JPH07324733A - Combustion equipment - Google Patents

Combustion equipment

Info

Publication number
JPH07324733A
JPH07324733A JP6117282A JP11728294A JPH07324733A JP H07324733 A JPH07324733 A JP H07324733A JP 6117282 A JP6117282 A JP 6117282A JP 11728294 A JP11728294 A JP 11728294A JP H07324733 A JPH07324733 A JP H07324733A
Authority
JP
Japan
Prior art keywords
exhaust gas
heating
oxygen sensor
air supply
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6117282A
Other languages
Japanese (ja)
Other versions
JP3012966B2 (en
Inventor
Kunihiro Tsuruta
邦弘 鶴田
Kenji Kondo
憲司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6117282A priority Critical patent/JP3012966B2/en
Publication of JPH07324733A publication Critical patent/JPH07324733A/en
Application granted granted Critical
Publication of JP3012966B2 publication Critical patent/JP3012966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To improve a durability and reliability of a limited current type oxygen sensor and to enable a measurement of concentration of oxygen to be carried out for a long period of time in a stable manner. CONSTITUTION:This combustion equipment is constructed such that a limit current type oxygen sensor 5 and a heater 6 arranged integrally with the sensor 5 are installed in a discharged gas flow passage 4 for use in discharging combustion discharged gas. Either a fuel supplying part 1 for supplying fuel or an air supplying part 2 for supplying air is controlled in response to an oxygen concentration signal obtained from the limit current type oxygen sensor 5. A discharged gas temperature sensing means 13 is installed in the discharged gas flow passage 4 and this is operated to control such that if the discharged gas temperature is high, a generated voltage value of a heating DC power supply 10 for use in operating the heater 6 is made low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス流路中に配置し
て酸素濃度を検出する限界電流式酸素センサ(以下、酸
素センサという)を用いた燃焼機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion device using a limiting current type oxygen sensor (hereinafter referred to as an oxygen sensor) arranged in an exhaust gas passage to detect an oxygen concentration.

【0002】[0002]

【従来の技術】従来の燃焼機器は、特開平5−2564
42号公報に示すように完全燃焼が得られるように予め
空気供給量と燃料供給量との比率(以下、空燃比とい
う)を計算し、その計算をもとにした空気供給量または
燃料供給量で燃焼させるものであった。しかし、燃焼機
器を様々な環境下で使用すると外気温度の変動・気圧の
変動、さらに燃料供給手段や空気供給手段の耐久性にま
つわる変動のため空燃比が当初の計算値より変動する。
例えば、海抜2000メートルの酸素希薄環境の高地で
は空燃比が大きく異なり、平地で求めた当初の計算値の
まま使用すると不完全燃焼が発生する。
2. Description of the Related Art A conventional combustion device is disclosed in Japanese Patent Application Laid-Open No. H5-26464.
As shown in Japanese Patent Publication No. 42-42, the ratio of the air supply amount and the fuel supply amount (hereinafter referred to as the air-fuel ratio) is calculated in advance so that complete combustion can be obtained, and the air supply amount or the fuel supply amount based on the calculation It was meant to burn. However, when the combustion equipment is used in various environments, the air-fuel ratio fluctuates from the initially calculated value due to fluctuations in the outside air temperature, fluctuations in atmospheric pressure, and fluctuations in the durability of the fuel supply means and the air supply means.
For example, the air-fuel ratio is greatly different in a high-altitude environment with an oxygen-lean environment of 2000 meters above sea level, and incomplete combustion will occur if the initial calculated value obtained on a flat surface is used.

【0003】このことを解決する手段として空燃比が燃
焼排ガス流路中の酸素濃度と相関があることに着目し、
酸素濃度を計測する酸素センサを開発し、この酸素セン
サを燃焼排ガス流路中に配置して最適な空燃比の制御を
行う燃焼機器の開発が試みられている。
As a means to solve this, paying attention to the fact that the air-fuel ratio correlates with the oxygen concentration in the combustion exhaust gas passage,
It has been attempted to develop an oxygen sensor that measures the oxygen concentration, and arrange this oxygen sensor in a combustion exhaust gas flow path to develop an optimum combustion device that controls the air-fuel ratio.

【0004】従来の燃焼機器の一例を図7に示す。この
燃焼機器は、燃料供給部1で燃料を供給し、空気供給部
2で空気を供給しながら燃料を燃焼部3で燃焼させ、燃
焼排ガスを酸素センサ5を配置した排ガス流路4を通し
て排気させる構成である。酸素センサ5は、電極膜(記
載せず)に一定電圧を印加する素子駆動用直流電源7
と、発生電流を検出するための素子電流検出手段8とが
直列に接続され閉回路を構成している。制御部9は、素
子電流検出手段8で得られる発生電流を酸素濃度信号と
して処理し、燃料供給部1または空気供給部2を制御す
ることで、最適な空燃比の制御を行う。一方、酸素セン
サには加熱体6が併設されており、加熱体6には加熱の
ための一定電圧または一定電力を印加する加熱用直流電
源10が接続されている。
FIG. 7 shows an example of conventional combustion equipment. In this combustion apparatus, the fuel is supplied from the fuel supply unit 1, the fuel is burned in the combustion unit 3 while the air is supplied from the air supply unit 2, and the combustion exhaust gas is exhausted through the exhaust gas passage 4 in which the oxygen sensor 5 is arranged. It is a composition. The oxygen sensor 5 is an element driving DC power supply 7 for applying a constant voltage to an electrode film (not shown).
And a device current detection means 8 for detecting the generated current are connected in series to form a closed circuit. The control unit 9 processes the generated current obtained by the element current detection unit 8 as an oxygen concentration signal and controls the fuel supply unit 1 or the air supply unit 2 to control the optimum air-fuel ratio. On the other hand, the oxygen sensor is provided with a heating body 6, and the heating body 6 is connected to a heating DC power supply 10 for applying a constant voltage or a constant power for heating.

【0005】[0005]

【発明が解決しようとする課題】しかし、酸素センサ5
を用いて空燃比制御を行う燃焼機器においては、加熱体
6を一定電圧または一定電力が発生する加熱用直流電源
10を用いて加熱しているため、酸素センサ5の動作温
度が燃料供給量や空気供給量の変化による排ガス温度の
影響を大きく受ける問題が発生していた。
However, the oxygen sensor 5
In a combustion device that performs air-fuel ratio control by using, the heating body 6 is heated using a heating DC power supply 10 that generates a constant voltage or a constant power, so the operating temperature of the oxygen sensor 5 is There has been a problem that the temperature of exhaust gas is greatly affected by changes in the air supply amount.

【0006】図8は、空気供給量を一定にして燃焼量
(実際は燃料供給量)を変化させた場合の排ガス温度お
よび排ガス中酸素濃度を測定した結果である。排ガス温
度は、燃焼量(燃料供給量)により変化しており、さら
に、同じ3500kcal/hの燃焼量(燃料供給量)
でも排ガス中酸素濃度が異なる(実際は空気供給量が異
なる)と排ガス温度が異なることが分かる。
FIG. 8 shows the results of measuring the exhaust gas temperature and the oxygen concentration in the exhaust gas when the combustion amount (actually, the fuel supply amount) is changed while the air supply amount is kept constant. The exhaust gas temperature changes depending on the combustion amount (fuel supply amount), and the same combustion amount (fuel supply amount) of 3500 kcal / h.
However, it can be seen that the exhaust gas temperature is different when the oxygen concentration in the exhaust gas is different (actually, the air supply amount is different).

【0007】図9は、加熱用直流電源10の発生電圧と
それに伴う発生電力を変化させた場合の酸素センサ5の
動作温度である。加熱用直流電源10の発生電圧(発生
電力)が同じでも、排ガス温度が高くなると酸素センサ
5の動作温度が高くなることが分かる。
FIG. 9 shows the operating temperature of the oxygen sensor 5 when the voltage generated by the heating DC power source 10 and the power generated thereby are changed. It can be seen that even if the generated voltage (generated power) of the heating DC power supply 10 is the same, the operating temperature of the oxygen sensor 5 rises as the exhaust gas temperature rises.

