基準面14に対して正し
く30度で入射していれば、この測定光束は、反射基準
ミラー21の反射面23によって、入射方向と同じ方
向、すなわち、矢印B方向に反射され、入射時と同経路
を逆にたどって再び調整用的24の小開口25から外部
に出射する。
The reflection angle reference mirror 21 has the reference surface 22 (sample reference surface 14) of the reflection reference mirror 21 as described above.
Is processed at a high angle accuracy of 30 degrees with respect to the same surface), and the measurement light beam is reflected by the first mirror 11, but at this time, the measurement light beam is accurately 30 degrees with respect to the sample reference surface 14. If it is incident, this measurement light beam is reflected by the reflecting surface 23 of the reflection reference mirror 21 in the same direction as the incident direction, that is, in the direction of the arrow B, and follows the same path as at the time of incidence, and again for adjustment. The light is emitted from the small opening 25 of 24.

【0047】もし、反射基準ミラー21への入射角度が
所定の角度、すなわち30度からずれていると、反射基
準ミラー21によって反射された測定光束は、入射時の
経路からずれた経路をたどって調整用的24方向に戻
り、小開口25の中心位置からはずれた位置に当たる。
If the incident angle on the reflection reference mirror 21 deviates from a predetermined angle, that is, 30 degrees, the measurement light beam reflected by the reflection reference mirror 21 follows a path deviated from the path at the time of incidence. It returns to the direction for adjustment 24 and hits a position deviated from the center position of the small opening 25.

【0048】一致しない度合いすなわち、水平方向の光
束のズレを、図7においてCであらわすと、Cは、反射
基準ミラー21への測定光束の入射角度の誤差と、調整
用的24と反射基準ミラー21の反射面23との往復距
離によって決まる長さになる。 たとえば、角度誤差が
0.1度という微少な角度の場合、単純な目測あるい
は、この角度における反射率既知の試料の反射率測定値
による校正等はまったく不可能であるが、本発明によれ
ば、反射角度誤差は、調整的から反射基準ミラー21ま
での入射光路Aと反射光路Bとの往復というふたつの過
程によって増幅(光路長が長くなるほど増幅)され、目
測をもっても容易に検出できるようになる。
The degree of non-coincidence, that is, the deviation of the light flux in the horizontal direction is represented by C in FIG. 7. C is the error in the incident angle of the measurement light flux on the reflection reference mirror 21, the adjustment target 24 and the reflection reference mirror. The length is determined by the round-trip distance between the reflective surface 23 of 21 and the reflective surface 23. For example, in the case of a small angle error of 0.1 degree, simple visual measurement or calibration by a reflectance measurement value of a sample with a known reflectance at this angle is completely impossible, but according to the present invention. The reflection angle error is amplified (amplified as the optical path length becomes longer) by two processes, that is, from the adjustment to the reflection reference mirror 21 and back and forth between the incident light path A and the reflected light path B, so that it can be detected easily by visual measurement. Become.

【0049】すなわち、まず0.1度の入射角誤差は、
角度基準ミラー21による入射・反射によって2倍の
0.2度に拡大される。さらにこの角度誤差は、調整用
的24に戻ったときの水平方向の寸法にすると、往復距
離が乗じられてさらに拡大される。たとえば、図1に示
すように調整的24と反射面23との距離a+bが10
0mmであるとすると、角度誤差0.1度に相当する調
整用的24面上の水平方向寸法Lは、2*(a+b)*
tan(0.2度)、すなわち0.7mmとなる。この
値は、目視によって充分確認可能な大きさである。
That is, first, the incident angle error of 0.1 degree is
The incident / reflected light by the angle reference mirror 21 doubles to 0.2 degrees. Further, this angular error is multiplied by the round trip distance and further magnified when the size in the horizontal direction when returning to the adjusting 24 is set. For example, as shown in FIG. 1, the distance a + b between the adjustable 24 and the reflecting surface 23 is 10
If it is 0 mm, the horizontal dimension L on the 24 plane for adjustment corresponding to an angular error of 0.1 degree is 2 * (a + b) *.
It becomes tan (0.2 degree), that is, 0.7 mm. This value is large enough to be visually confirmed.

【0050】この状態で、試料位置決め部13の試料基
準面14を、被測定試料を取り付けたときの光の反射位
置26、すなわち入反射中心を中心に回転するように調
整し、調整用的24面上で、反射基準ミラー21からの
戻り光が小開口25の中心に一致するようにすれば、容
易に試料への入射角度を所定の角度に校正することがで
きる。
In this state, the sample reference surface 14 of the sample positioning section 13 is adjusted so as to rotate about the light reflection position 26 when the sample to be measured is attached, that is, the center of reflection and reflection. If the return light from the reflection reference mirror 21 is made to coincide with the center of the small opening 25 on the surface, the incident angle on the sample can be easily calibrated to a predetermined angle.

【0051】この方法によれば、反射測定光学系10の
複雑な光学調整をおこなうことなく、また、反射測定光
学系10と光源19等の外部の光学系との相対関係が狂
っていても、反射測定光学系10の試料基準面14のみ
を調整することによって、被測定試料への光束の入射角
度を所定の角度に校正することができる。
According to this method, the complicated optical adjustment of the reflection measurement optical system 10 is not performed, and even if the relative relationship between the reflection measurement optical system 10 and the external optical system such as the light source 19 is incorrect, By adjusting only the sample reference surface 14 of the reflection measurement optical system 10, the incident angle of the light beam on the sample to be measured can be calibrated to a predetermined angle.

【0052】しかも、調整は、基準ミラー21からの反
射戻り光を小開口25に合わせるという明確な目標をも
っており従来法に比べてきわめて容易である。
In addition, the adjustment is extremely easy as compared with the conventional method because it has a clear goal of adjusting the reflected return light from the reference mirror 21 to the small aperture 25.

【0053】なお、分光器等の分光分析用光源からの測
定光束は、一般にある広がりをもっており、本発明の調
整用の光源として適さない場合がある(小開口25上の
光束形状が明瞭でなく、ズレ量がはっきり目視で確認で
きない場合等)。この場合には、たとえば、光源19に
調整用のレーザ等の直進性の高い光源を設置し、この光
源で調整したうえで、実際の測定用光源に切り替えれば
良い。
The measuring light flux from the light source for spectroscopic analysis such as a spectroscope generally has a certain spread and may not be suitable as the light source for adjustment of the present invention (the light flux shape on the small aperture 25 is not clear. , If the amount of misalignment cannot be visually confirmed, etc.). In this case, for example, a light source with high straightness such as a laser for adjustment may be installed as the light source 19, and the light source may be adjusted by this light source before switching to the actual measurement light source.

【0054】また、本実施例では小開口25の形状をス
リット形状としたが、これは被測定試料への測定光束の
入射角度を入反射面内(一軸方向)のみで校正するため
であり、もしも入反射面と垂直面内においても校正する
場合には、円形の小開口とすればよい。
Further, in the present embodiment, the shape of the small opening 25 is a slit shape, but this is to calibrate the incident angle of the measurement light beam on the sample to be measured only within the entrance / reflection surface (uniaxial direction). If you want to calibrate in the plane vertical to the entrance / reflection surface, you can use a small circular aperture.

【0055】[0055]

【発明の効果】以上、説明したように本発明の反射率測
定装置では、小開口を有する調整的および反射基準ミラ
ーとを用いることにより、反射率測定の精度に重要な影
響を与える測定光束の入射角度を正確に校正することが
できるようになるので、精度の高い測定が可能な反射率
測定装置を提供することができる。
As described above, in the reflectance measuring apparatus of the present invention, by using the adjustable and reflection reference mirrors having a small aperture, the measurement light flux which has an important influence on the accuracy of reflectance measurement is measured. Since the incident angle can be accurately calibrated, it is possible to provide a reflectance measuring device capable of highly accurate measurement.

【0056】特に、従来分光光度計の付属装置としてユ
ーザ側で必要に応じて取り付けて用いられる反射光学測
定系では、分光光度計に組み合わせる際の調整がユーザ
だけで容易かつに正確に調整でき、非常に使いやすい反
射率測定装置となる。
In particular, in the reflection optical measurement system which is conventionally used by being attached as an accessory device of the spectrophotometer on the user side, the adjustment when combined with the spectrophotometer can be easily and accurately adjusted only by the user. It is a very easy-to-use reflectance measuring device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である反射率測定装置の反射
測定光学系の要部を示す構成図。
FIG. 1 is a configuration diagram showing a main part of a reflection measuring optical system of a reflectance measuring apparatus that is an embodiment of the present invention.