【0008】図10は、排ガス中酸素濃度が5%であ
り、しかも加熱用直流電源10の発生電圧が一定におい
て、排ガス温度を変化させた場合の酸素センサ5の電圧
電流特性である。排ガス温度が高くなると電流も大きく
なることが分かる。これは、排ガス温度が高くなると酸
素センサ5の動作温度も高くなるためである。
FIG. 10 shows a voltage-current characteristic of the oxygen sensor 5 when the exhaust gas temperature is changed while the oxygen concentration in the exhaust gas is 5% and the generated voltage of the heating DC power supply 10 is constant. It can be seen that the current increases as the exhaust gas temperature increases. This is because the operating temperature of the oxygen sensor 5 increases as the exhaust gas temperature increases.

【0009】酸素センサ5の耐久信頼性を確保する観点
においては酸素センサ5の動作温度は低い方が望ましい
が、反対に酸素センサ5に必要な限界電流特性を確保す
る観点においては酸素センサ5の動作温度は高い方が望
ましい。しかし排ガス中において、酸素センサ5の動作
温度が燃料供給量や空気供給量の変化による排ガス温度
の影響を大きく受け、過度に動作温度が高くなることは
耐久信頼性の確保の観点において望ましくない。
From the viewpoint of ensuring the durability and reliability of the oxygen sensor 5, it is desirable that the operating temperature of the oxygen sensor 5 is low. On the contrary, from the viewpoint of ensuring the limiting current characteristics required for the oxygen sensor 5, Higher operating temperature is desirable. However, in the exhaust gas, the operating temperature of the oxygen sensor 5 is greatly affected by the exhaust gas temperature due to changes in the fuel supply amount and the air supply amount, and it is not desirable that the operating temperature becomes excessively high from the viewpoint of ensuring durability reliability.

【0010】本発明はかかる従来の問題点を解消するも
ので、燃料供給量や空気供給量さらに排ガス温度の影響
を受けにくくして常に同じ動作温度で酸素センサを作動
させ、酸素センサの耐久信頼性を確保することを目的と
している。
The present invention solves the above problems of the prior art by making the oxygen sensor less likely to be affected by the fuel supply amount, the air supply amount, and the exhaust gas temperature, and always operating the oxygen sensor at the same operating temperature. The purpose is to ensure sex.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明の燃焼機器は、排ガス流路に配置した排ガス温
度検出手段により検出した排ガス温度を排ガス温度比較
部で設定値と比較し、排ガス温度が高くなるにつれて、
酸素センサに併設して排ガス流路に配置した加熱体を動
作するための加熱用直流電源の発生電圧値を、加熱電圧
変更手段で小さくしたものである。
In order to achieve the above-mentioned object, the combustion apparatus of the present invention, the exhaust gas temperature detected by the exhaust gas temperature detecting means arranged in the exhaust gas flow path is compared with a set value in the exhaust gas temperature comparison unit, As the exhaust gas temperature increases,
The generated voltage value of the heating DC power supply for operating the heating element arranged in the exhaust gas flow path adjacent to the oxygen sensor is reduced by the heating voltage changing means.

【0012】また、本発明の燃焼機器は、燃料供給部か
ら供給する燃料供給量を燃料供給量比較部で設定値と比
較し、燃料供給量が多くなるにつれて、酸素センサに併
設して排ガス流路に配置した加熱体を動作するための加
熱用直流電源の発生電圧値を、加熱電圧変更手段で小さ
くしたものである。
Further, in the combustion device of the present invention, the fuel supply amount supplied from the fuel supply unit is compared with the set value in the fuel supply amount comparison unit, and as the fuel supply amount increases, the oxygen sensor is provided along with the exhaust gas flow. The generated voltage value of the heating DC power supply for operating the heating element arranged in the path is reduced by the heating voltage changing means.

【0013】また、本発明の燃焼機器は、燃料供給部か
らの燃料供給量に対応して空気供給部から供給する空気
供給量を空気供給量比較部で設定値と比較し、空気供給
量が多くなるにつれて、酸素センサに併設して排ガス流
路に配置した加熱体を動作するための加熱用直流電源の
発生電圧値を、加熱電圧変更手段で小さくしたものであ
る。
Further, in the combustion device of the present invention, the air supply amount supplied from the air supply unit is compared with the set value in the air supply amount comparison unit in correspondence with the fuel supply amount from the fuel supply unit, and the air supply amount is As the number increases, the heating voltage changing means reduces the generated voltage value of the heating DC power supply for operating the heating element arranged in the exhaust gas flow path along with the oxygen sensor.

【0014】[0014]

【作用】本発明は上記構成において、排ガス温度が高い
場合や燃料供給部から供給する燃料が多い場合またはそ
れに対応した空気供給量が多い場合は、酸素センサは排
ガスから多くの熱量を授受するため、酸素センサの動作
温度は自然に上昇する。そのためこれらに対応して加熱
用直流電源の発生電圧値を小さくすると、酸素センサは
過度に高くない適切な動作温度となり、酸素センサの耐
久信頼性が確保できる。
According to the present invention, in the above structure, the oxygen sensor transfers a large amount of heat from the exhaust gas when the exhaust gas temperature is high, the amount of fuel supplied from the fuel supply unit is large, or the corresponding amount of air supplied is large. The operating temperature of the oxygen sensor naturally rises. Therefore, if the generated voltage value of the heating DC power supply is reduced corresponding to these, the oxygen sensor has an appropriate operating temperature that is not excessively high, and the durability reliability of the oxygen sensor can be secured.

【0015】[0015]

【実施例】以下、本発明の一実施例について図1〜図3
を参照しながら説明する。なお従来例で説明したものと
同一構成部材には同一番号を用いる。図1は本発明の一
実施例の燃焼機器のブロック図である。図1に示すよう
に燃焼機器は、燃料供給部1で燃料を供給し、空気供給
部2で空気を供給しながら燃料を燃焼部3で燃焼させ、
燃焼排ガスを排ガス流路4を通して排気させる構成であ
る。排ガス流路4には、酸素センサ5と、この酸素セン
サ5に併設されて一体となった加熱体6が配置されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be described with reference to. The same numbers are used for the same components as those described in the conventional example. FIG. 1 is a block diagram of a combustion device according to an embodiment of the present invention. As shown in FIG. 1, in the combustion apparatus, the fuel is supplied from the fuel supply unit 1, and the air is supplied from the air supply unit 2 while the fuel is burned in the combustion unit 3.
The combustion exhaust gas is exhausted through the exhaust gas passage 4. In the exhaust gas passage 4, an oxygen sensor 5 and a heating body 6 that is attached to and integrated with the oxygen sensor 5 are arranged.

【0016】酸素センサ5には、その電極膜1a・1b
(両方とも記載せず)に一定電圧を印加する素子駆動用
直流電源7と、酸素センサ5からの発生電流を検出する
ための素子電流検出手段8とが直列に接続され閉回路を
構成している。制御部9は、素子電流検出手段8で得ら
れる発生電流を酸素濃度信号として処理し、燃料供給部
1または空気供給部2を制御する。
The oxygen sensor 5 has its electrode films 1a and 1b.
A device driving DC power supply 7 for applying a constant voltage (not shown in both) and a device current detecting means 8 for detecting a current generated from the oxygen sensor 5 are connected in series to form a closed circuit. There is. The control unit 9 processes the generated current obtained by the device current detection unit 8 as an oxygen concentration signal and controls the fuel supply unit 1 or the air supply unit 2.

【0017】加熱体6には、加熱のための電圧を印加す
る加熱用直流電源10が接続されており、さらに加熱用
直流電源10には、加熱用直流電源10が発生する電圧
を変更する加熱電圧変更手段11が併設されている。
A heating DC power supply 10 for applying a voltage for heating is connected to the heating body 6, and the heating DC power supply 10 further includes a heating DC power supply 10 for changing the voltage generated by the heating DC power supply 10. The voltage changing means 11 is provided side by side.

【0018】加熱電圧変更手段11は、排ガス温度比較
部12と接続されている。排ガス温度比較部12は、排
ガス流路4に配置された排ガス温度検出手段13と接続
されており、検出される排ガス温度が高いと、加熱用直
流電源10の発生電圧値が小さくなるように加熱電圧変
更手段11を制御する。
The heating voltage changing means 11 is connected to the exhaust gas temperature comparing section 12. The exhaust gas temperature comparison unit 12 is connected to the exhaust gas temperature detection means 13 arranged in the exhaust gas flow path 4, and when the detected exhaust gas temperature is high, the generated voltage value of the heating DC power supply 10 becomes small. The voltage changing means 11 is controlled.

【0019】また、加熱電圧変更手段11は、燃料供給
量比較部14と接続されている。燃料供給量比較部14
は、燃料供給部1と接続されており、供給される燃料が
多くなると、加熱用直流電源10の発生電圧値が小さく
なるように加熱電圧変更手段11を制御する。
Further, the heating voltage changing means 11 is connected to the fuel supply amount comparing section 14. Fuel supply amount comparison unit 14
Is connected to the fuel supply unit 1, and controls the heating voltage changing unit 11 so that the generated voltage value of the heating DC power supply 10 becomes smaller when the supplied fuel increases.

【0020】また、加熱電圧変更手段11は、空気供給
量比較部15と接続されている。空気供給量比較部15
は、空気供給部2と接続されており、供給される燃料が
多くなりそれに伴い供給される空気が多くなると、加熱
用直流電源10の発生電圧値が小さくなるように加熱電
圧変更手段11を制御する。
Further, the heating voltage changing means 11 is connected to the air supply amount comparing section 15. Air supply amount comparison unit 15
Is connected to the air supply unit 2, and controls the heating voltage changing means 11 so that the generated voltage value of the heating DC power supply 10 becomes smaller when the fuel supplied increases and the air supplied accordingly increases. To do.

【0021】図2は、本発明の一実施例である燃焼機器
の動作を示す図である。排ガス温度比較部12または燃
料供給量比較部14または空気供給量比較部15が、排
ガス温度Tまたは燃料供給量Fまたは空気供給量Qなど
の検出値のどれか一つが設定値を超えているか否かを判
断する。検出値が設定値を超えている場合はその判断時
点から所定時間A以内は、加熱用直流電源10の発生電
圧値は変更することなしに今までの電圧値V0をそのま
ま維持し、酸素センサ5からの酸素濃度信号に基づき燃
料供給部1または空気供給部2の制御を行う。所定時間
Aが経過すると、加熱用直流電源10の発生電圧値は新
しい電圧値V1に変更され、酸素センサ5からの酸素濃
度信号に基づく燃料供給部1または空気供給部2の制御
が解除される。この燃料供給部1または空気供給部2の
制御解除は所定時間B後に終了しそれ以後は、酸素セン
サ5からの酸素濃度信号に基づく燃料供給部1または空
気供給部2の制御が再び実行される。
FIG. 2 is a diagram showing the operation of the combustion equipment which is an embodiment of the present invention. The exhaust gas temperature comparison unit 12, the fuel supply amount comparison unit 14, or the air supply amount comparison unit 15 determines whether any one of the detected values such as the exhaust gas temperature T, the fuel supply amount F, or the air supply amount Q exceeds a set value. To judge. If the detected value exceeds the set value, the generated voltage value of the heating DC power supply 10 is not changed and the current voltage value V 0 is maintained as it is within a predetermined time A from the time of the determination, and the oxygen sensor is maintained. The fuel supply unit 1 or the air supply unit 2 is controlled based on the oxygen concentration signal from 5. When the predetermined time A has elapsed, the voltage value generated by the heating DC power supply 10 is changed to a new voltage value V 1, and the control of the fuel supply unit 1 or the air supply unit 2 based on the oxygen concentration signal from the oxygen sensor 5 is released. It The control release of the fuel supply unit 1 or the air supply unit 2 ends after a predetermined time B, and thereafter, the control of the fuel supply unit 1 or the air supply unit 2 based on the oxygen concentration signal from the oxygen sensor 5 is executed again. .

【0022】図3は、本発明の一実施例である燃焼機器
に用いた酸素センサ5の一部破断斜視図である。カソー
ド電極膜16aおよびアノード電極膜16b(記載せ
ず)が、酸素イオン伝導性の固体電解質体17の両面に
形成されている。そして、固体電解質体17の片側上部
にはカソード側電極膜16aを囲み、しかも始端と終端
が互いに間隔を有するように配置された螺旋型スペーサ
18が配置され、さらに螺旋型スペーサ18の上部には
シール板19が配置されている。酸素拡散通路20は、
螺旋型スペーサ18の相対向する隔壁と固体電解質体1
7とシール板19で囲まれる螺旋型の空間に形成され
る。
FIG. 3 is a partially cutaway perspective view of the oxygen sensor 5 used in the combustion device according to one embodiment of the present invention. The cathode electrode film 16a and the anode electrode film 16b (not shown) are formed on both surfaces of the oxygen ion conductive solid electrolyte body 17. A spiral spacer 18 is disposed on one side of the solid electrolyte body 17 so as to surround the cathode-side electrode film 16a, and the start end and the end of the solid spacer 17 are spaced apart from each other. A seal plate 19 is arranged. The oxygen diffusion passage 20 is
Partition walls of the spiral spacer 18 facing each other and the solid electrolyte body 1
7 and the seal plate 19 are formed in a spiral space.

【0023】加熱体6は、シール板19の上部に配置さ
れており、酸素センサ5に併設して一体化されている。
The heating element 6 is arranged above the seal plate 19 and is integrated with the oxygen sensor 5.

【0024】次に具体的実験例に基づいて説明する。図
3の酸素センサ5は、次の材料で構成した。固体電解質
体17はジルコニア(ZrO2にY23を8モル%添加
した物)である。電極膜16a・16bは、白金を主成
分としており、酸化銅と酸化ビスマスからなる結合材が
小量(例えば、5%)含有されている。螺旋型スペーサ
18は、硝子(熱膨張係数はジルコニアと概略同一であ
り、所定粒径の耐熱性粒子を微量含有)である。シール
板19はフォルステライトであり、加熱体6は白金ヒー
タである。
Next, a description will be given based on a concrete experimental example. The oxygen sensor 5 of FIG. 3 was made of the following materials. The solid electrolyte body 17 is zirconia (ZrO 2 with 8 mol% of Y 2 O 3 added). The electrode films 16a and 16b contain platinum as a main component, and contain a small amount (for example, 5%) of a binder made of copper oxide and bismuth oxide. The spiral spacer 18 is made of glass (coefficient of thermal expansion is substantially the same as that of zirconia, and contains a small amount of heat resistant particles having a predetermined particle size). The seal plate 19 is forsterite, and the heating element 6 is a platinum heater.

【0025】製法について記す。電極膜16a・16b
を固体電解質体17の上に、さらに螺旋型スペーサ18
を固体電解質体17の上に厚膜印刷技術および焼成技術
を用いて形成した。シール板19の上部の加熱体6を、
厚膜印刷技術および焼成技術を用いて形成した。次に、
固体電解質体17上の螺旋型スペーサ18とシール板1
9とを積層し加熱溶融することで酸素拡散通路20を形
成した。
The manufacturing method will be described. Electrode film 16a ・ 16b
On top of the solid electrolyte body 17, and further on the spiral spacer 18
Was formed on the solid electrolyte body 17 using a thick film printing technique and a firing technique. The heating element 6 above the sealing plate 19,
It was formed using a thick film printing technique and a firing technique. next,
Helical spacer 18 on solid electrolyte body 17 and seal plate 1
Oxygen diffusion passage 20 was formed by laminating and heating and melting.

【0026】焼成は、加熱体6以外はすべて820℃で
ある。この焼成条件は、白金電極に小量添加した酸化銅
と酸化ビスマスからなる結合材の融点(約850℃)と
特性を得るのに必要な電流確保の観点から決めた。
The firing is performed at 820 ° C. except for the heating body 6. The firing conditions were determined from the viewpoint of securing the melting point (about 850 ° C.) of the binder made of copper oxide and bismuth oxide added to the platinum electrode in a small amount and the current required to obtain the characteristics.

【0027】最後にリード線(記載せず)を取り付けて
完成であり、この酸素センサ5および加熱体6は、断熱
材で外包しさらにこの断熱材をステンレス製金網で外包
した実装体として使用した。
Finally, a lead wire (not shown) was attached to complete the process. The oxygen sensor 5 and the heating body 6 were used as a packaged body in which a heat insulating material was wrapped, and the heat insulating material was wrapped in a stainless steel wire mesh. .