【図2】本発明の一実施例である反射率測定装置の全体
を示す構成図。
FIG. 2 is a configuration diagram showing an entire reflectance measuring apparatus which is an embodiment of the present invention.

【図3】本発明の一実施例である反射率測定装置の反射
基準ミラーを示す構成図で(a)はその平面図で、
(b)はその正面図。
FIG. 3 is a configuration diagram showing a reflection reference mirror of a reflectance measuring apparatus that is an embodiment of the present invention, FIG.
(B) is the front view.

【図4】本発明の一実施例である反射率測定装置の調整
的を示す構成図で(a)はその平面図で、(b)はその
右側面図。
4A and 4B are configuration diagrams showing the adjustability of a reflectance measuring apparatus according to an embodiment of the present invention, FIG. 4A is a plan view thereof, and FIG. 4B is a right side view thereof.

【図5】相対反射率測定装置の概略構成を示す図。FIG. 5 is a diagram showing a schematic configuration of a relative reflectance measuring device.

【図6】反射率測定装置で、全体として調整されたにも
かかわらず、試料への入射角が所定の角度からずれてい
る状態を示す図。
FIG. 6 is a view showing a state in which the incident angle on the sample is deviated from a predetermined angle, although the reflectance is measured as a whole by the reflectance measuring apparatus.

【図7】分光光度計に付属する反射光学測定系で、分光
光度計に対して光軸がずれた状態でセットされたときの
状態を示す図。
FIG. 7 is a view showing a reflection optical measurement system attached to the spectrophotometer, showing a state when the spectrophotometer is set with its optical axis displaced.

【符号の説明】[Explanation of symbols]

1:反射率測定装置 10:反射測定光学系 13:試料位置決め部 14:試料基準面 18a:位置決めピン 18b:位置決め孔 19:光源 20:測光光学系 21:反射基準ミラー 22:基準面 23:反射面 24:調整的 25:小開口 1: Reflectance measuring device 10: Reflection measuring optical system 13: Sample positioning part 14: Sample reference surface 18a: Positioning pin 18b: Positioning hole 19: Light source 20: Photometric optical system 21: Reflection reference mirror 22: Reference surface 23: Reflection Surface 24: Adjustable 25: Small opening

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源から反射測定光学系内に入射された光
束を、反射測定光学系内の試料基準面に合わせて取り付
けた被測定試料面に入射させ、被測定試料面からの反射
光を測光光学系に導入して測定する反射率測定装置にお
いて、小開口を有する調整的と、光束がこの小開口を通
過するように調整的を反射測定光学系に取り付けるため
の調整的位置決め手段と、被測定試料の替わりに試料基
準面に合わせて取り付けられ、試料基準面となす角が試
料基準面への入射光束の入射角と同一角度に設定された
反射面を有する反射基準ミラーとを備え、調整的位置決
め手段に取り付けられた調整的の小開口を通過した光束
が、小開口を通過して反射基準ミラーの反射面で反射さ
せられ、調整的に戻った戻り光の位置から光軸を合わせ
るようにしたことを特徴とする反射率測定装置。
1. A light beam entering a reflection measurement optical system from a light source is made incident on a sample surface to be measured attached to a sample reference surface in the reflection measurement optical system to reflect light reflected from the sample surface to be measured. In a reflectance measuring device to be introduced into a photometric optical system for measurement, an adjusting device having a small aperture and an adjusting positioning means for attaching the adjusting device to the reflection measuring optical system so that a light beam passes through the small aperture, A reflection reference mirror having a reflection surface, which is attached to the sample reference surface instead of the sample to be measured, and whose angle formed with the sample reference surface is set to the same angle as the incident angle of the incident light beam on the sample reference surface, A light beam that has passed through an adjustable small aperture attached to the adjustable positioning means passes through the small aperture, is reflected by the reflection surface of the reflection reference mirror, and the optical axis is adjusted from the position of the return light that has returned after adjustment. What you did Reflectance measuring apparatus characterized.
JP11870094A 1994-05-31 1994-05-31 Reflectance measuring apparatus Pending JPH07325016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11870094A JPH07325016A (en) 1994-05-31 1994-05-31 Reflectance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11870094A JPH07325016A (en) 1994-05-31 1994-05-31 Reflectance measuring apparatus