【0028】以下、本発明の効果を実験に基づき説明す
る。図3記載の加熱体6と一体化された酸素センサ5を
排ガス流路4に配置し、酸素センサ5からの酸素濃度信
号を受けて排ガス中酸素濃度が10%になるように空気
供給部2を制御する燃焼機器を試作した。
The effects of the present invention will be described below based on experiments. The oxygen sensor 5 integrated with the heating element 6 shown in FIG. 3 is arranged in the exhaust gas flow path 4, and the air supply unit 2 receives the oxygen concentration signal from the oxygen sensor 5 so that the oxygen concentration in the exhaust gas becomes 10%. We made a prototype of a combustion device that controls the combustion.

【0029】この燃焼機器は、灯油を燃料とした暖房用
燃焼機器であり、燃焼量を変えることで燃料供給量・空
気供給量・排ガス温度を各々変化させている。燃料供給
部1は電磁ポンプであり、電磁ポンプのパルス信号から
燃料供給量を検知している。空気供給部2は送風ファン
であり、送風ファンの回転数から空気供給量を検知して
いる。排ガス温度は、排ガス流路4に配置した温度セン
サからなる排ガス温度検出手段13で検出している。酸
素センサ5の動作温度は、温度センサ13を酸素センサ
5に取り付けて検出している。
This combustion device is a heating combustion device using kerosene as a fuel, and the fuel supply amount, the air supply amount, and the exhaust gas temperature are changed by changing the combustion amount. The fuel supply unit 1 is an electromagnetic pump, and detects the fuel supply amount from the pulse signal of the electromagnetic pump. The air supply unit 2 is a blower fan, and detects the air supply amount from the rotation speed of the blower fan. The exhaust gas temperature is detected by the exhaust gas temperature detecting means 13 including a temperature sensor arranged in the exhaust gas passage 4. The operating temperature of the oxygen sensor 5 is detected by attaching the temperature sensor 13 to the oxygen sensor 5.

【0030】各々の条件における加熱用直流電源10の
発生電圧値と酸素センサ5の動作温度を表1に示す。
Table 1 shows the generated voltage value of the heating DC power supply 10 and the operating temperature of the oxygen sensor 5 under each condition.

【0031】[0031]

【表1】 [Table 1]

【0032】加熱用直流電源10の発生電圧値は、次の
設定値に応じて変化させた。燃料供給量の設定値は、F
maxが400g/hでありFminが250g/hである。
検出値Fが485g/hの場合はFmaxの400g/h
より大きいため、加熱用直流電源10の発生電圧値をV
minの9.0Vに設定した。検出値Fが340g/hの
場合はFmaxの400g/hより小さくFminの250g
/hより大きいため、加熱用直流電源10の発生電圧値
をVaveの9.4Vに設定した。一方、検出値Fが19
5g/hの場合はFminの250g/hより小さいた
め、加熱用直流電源10の発生電圧値をVmaxの9.8
Vに設定した。
The generated voltage value of the heating DC power supply 10 was changed according to the following set values. The set value of the fuel supply amount is F
max is 400 g / h and Fmin is 250 g / h.
When the detected value F is 485 g / h, 400 g / h of Fmax
Since it is larger, the generated voltage value of the heating DC power supply 10 is V
It was set to 9.0V of min. When the detected value F is 340g / h, it is smaller than 400g / h of Fmax and 250g of Fmin.
Since it is larger than / h, the generated voltage value of the heating DC power supply 10 is set to 9.4 V of Vave. On the other hand, the detected value F is 19
In the case of 5 g / h, since it is smaller than Fmin of 250 g / h, the generated voltage value of the heating DC power supply 10 is Vmax of 9.8.
Set to V.

【0033】空気供給量の設定値は、Qmaxが1.90
Nm3/hでありQminが1.20Nm3/hである。検
出値Qが2.33Nm3/hの場合はQmaxの1.90N
3/hより大きいため、加熱用直流電源10の発生電
圧値をVminの9.0Vに設定した。検出値Fが1.6
3Nm3/hの場合はQmaxの1.90Nm3/hより小
さくQminの1.20Nm3/hより大きいため、加熱用
直流電源10の発生電圧値をVaveの9.4Vに設定し
た。一方、検出値Qが0.93Nm3/hの場合はQmin
の1.20Nm3/hより小さいため、加熱用直流電源
10の発生電圧値をVmaxの9.8Vに設定した。
As for the set value of the air supply amount, Qmax is 1.90.
Nm 3 / is h Qmin is 1.20Nm 3 / h. When the detected value Q is 2.33 Nm 3 / h, 1.90 N of Qmax
Since it is larger than m 3 / h, the generated voltage value of the heating DC power supply 10 was set to 9.0 V which is Vmin. Detection value F is 1.6
In the case of 3 Nm 3 / h, it is smaller than 1.90 Nm 3 / h of Qmax and larger than 1.20 Nm 3 / h of Qmin, so that the generated voltage value of the heating DC power supply 10 is set to 9.4 V of Vave. On the other hand, when the detected value Q is 0.93 Nm 3 / h, Qmin
Since it is smaller than 1.20 Nm 3 / h, the generated voltage value of the heating DC power supply 10 is set to 9.8 V which is Vmax.

【0034】排ガス温度の設定値は、Tmaxが200℃
でありTminが150℃である。検出値Tが250℃の
場合はTmaxの200℃より大きいため、加熱用直流電
源10の発生電圧値をVminの9.0Vに設定した。検
出値Tが190℃の場合はTmaxの200℃より小さく
Tminの150℃より大きいため、加熱用直流電源10
の発生電圧値をVaveの9.4Vに設定した。一方、検
出値Tが130℃の場合はTminの150℃より小さい
ため、加熱用直流電源10の発生電圧値をVmaxの9.
8Vに設定した。
The set value of the exhaust gas temperature is Tmax of 200 ° C.
And Tmin is 150 ° C. When the detected value T is 250 ° C., it is higher than Tmax of 200 ° C. Therefore, the generated voltage value of the heating DC power supply 10 is set to Vmin of 9.0V. When the detected value T is 190 ° C, it is smaller than Tmax of 200 ° C and larger than Tmin of 150 ° C.
The generated voltage value of Vave was set to 9.4 V of Vave. On the other hand, when the detected value T is 130 ° C., it is smaller than Tmin of 150 ° C., so that the generated voltage value of the heating DC power supply 10 is Vmax of 9.
It was set to 8V.

【0035】加熱用直流電源10の発生電圧値を、燃料
供給量や空気供給量さらに排ガス温度に応じて変化させ
ることで、酸素センサ5の動作温度はほぼ500℃で維
持できた。そのため、酸素センサ5は長期間使用しても
充分な耐久信頼性を確保できた。
By changing the generated voltage value of the heating DC power source 10 according to the fuel supply amount, the air supply amount and the exhaust gas temperature, the operating temperature of the oxygen sensor 5 could be maintained at about 500.degree. Therefore, the oxygen sensor 5 was able to secure sufficient durability reliability even when used for a long period of time.

【0036】一方、従来のように燃料供給量や空気供給
量さらに排ガス温度に無関係に、加熱用直流電源10の
発生電圧値を一定にしておくと、例えば高燃焼の場合は
酸素センサ5の動作温度が550℃と過度に高い温度と
なって耐久信頼性が短時間に低下したり、例えば低燃焼
の場合は酸素センサ5の動作温度が450℃と極端に低
い温度となり特性を得るに必要な限界電流が得られにく
くなる等の問題が発生した。
On the other hand, if the generated voltage value of the heating DC power supply 10 is kept constant irrespective of the fuel supply amount, the air supply amount and the exhaust gas temperature as in the conventional case, for example, the operation of the oxygen sensor 5 in the case of high combustion. The temperature becomes excessively high at 550 ° C., and the durability reliability is reduced in a short time. For example, in the case of low combustion, the operating temperature of the oxygen sensor 5 becomes extremely low at 450 ° C., which is necessary for obtaining the characteristics. Problems such as difficulty in obtaining a limiting current have occurred.

【0037】次に、加熱用直流電源10の発生電圧値の
変更時期について説明する。排ガス温度Tまたは燃料供
給量Fまたは空気供給量Qの検出値のどれか1つが前述
の設定値を超えていると判断された場合はその後2分間
は、加熱用直流電源10の発生電圧値を変更することな
く今までの電圧値をそのまま維持した。そして、この2
分間で酸素センサ5からの酸素濃度信号に基づき空気供
給部2の制御を行って排ガス中酸素濃度を10%に調整
した。これは、これらの検出値が設定値を超えているこ
とは、燃料供給量または空気供給量が大幅に変化したこ
とを意味し、このときは酸素センサ5からの酸素濃度信
号に基づき空気供給部2の制御を最優先で行って排ガス
中酸素濃度を10%になるように調整するためである。
なお、検出値を2個以上とした燃焼機器の場合は、どれ
か1つが設定値を超えていると判断した時点において残
り1個以上の検出値の判断は行わないとした。
Next, the timing of changing the generated voltage value of the heating DC power supply 10 will be described. When any one of the detected values of the exhaust gas temperature T, the fuel supply amount F, or the air supply amount Q is determined to exceed the above-mentioned set value, the generated voltage value of the heating DC power supply 10 is changed for 2 minutes thereafter. The current voltage value was maintained without change. And this 2
The air supply unit 2 was controlled based on the oxygen concentration signal from the oxygen sensor 5 for each minute to adjust the oxygen concentration in the exhaust gas to 10%. This means that these detected values exceeding the set values mean that the fuel supply amount or the air supply amount has changed significantly, and at this time, the air supply unit is based on the oxygen concentration signal from the oxygen sensor 5. This is because the control of No. 2 is performed with the highest priority and the oxygen concentration in the exhaust gas is adjusted to 10%.
In the case of a combustion device with two or more detection values, it is assumed that the determination of the remaining one or more detection values is not performed when it is determined that any one exceeds the set value.

【0038】この所定時間Aの2分が経過するとすぐ
に、加熱用直流電源10の発生電圧値は新しい電圧値に
変更され、その後の0.5分間は酸素センサ5からの酸
素濃度信号に基づく空気供給部2の制御を解除した。こ
れは、加熱用直流電源10の発生電圧値を変更すると酸
素センサ5は誤測定が発生して正確な酸素濃度が測定で
きなくなるためである。そして、この所定時間Bの0.
5分が経過すると、酸素センサ5からの酸素濃度信号に
基づく空気供給部2の制御が再び実行された。このこと
で、加熱用直流電源10の発生電圧値の変更に伴う酸素
センサ5からの酸素濃度信号の変化も円滑に対応でき、
燃焼機器は不完全燃焼を生じることなく正常に燃焼し
た。
Immediately after 2 minutes of the predetermined time A, the generated voltage value of the heating DC power source 10 is changed to a new voltage value, and the subsequent 0.5 minutes is based on the oxygen concentration signal from the oxygen sensor 5. The control of the air supply unit 2 was released. This is because if the generated voltage value of the heating DC power supply 10 is changed, the oxygen sensor 5 will be erroneously measured and the oxygen concentration cannot be measured accurately. Then, when the predetermined time B is 0.
After 5 minutes, the control of the air supply unit 2 based on the oxygen concentration signal from the oxygen sensor 5 was executed again. As a result, changes in the oxygen concentration signal from the oxygen sensor 5 due to changes in the voltage value generated by the heating DC power supply 10 can be handled smoothly,
The combustion equipment burned normally without producing incomplete combustion.

【0039】一方、前述の所定時間Aや所定時間Bを設
けることなく、瞬時に加熱用直流電源10の発生電圧値
を変更し、しかも常に酸素センサ5からの酸素濃度信号
での制御を実施すると、加熱用直流電源10の発生電圧
値変更に伴い酸素センサ5は誤測定が発生して正確な酸
素濃度が測定できず、燃焼機器は不完全燃焼を生じた。
On the other hand, if the generated voltage value of the heating DC power supply 10 is instantly changed without providing the predetermined time A and the predetermined time B, and the control is always performed by the oxygen concentration signal from the oxygen sensor 5. As the generated voltage value of the heating DC power supply 10 was changed, the oxygen sensor 5 erroneously measured and the accurate oxygen concentration could not be measured, and the combustion equipment caused incomplete combustion.

【0040】実験は、酸素センサ5からの酸素濃度信号
を受けて排ガス中酸素濃度が10%になるように空気供
給部2を制御する燃焼機器で行ったが、燃料供給部1を
制御して排ガス中酸素濃度が例えば5%になるようにし
た燃焼機器でも同様な効果が得られたことは言うまでも
ない。また実験は、白金を主成分として酸化銅と酸化ビ
スマスからなる結合材を小量(例えば、5%)含有して
いる電極膜で行った。この電極の場合は結合材として用
いた酸化銅と酸化ビスマスの融点が約850℃であり、
過度に酸素センサ5の動作温度を高めることは電極の耐
久性確保の観点から好ましくない。従って、本発明は特
に有効であった。なお、他構成の酸素センサや他結合材
を用いた白金電極膜でも、同様な効果が得られることは
言うまでもない。
The experiment was carried out with a combustion device which receives the oxygen concentration signal from the oxygen sensor 5 and controls the air supply unit 2 so that the oxygen concentration in the exhaust gas becomes 10%. Needless to say, a similar effect was obtained with a combustion device in which the oxygen concentration in the exhaust gas was set to 5%, for example. Further, the experiment was carried out on an electrode film containing a small amount (for example, 5%) of a binder containing platinum as a main component and copper oxide and bismuth oxide. In the case of this electrode, the melting point of copper oxide and bismuth oxide used as the binder is about 850 ° C.,
It is not preferable to raise the operating temperature of the oxygen sensor 5 excessively from the viewpoint of ensuring the durability of the electrodes. Therefore, the present invention was particularly effective. Needless to say, the same effect can be obtained with a platinum electrode film using an oxygen sensor having another structure or another bonding material.

【0041】実験は、加熱体6として白金ヒータを用い
た。白金ヒータは温度係数が小さいうえに温度センサの
役割を同時にはたす。そのため、一体化した加熱体6が
排ガス温度などの僅かな燃焼条件を受けにくくして酸素
センサ5の動作温度をほぼ一定に保つ利点があった。
In the experiment, a platinum heater was used as the heating element 6. The platinum heater has a small temperature coefficient and also serves as a temperature sensor. Therefore, there is an advantage that the integrated heating body 6 is less likely to be subjected to slight combustion conditions such as exhaust gas temperature and the operating temperature of the oxygen sensor 5 is kept substantially constant.

【0042】(実施例1)本発明の第1の実施例につい
て図4を参照しながら説明する。
(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG.

【0043】図4は、本発明の第1の実施例の燃焼機器
の制御流れのフローチャートである。スタートすると、
ステップ1で排ガス温度比較部12におけるRAMがク
リアにされる。つぎに、ステップ2で排ガス温度比較部
12において排ガス温度Tの読み取りを行い、ステップ
3で設定値Tmax,Tminを呼び出し、ステップ4で排ガ
ス温度Tと設定値Tmax,Tminを比較する。もしも、排
ガス温度Tが設定値Tmaxより大きいか等しいとステッ
プ5で判断すると、ステップ6で加熱電圧変更手段11
が作動して加熱用直流電源10の発生電圧値をVminに
設定する。一方、排ガス温度Tが設定値Tmaxより小さ
くしかも設定値Tminより大きいとステップ7で判断す
ると、ステップ8で加熱用直流電源10の発生電圧値を
Vaveに設定する。また、排ガス温度Tが設定値Tminよ
り小さいか等しいとステップ9で判断すると、ステップ
10で加熱用直流電源11の発生電圧値をVmaxに設定
する。
FIG. 4 is a flow chart of the control flow of the combustion equipment according to the first embodiment of the present invention. When you start
In step 1, the RAM in the exhaust gas temperature comparison unit 12 is cleared. Next, in step 2, the exhaust gas temperature comparison unit 12 reads the exhaust gas temperature T, in step 3 the set values Tmax and Tmin are called, and in step 4, the exhaust gas temperature T and the set values Tmax and Tmin are compared. If it is determined in step 5 that the exhaust gas temperature T is higher than or equal to the set value Tmax, the heating voltage changing means 11 is determined in step 6.
Is activated to set the generated voltage value of the heating DC power source 10 to Vmin. On the other hand, when it is determined in step 7 that the exhaust gas temperature T is smaller than the set value Tmax and larger than the set value Tmin, the generated voltage value of the heating DC power supply 10 is set to Vave in step 8. When it is determined in step 9 that the exhaust gas temperature T is less than or equal to the set value Tmin, the generated voltage value of the heating DC power supply 11 is set to Vmax in step 10.

【0044】(実施例2)次に、本発明の第2の実施例
について、図5を参照しながら説明する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to FIG.