Publications (1)

Publication Number Publication Date
JPH07325016A true JPH07325016A (en) 1995-12-12

Family

ID=14742985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11870094A Pending JPH07325016A (en) 1994-05-31 1994-05-31 Reflectance measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07325016A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057168A (en) * 2001-08-20 2003-02-26 Omron Corp Road-surface judging apparatus and method of installing and adjusting the same
JP2011509401A (en) * 2007-12-27 2011-03-24 エーエスエムエル ホールディング エヌ.ブイ. Folded optical encoder and its application
JP2011133483A (en) * 2011-01-25 2011-07-07 Ricoh Co Ltd Photosensor and image forming apparatus
JP2012002601A (en) * 2010-06-15 2012-01-05 Ricoh Co Ltd Picture checking device, picture checking method and picture formation apparatus
JP2017207288A (en) * 2016-05-16 2017-11-24 Jfeスチール株式会社 Surface inspection device-purpose calibration plate and surface inspection device calibration method
WO2021256165A1 (en) * 2020-06-15 2021-12-23 パナソニックIpマネジメント株式会社 Measurement device
CN116718568A (en) * 2023-08-04 2023-09-08 中节能(达州)新材料有限公司 Device and method for detecting light reflecting performance of light reflecting material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057168A (en) * 2001-08-20 2003-02-26 Omron Corp Road-surface judging apparatus and method of installing and adjusting the same
JP2011509401A (en) * 2007-12-27 2011-03-24 エーエスエムエル ホールディング エヌ.ブイ. Folded optical encoder and its application
JP2012002601A (en) * 2010-06-15 2012-01-05 Ricoh Co Ltd Picture checking device, picture checking method and picture formation apparatus
JP2011133483A (en) * 2011-01-25 2011-07-07 Ricoh Co Ltd Photosensor and image forming apparatus
JP2017207288A (en) * 2016-05-16 2017-11-24 Jfeスチール株式会社 Surface inspection device-purpose calibration plate and surface inspection device calibration method
WO2021256165A1 (en) * 2020-06-15 2021-12-23 パナソニックIpマネジメント株式会社 Measurement device
CN116718568A (en) * 2023-08-04 2023-09-08 中节能(达州)新材料有限公司 Device and method for detecting light reflecting performance of light reflecting material
CN116718568B (en) * 2023-08-04 2023-10-17 中节能(达州)新材料有限公司 Device and method for detecting light reflecting performance of light reflecting material

Similar Documents

Publication Publication Date Title
US6091499A (en) Method and device for automatic relative adjustment of samples in relation to an ellipsometer
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
JPH07111326B2 (en) Ellipsometer
WO2002079760A3 (en) Polarimetric scatterometer for critical dimension measurements of periodic structures
CN107941477B (en) Spectroscope measurement method and device capable of accurately controlling incident angle
JPH07325016A (en) Reflectance measuring apparatus
JPH0554902B2 (en)
TWI792492B (en) Calibration of azimuth angle for optical metrology stage using grating-coupled surface plasmon resonance
US5710625A (en) Spectral oil immersion cell
US3966327A (en) Angular displacement measurement apparatus
JPH05157661A (en) Light transmittance measuring device of optical fiber
KR20200029599A (en) Variable aperture mask
US6323947B1 (en) Angle of incidence accuracy in ultrathin dielectric layer ellipsometry measurement
US4671662A (en) Luminescense and reflectance detection radiometer with changeable optical assembly
US7177025B2 (en) Measuring specular reflectance of a sample
JPH04127004A (en) Ellipsometer and its using method
JPH0835832A (en) Plank thickness measuring apparatus
JP3119622U (en) Spectrophotometer
JP2000292347A (en) Angle-of-rotation measuring device
JP3343795B2 (en) Ellipsometer
US7212289B1 (en) Interferometric measurement device for determining the birefringence in a transparent object
JPH10246797A (en) Collimator setting device
JP2001147111A (en) High-accuracy fine angle measuring device
JPH05180697A (en) Adjustment method of polarization measurement device
JPH04235367A (en) Adjusting device of optical axis of detecting apparatus of signal waveform