【0045】図5は、本発明の第2の実施例である燃焼
機器の制御流れのフローチャートである。スタートする
と、ステップ11で燃料供給量比較部14におけるRA
Mがクリアにされる。つぎに、ステップ12で燃料供給
量比較部14が燃料供給量Fの読み取りを行い、ステッ
プ13で設定値Fmax,Fminを呼び出して、ステップ1
4で燃料供給量Fと設定値Fmax,Fminを比較する。も
しも、燃料供給量Fが設定値Fmaxより大きいか等しい
とステップ15で判断すると、ステップ16で加熱電圧
変更手段11が作動して加熱用直流電源10の発生電圧
値をVminに設定する。一方、燃料供給量Fが設定値Fm
axより小さくしかも設定値Fminより大きいとステップ
17で判断すると、ステップ18で加熱用直流電源10
の発生電圧値をVaveに設定する。また、燃料供給量F
が設定値Fminより小さいか等しいとステップ19で判
断すると、ステップ20で加熱用直流電源10の発生電
圧値をVmaxに設定する。
FIG. 5 is a flow chart of the control flow of the combustion equipment according to the second embodiment of the present invention. When starting, in step 11, RA in the fuel supply amount comparison unit 14
M is cleared. Next, in step 12, the fuel supply amount comparison unit 14 reads the fuel supply amount F, and in step 13, calls the set values Fmax and Fmin.
In step 4, the fuel supply amount F is compared with the set values Fmax and Fmin. If it is determined in step 15 that the fuel supply amount F is greater than or equal to the set value Fmax, the heating voltage changing means 11 operates in step 16 to set the generated voltage value of the heating DC power supply 10 to Vmin. On the other hand, the fuel supply amount F is the set value Fm.
If it is judged in step 17 that it is smaller than ax and larger than the set value Fmin, in step 18, the heating DC power supply 10
The generated voltage value of is set to Vave. Also, the fuel supply amount F
When it is determined in step 19 that is smaller than or equal to the set value Fmin, the generated voltage value of the heating DC power supply 10 is set to Vmax in step 20.

【0046】(実施例3)本発明の第3の実施例につい
て図6を参照しながら説明する。
(Embodiment 3) A third embodiment of the present invention will be described with reference to FIG.

【0047】図6は、本発明の第3の実施例の燃焼機器
の制御流れのフローチャートである。スタートすると、
ステップ21で空気供給量比較部15におけるRAMが
クリアにされる。つぎに、ステップ22で空気供給量比
較部15が空気供給量Qの読み取りを行い、ステップ2
3で設定値Qmax,Qminを呼び出して、ステップ24で
空気供給量Qと設定Qmax,Qminを比較する。もしも、
空気供給量Qが設定値Qmaxより大きいか等しいとステ
ップ25で判断すると、ステップ26で加熱電圧変更手
段11が作動して加熱用直流電源10の発生電圧値をV
minに設定する。一方、空気供給量Qが設定値Qmaxより
小さくしかも設定値Qminより大きいとステップ27で
判断すると、ステップ28で加熱用直流電源10の発生
電圧値をVaveに設定する。また、空気供給量Qが設定
値Qminより小さいか等しいとステップ29で判断する
と、ステップ30で加熱用直流電源10の発生電圧値を
Vmaxに設定する。
FIG. 6 is a flow chart of the control flow of the combustion equipment according to the third embodiment of the present invention. When you start
In step 21, the RAM in the air supply amount comparison unit 15 is cleared. Next, in step 22, the air supply amount comparison unit 15 reads the air supply amount Q, and in step 2
The set values Qmax and Qmin are called in 3 and the air supply amount Q is compared with the set Qmax and Qmin in step 24. If,
When it is judged in step 25 that the air supply amount Q is greater than or equal to the set value Qmax, the heating voltage changing means 11 is activated in step 26 to change the generated voltage value of the heating DC power supply 10 to V.
Set to min. On the other hand, when it is judged in step 27 that the air supply amount Q is smaller than the set value Qmax and larger than the set value Qmin, the generated voltage value of the heating DC power supply 10 is set to Vave in step 28. When it is determined in step 29 that the air supply amount Q is smaller than or equal to the set value Qmin, the generated voltage value of the heating DC power supply 10 is set to Vmax in step 30.

【0048】[0048]

【発明の効果】【The invention's effect】

(1)本発明は、排ガス温度が高くなる場合または、燃
料供給部から供給する燃料が多くなる場合または、供給
燃料量に対応して空気供給量が多くなる場合は、加熱体
を動作するための加熱用直流電源の発生電圧値が小さく
なる。排ガス温度が高い場合や燃料供給部から供給する
燃料が多い場合またはそれに対応した空気供給量が多い
場合は、酸素センサが排ガスから多くの熱量を授受する
ため、酸素センサの動作温度は自然に上昇する。そのた
めこれらに対応して加熱用直流電源の発生電圧値を小さ
くすると、酸素センサは過度に高くない適切な動作温度
となり、耐久信頼性が向上した。
(1) Since the present invention operates the heating element when the exhaust gas temperature becomes high, the fuel supplied from the fuel supply unit increases, or the air supply amount increases corresponding to the supplied fuel amount. The generated voltage value of the DC power supply for heating becomes small. When the exhaust gas temperature is high, or when the fuel supply unit supplies a large amount of fuel or when the corresponding air supply amount is large, the oxygen sensor exchanges a large amount of heat from the exhaust gas, so the operating temperature of the oxygen sensor naturally rises. To do. Therefore, if the generated voltage value of the heating DC power supply is reduced correspondingly, the oxygen sensor has an appropriate operating temperature that is not excessively high, and durability reliability is improved.

【0049】(2)本発明は、排ガス温度および燃料供
給量および空気供給量に設定値を設け、検出値が設定値
より大小を判断している。そのため、加熱用直流電源の
発生電圧値を大小にするかが的確に判断されて、酸素セ
ンサは過度に高くない適切な動作温度となり、耐久信頼
性が一層向上した。
(2) In the present invention, set values are set for the exhaust gas temperature, the fuel supply amount, and the air supply amount, and the detected value is judged to be larger or smaller than the set value. Therefore, whether the generated voltage value of the heating DC power supply is to be large or small is accurately determined, the oxygen sensor has an appropriate operating temperature that is not excessively high, and durability reliability is further improved.

【0050】(3)本発明は、排ガス温度および燃料供
給量および空気供給量に設定値を設け検出値が設定値を
超えているか否かを判断する。検出値が設定値を超えて
いる場合はその判断時点から所定時間A以内は、加熱用
直流電源の発生電圧値は変更することなしに今までの電
圧値をそのまま維持し、酸素センサからの酸素濃度信号
に基づき燃料供給部または空気供給部の制御を行う。そ
して所定時間Aが経過すると、加熱用直流電源の発生電
圧値は新しい電圧値に変更され、酸素センサからの酸素
濃度信号に基づく燃料供給部また空気供給部の制御が解
除される。この燃料供給部または空気供給部の制御解除
は所定時間B後に終了しそれ以後は、酸素センサからの
酸素濃度信号に基づく燃料供給部または空気供給部の制
御が再び実行される。そのため、加熱用直流電源の発生
電圧値の変更に伴う酸素センサからの酸素濃度信号の変
化も円滑に対応でき、燃焼機器は不完全燃焼を生じるこ
となく正常に燃焼した。
(3) In the present invention, set values are set for the exhaust gas temperature, the fuel supply amount, and the air supply amount, and it is determined whether or not the detected values exceed the set values. When the detected value exceeds the set value, the generated voltage value of the heating DC power supply is maintained as it is and the oxygen voltage from the oxygen sensor The fuel supply unit or the air supply unit is controlled based on the concentration signal. Then, when the predetermined time A has elapsed, the generated voltage value of the heating DC power supply is changed to a new voltage value, and the control of the fuel supply section or the air supply section based on the oxygen concentration signal from the oxygen sensor is released. The control release of the fuel supply section or the air supply section ends after a predetermined time B, and thereafter, the control of the fuel supply section or the air supply section based on the oxygen concentration signal from the oxygen sensor is executed again. Therefore, the change in the oxygen concentration signal from the oxygen sensor due to the change in the generated voltage value of the heating DC power supply can be dealt with smoothly, and the combustion equipment burned normally without causing incomplete combustion.

【0051】(4)本発明に用いた酸素センサは、カソ
ード電極膜およびアノード電極膜を酸素イオン伝導性固
体電解質体の両面に形成した後、固体電解質体の片側上
部にカソード側電極膜を囲み、しかも始端と終端が互い
に間隔を有するように配置された螺旋型スペーサを配置
し、さらに螺旋型スペーサの上部にはシール板を配置し
た構成である。酸素拡散通路は、螺旋型スペーサの相対
向する隔壁と固体電解質体とシール板で囲まれる螺旋型
の空間に形成されるため、厚膜印刷を用いて酸素センサ
が製造できる。しかも、加熱体がシール板の上部に配置
されており、酸素センサに併設して一体化されているた
め簡素化された構成となり、前述の厚膜印刷を用いた酸
素センサ製造と合わせて酸素センサが低コストで製造で
きる。また、酸素センサと加熱体が一体化されているた
め、一体化した加熱体が排ガス温度などの僅かな燃焼条
件を受けにくくする利点がある。
(4) In the oxygen sensor used in the present invention, the cathode electrode film and the anode electrode film are formed on both surfaces of the oxygen ion conductive solid electrolyte body, and the cathode side electrode film is surrounded on one side of the solid electrolyte body. Moreover, the spiral spacers are arranged such that the starting end and the terminating end are spaced from each other, and the seal plate is arranged on the upper part of the spiral spacer. Since the oxygen diffusion passage is formed in the spiral space surrounded by the partition walls of the spiral spacer facing each other, the solid electrolyte body, and the seal plate, the oxygen sensor can be manufactured using thick film printing. Moreover, since the heating element is arranged on the upper part of the seal plate and is integrated with the oxygen sensor, the structure is simplified, and the oxygen sensor is manufactured together with the oxygen sensor manufacturing using the thick film printing described above. Can be manufactured at low cost. Further, since the oxygen sensor and the heating body are integrated, there is an advantage that the integrated heating body is less likely to be subjected to slight combustion conditions such as exhaust gas temperature.

【0052】(5)本発明に用いた酸素センサのカソー
ド電極膜およびアノード電極膜は、白金を主成分とし酸
化銅と酸化ビスマスからなる結合材を小量(例えば、5
%)含有している。電極の結合材として用いた酸化銅と
酸化ビスマスの融点は約850℃であり、過度に酸素セ
ンサの動作温度を高めることは電極の耐久性確保の観点
から好ましくないが、排ガス温度が高くなる場合などの
燃焼条件に対応して加熱体を動作するための加熱用直流
電源の発生電圧値を小さくしているため、酸素センサは
過度に高くない適切な動作温度となり、耐久信頼性が向
上した。
(5) In the cathode electrode film and the anode electrode film of the oxygen sensor used in the present invention, a small amount (for example, 5%) of a binder composed mainly of platinum and made of copper oxide and bismuth oxide.
%) Contained. The melting point of copper oxide and bismuth oxide used as the binder of the electrode is about 850 ° C, and it is not preferable to raise the operating temperature of the oxygen sensor excessively from the viewpoint of ensuring the durability of the electrode, but when the exhaust gas temperature becomes high. Since the generated voltage value of the heating DC power supply for operating the heating body is reduced in response to such combustion conditions, the oxygen sensor has an appropriate operating temperature that is not excessively high, and durability reliability is improved.

【0053】(6)加熱体として白金ヒータを用いた。
白金ヒータは温度係数が小さいうえに温度センサの役割
を同時にはたす。そのため、一体化した加熱体が排ガス
温度などの僅かな燃焼条件を受けにくくして酸素センサ
の動作温度をほぼ一定に保つ利点がある。
(6) A platinum heater was used as the heating element.
The platinum heater has a small temperature coefficient and also serves as a temperature sensor. Therefore, there is an advantage that the integrated heating body hardly receives a slight combustion condition such as exhaust gas temperature and the operating temperature of the oxygen sensor is kept substantially constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の燃焼機器のブロック図FIG. 1 is a block diagram of a combustion device according to an embodiment of the present invention.

【図2】同、燃焼機器の動作図[Fig. 2] The same operation diagram of the combustion equipment

【図3】同、酸素センサと加熱体の一部破断斜視図FIG. 3 is a partially cutaway perspective view of the oxygen sensor and the heating body.

【図4】本発明の第1の実施例の燃焼機器の制御流れの
フローチャート
FIG. 4 is a flowchart of a control flow of the combustion device according to the first embodiment of the present invention.

【図5】本発明の第2の実施例の燃焼機器の制御流れの
フローチャート
FIG. 5 is a flow chart of a control flow of the combustion device according to the second embodiment of the present invention.

【図6】本発明の第3の実施例の燃焼機器の制御流れの
フローチャート
FIG. 6 is a flow chart of a control flow of a combustion device according to a third embodiment of the present invention.

【図7】従来の燃焼機器のブロック図FIG. 7 is a block diagram of a conventional combustion device.

【図8】同、空気供給量を一定にして燃焼量を変化させ
た場合の排ガス温度と排ガス中酸素濃度を示す特性図
FIG. 8 is a characteristic diagram showing the exhaust gas temperature and the oxygen concentration in the exhaust gas when the combustion amount is changed while the air supply amount is constant.

【図9】同、加熱用直流電源の発生電力を変化させた場
合の酸素センサの動作温度を示す特性図
FIG. 9 is a characteristic diagram showing the operating temperature of the oxygen sensor when the power generated by the heating DC power supply is changed.

【図10】同、排ガス温度を変化させた場合の酸素セン
サの電圧電流特性図
FIG. 10 is a voltage-current characteristic diagram of the oxygen sensor when the exhaust gas temperature is changed.

【符号の説明】[Explanation of symbols]

1 燃料供給部 2 空気供給部 4 排ガス流路 5 酸素センサ 6 加熱体 9 制御部 10 加熱用直流電源 11 加熱電圧変更手段 12 排ガス温度比較部 13 排ガス温度検出手段(温度センサ) 14 燃料供給量比較部 15 空気供給量比較部 16a カソード電極膜 16b アノード電極膜 17 固体電解質体 18 螺旋型スペーサ 19 シール板 20 酸素拡散通路 1 Fuel Supply Section 2 Air Supply Section 4 Exhaust Gas Flow Path 5 Oxygen Sensor 6 Heating Body 9 Control Section 10 DC Power Supply for Heating 11 Heating Voltage Change Means 12 Exhaust Gas Temperature Comparison Section 13 Exhaust Gas Temperature Detection Means (Temperature Sensor) 14 Fuel Supply Quantity Comparison Part 15 Air supply amount comparison part 16a Cathode electrode film 16b Anode electrode film 17 Solid electrolyte body 18 Spiral spacer 19 Seal plate 20 Oxygen diffusion passage

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 排ガス流路に配置した限界電流式酸素セ
ンサからの酸素濃度信号に基づいて、燃料を供給する燃
料供給部または空気を供給する空気供給部を制御部で制
御する燃焼機器において、前記排ガス流路に配置した排
ガス温度検出手段により検出した排ガス温度を排ガス温
度比較部で設定値と比較し、排ガス温度が高くなるにつ
れて、前記限界電流式酸素センサに併設して排ガス流路
に配置した加熱体を動作するための加熱用直流電源の発
生電圧値を、加熱電圧変更手段で小さくするようにした
燃焼機器。
1. A combustion apparatus in which a control unit controls a fuel supply unit for supplying fuel or an air supply unit for supplying air based on an oxygen concentration signal from a limiting current type oxygen sensor arranged in an exhaust gas flow path, The exhaust gas temperature detected by the exhaust gas temperature detecting means arranged in the exhaust gas flow passage is compared with a set value in the exhaust gas temperature comparison unit, and as the exhaust gas temperature becomes higher, it is placed in the exhaust gas flow passage along with the limiting current type oxygen sensor. Combustion equipment in which the voltage value generated by the heating DC power supply for operating the heating element is reduced by the heating voltage changing means.
【請求項2】 排ガス流路に配置した限界電流式酸素セ
ンサからの酸素濃度信号に基づいて、燃料を供給する燃
料供給部または空気を供給する空気供給部を制御部で制
御する燃焼機器において、前記燃料供給部から供給する
燃料供給量を燃料供給量比較部で設定値と比較し、燃料
供給量が多くなるにつれて、前記限界電流式酸素センサ
に併設して排ガス流路に配置した加熱体を動作するため
の加熱用直流電源の発生電圧値を、加熱電圧変更手段で
小さくするようにした燃焼機器。
2. A combustion device in which a control unit controls a fuel supply unit for supplying fuel or an air supply unit for supplying air based on an oxygen concentration signal from a limiting current type oxygen sensor arranged in an exhaust gas flow path, The fuel supply amount supplied from the fuel supply unit is compared with a set value in the fuel supply amount comparison unit, and as the fuel supply amount increases, a heating element arranged in the exhaust gas flow path along with the limiting current type oxygen sensor is provided. Combustion equipment in which the voltage value generated by the heating DC power supply for operation is reduced by the heating voltage changing means.
【請求項3】 排ガス流路に配置した限界電流式酸素セ
ンサからの酸素濃度信号に基づいて、燃料を供給する燃
焼供給部または空気を供給する空気供給部を制御部で制
御する燃焼機器において、前記燃料供給部からの燃料供
給量に対応して前記空気供給部から供給する空気供給量
を空気供給量比較部で設定値と比較し、空気供給量が多
くなるにつれて、前記限界電流式酸素センサに併設して
排ガス流路に配置した加熱体を動作するための加熱用直
流電源の発生電圧値を、加熱電圧変更手段で小さくする
ようにした燃焼機器。
3. A combustion device in which a control unit controls a combustion supply unit for supplying fuel or an air supply unit for supplying air based on an oxygen concentration signal from a limiting current type oxygen sensor arranged in an exhaust gas flow path, The air supply amount supplied from the air supply unit corresponding to the fuel supply amount from the fuel supply unit is compared with a set value in an air supply amount comparison unit, and as the air supply amount increases, the limiting current type oxygen sensor Combustion equipment in which the heating voltage changing means reduces the generated voltage value of the heating DC power supply for operating the heating element arranged in the exhaust gas flow path.
【請求項4】 請求項1における排ガス温度、および請
求項2における燃料供給量、および請求項3における空
気供給量にそれぞれ設定値を設け、検出値が前記設定値
より大小を判断することで加熱用直流電源の発生電圧値
を大小に制御するようにした燃焼機器。
4. The heating is performed by setting a set value for each of the exhaust gas temperature in claim 1, the fuel supply amount in claim 2, and the air supply amount in claim 3, and determining whether the detected value is larger or smaller than the set value. Combustion equipment designed to control the generated voltage value of the DC power supply for power supply.
【請求項5】 請求項1における排ガス温度、および請
求項2における燃料供給量、および請求項3における空
気供給量にそれぞれ設定値を設け、検出値が設定値を超
えていると判断した時点から所定時間A以内は、加熱用
直流電源の発生電圧値を変更しないで、限界電流式酸素
センサからの酸素濃度信号に基づき燃料供給部または空
気供給部を制御し、前記所定時間A経過後さらに所定時
間B以内は、限界電流式酸素センサからの酸素濃度信号
に基づく燃料供給部または空気供給部の制御を解除し
て、加熱用直流電源の発生電圧値を変更するようにした
燃焼機器。
5. A set value is set for each of the exhaust gas temperature in claim 1, the fuel supply amount in claim 2, and the air supply amount in claim 3, and from the time when it is determined that the detected value exceeds the set value. Within the predetermined time A, the generated voltage value of the heating DC power supply is not changed, and the fuel supply unit or the air supply unit is controlled based on the oxygen concentration signal from the limiting current type oxygen sensor. Within time B, the combustion device is configured to release the control of the fuel supply unit or the air supply unit based on the oxygen concentration signal from the limiting current type oxygen sensor and change the generated voltage value of the heating DC power supply.
【請求項6】 限界電流式酸素センサが、酸素イオン電
導性固体電解質体と、前記固体電解質体の両面に形成さ
れた対となるカソード電極膜およびアノード電極膜と、
前記固体電解質体の片側に位置し前記カソード電極膜を
囲み始端と終端が互いに間隔を有するように配置された
螺旋型スペーサと、前記螺旋型スペーサの上部に配置さ
れたシール体とから構成され、酸素拡散通路を前記固体
電解質体と前記螺旋型スペーサの相対向する隔壁と前記
シール体とで囲まれる螺旋型空間に形成し、加熱体を前
記シール体に形成した請求項1ないし5のいずれかに記
載の燃焼機器。
6. A limiting current type oxygen sensor, an oxygen ion conductive solid electrolyte body, and a pair of cathode electrode film and anode electrode film formed on both surfaces of the solid electrolyte body,
A spiral spacer disposed on one side of the solid electrolyte body so as to surround the cathode electrode film so that the starting end and the terminating end are spaced apart from each other, and a sealing body arranged on the upper part of the spiral spacer. 6. The oxygen diffusion passage is formed in a spiral type space surrounded by the partition walls of the solid electrolyte body, the spiral type spacer facing each other, and the seal body, and the heating body is formed in the seal body. Combustion equipment described in.
【請求項7】 限界電流式酸素センサのカソード電極膜
およびアノード電極膜が、白金を主成分としており、酸
化銅と酸化ビスマスからなる結合材を小量含有してなる
請求項6記載の燃焼機器。
7. The combustion device according to claim 6, wherein the cathode electrode film and the anode electrode film of the limiting current type oxygen sensor are mainly composed of platinum and contain a small amount of a binder made of copper oxide and bismuth oxide. .
【請求項8】 加熱体が白金ヒータである請求項6記載
の燃焼機器。
8. The combustion device according to claim 6, wherein the heating element is a platinum heater.
JP6117282A 1994-05-31 1994-05-31 Combustion equipment Expired - Fee Related JP3012966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6117282A JP3012966B2 (en) 1994-05-31 1994-05-31 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117282A JP3012966B2 (en) 1994-05-31 1994-05-31 Combustion equipment

Publications (2)

Publication Number Publication Date
JPH07324733A true JPH07324733A (en) 1995-12-12
JP3012966B2 JP3012966B2 (en) 2000-02-28

Family

ID=14707893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117282A Expired - Fee Related JP3012966B2 (en) 1994-05-31 1994-05-31 Combustion equipment

Country Status (1)

Country Link
JP (1) JP3012966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809075A2 (en) * 1996-05-22 1997-11-26 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling combustion using an oxygen sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809075A2 (en) * 1996-05-22 1997-11-26 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling combustion using an oxygen sensor
EP0809075A3 (en) * 1996-05-22 1998-03-18 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling combustion using an oxygen sensor
US5938423A (en) * 1996-05-22 1999-08-17 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling combustion using an oxygen sensor
EP1271054A2 (en) * 1996-05-22 2003-01-02 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling combustion using an oxygen sensor
EP1271054A3 (en) * 1996-05-22 2004-01-14 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling combustion using an oxygen sensor

Also Published As

Publication number Publication date
JP3012966B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
JP3855483B2 (en) Stacked air-fuel ratio sensor element
EP0167297B1 (en) Electrochemical element
US4300991A (en) Air-fuel ratio detecting apparatus
US5288389A (en) Oxygen sensor with higher resistance to repeated thermal-shocks and shorter warm-up time
US4897174A (en) Gas sensing apparatus
JP3546590B2 (en) Air-fuel ratio sensor
US4880519A (en) Gas sensor element
JP3481344B2 (en) Method for detecting deterioration of exhaust gas purifying catalyst and system therefor
JP4592571B2 (en) Sensor element deterioration determination device and sensor element deterioration determination method
EP0227257B1 (en) Electrochemical device
CN113227775A (en) Gas sensor element and gas sensor
US5047137A (en) Solid electrolyte air/fuel ratio sensor with voltage control
JPH07324733A (en) Combustion equipment
JP3860768B2 (en) Oxygen sensor element
JPH05126789A (en) Oxygen concentration detector
JPH0245819B2 (en)
JPS61241652A (en) Method for discriminating activation of oxygen concentration sensor
JP2003149201A (en) Composite gas sensor element
JP3529567B2 (en) Gas sensor
JP3010752B2 (en) Limit current type oxygen sensor
JPH02147853A (en) Sensor for detecting concentration of gas
JPS62190461A (en) Activation detecting device for air fuel ratio sensor
JP2974088B2 (en) Carbon dioxide detection sensor
JPS6015170Y2 (en) Oxygen concentration detection element
JPS644147B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees