JPH07324055A - Production of acetic anhydride and acetic acid - Google Patents

Production of acetic anhydride and acetic acid

Info

Publication number
JPH07324055A
JPH07324055A JP7067989A JP6798995A JPH07324055A JP H07324055 A JPH07324055 A JP H07324055A JP 7067989 A JP7067989 A JP 7067989A JP 6798995 A JP6798995 A JP 6798995A JP H07324055 A JPH07324055 A JP H07324055A
Authority
JP
Japan
Prior art keywords
zone
acetic acid
distillation
acetic anhydride
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7067989A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Harano
嘉行 原野
Yoshiaki Morimoto
好昭 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7067989A priority Critical patent/JPH07324055A/en
Publication of JPH07324055A publication Critical patent/JPH07324055A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently obtain the compounds with a series of production equipment by efficiently recovering low-boiling components and entrainment catalyst while reducing the energy cost through a specific process. CONSTITUTION:Firstly, in a reaction zone, both methanol and methyl acetate are reacted with CO in the presence of a catalyst, and the resultant carbonylated mixture is depressurized in a gas-liquid separation zone and the volatile components evaporated and the catalyst solution are fed to 1st distillation zone and the reaction zone, respectively. Second, the low-boiling components from the column top in the 1st distillation zone, the catalyst-contg. high-boiling components from the column bottom, and the medium-boiling components obtained by side cut and consisting mainly of acetic anhydride and acetic acid, are fed to the reaction zone, the reaction zone, etc., and 2nd distillation zone, respectively. Subsequently, the residual low-boiling components from the column top in the 2nd distillation zone, and the components obtained from the side cut or column bottom and consisting mainly of acetic anhydride and acetic acid, are fed to the reaction zone and 3rd distillation zone, respectively. Finally, in the 3rd distillation zone, the objective acetic acid and acetic anhydride are obtained from the column top and from the side cut or column bottom, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタノール及び酢酸メ
チル並びに場合によりジメチルエーテルより無水酢酸及
び酢酸を連続する一連の製造設備で製造する方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a process for producing acetic anhydride and acetic acid from methanol and methyl acetate and optionally dimethyl ether in a continuous series of production facilities.

【0002】[0002]

【従来技術および発明が解決しようとする課題】酢酸
は、酢酸エステル類、無水酢酸、酢酸ビニル、テレフタ
ル酸の原料として大量に用いられ高分子工業、化学工業
をはじめ、多くの産業に必要な基本的な化合物である。
一方、無水酢酸は酢酸セルロースの製造原料として、大
量に用いられる他に医薬品、香料、染料などの化成品の
原料として有用な化合物である。又、酢酸と無水酢酸は
実用的な利用上、相互に関連する化学物質である。例え
ば、酢酸セルロース工業に於いては、酢酸から無水酢酸
を製造し、無水酢酸とセルロースとを反応させて、酢酸
セルロースと酢酸とし、酢酸は再使用される。
BACKGROUND OF THE INVENTION Acetic acid is used in large amounts as a raw material for acetic acid esters, acetic anhydride, vinyl acetate, and terephthalic acid, and is a basic substance necessary for many industries including polymer industry and chemical industry. Compound.
On the other hand, acetic anhydride is a compound that is used in large quantities as a raw material for producing cellulose acetate and is also useful as a raw material for chemical products such as pharmaceuticals, fragrances and dyes. Further, acetic acid and acetic anhydride are chemical substances that are related to each other for practical use. For example, in the cellulose acetate industry, acetic anhydride is produced from acetic acid, and acetic anhydride and cellulose are reacted to form cellulose acetate and acetic acid, and acetic acid is reused.

【0003】酢酸と無水酢酸を得る方法として、酢酸メ
チルとメタノール、もしくはジメチルエーテルとメタノ
ールを一酸化炭素と反応させて連続する一連の製造設備
で製造する方法が開示されている。
As a method for obtaining acetic acid and acetic anhydride, there has been disclosed a method of reacting methyl acetate and methanol or dimethyl ether and methanol with carbon monoxide in a continuous series of manufacturing facilities.

【0004】なかでも、反応帯域で得られた酢酸と無水
酢酸を分離精製する方法として、特開平2−10455
1号公報には、圧力の異なる2つの気液分離帯域を用い
て触媒溶液を分離し、一方、カルボニル化生成物と低沸
点原料の分離を、一段の蒸留帯域で常圧下に実施するプ
ロセスが記載されている。前記プロセスでは、触媒溶液
を反応器に循環させるために2つの気液分離帯域が必要
となるだけでなく、2つ目の気液分離帯域が減圧下に管
理されているため、触媒が不安定になり、析出するとい
う問題点を有する。更に、減圧下に管理されている、2
つ目の気液分離帯域から蒸発する成分を蒸留帯域に供給
する前に昇圧する必要性が生じる。又、前記公報記載の
方法によれば、ヨウ化メチル、酢酸メチル、ジメチルエ
ーテルなどの低沸点成分と製品である酢酸、無水酢酸の
分離が行われる蒸留帯域の制御圧力が常圧であるため、
当該蒸留塔塔頂部でのヨウ化メチル、酢酸メチル、ジメ
チルエーテルなどの低沸点成分の冷却回収能力が低く、
当該蒸留塔塔頂部に必要な熱交換器が大きくなること、
冷却に必要なエネルギー量が増大すること、当該蒸留塔
塔頂部からの廃ガス回収設備が大きくなることなどの問
題点が指摘される。又、蒸留帯域で、気液分離帯域から
飛沫同伴する触媒の回収が行われず、高価な触媒を用い
た場合には経済的に成り立たないという問題点も有す
る。
Above all, as a method for separating and purifying the acetic acid and acetic anhydride obtained in the reaction zone, JP-A-2-10455 is used.
No. 1 discloses a process in which two gas-liquid separation zones having different pressures are used to separate a catalyst solution, while a carbonylation product and a low-boiling raw material are separated in a single-stage distillation zone under normal pressure. Have been described. In the above process, not only two gas-liquid separation zones are required to circulate the catalyst solution into the reactor, but also the second gas-liquid separation zone is controlled under reduced pressure, which makes the catalyst unstable. However, there is a problem in that it precipitates. Furthermore, it is managed under reduced pressure. 2
The need arises to pressurize the components evaporating from the second gas-liquid separation zone before feeding them to the distillation zone. Further, according to the method described in the above publication, the control pressure of the distillation zone in which the low boiling point components such as methyl iodide, methyl acetate and dimethyl ether and the product acetic acid and acetic anhydride are separated is atmospheric pressure,
The cooling recovery capacity of low boiling point components such as methyl iodide, methyl acetate and dimethyl ether at the top of the distillation column is low,
The heat exchanger required at the top of the distillation column is large,
It is pointed out that there are problems such as an increase in the amount of energy required for cooling and an increase in the equipment for recovering waste gas from the top of the distillation column. Further, in the distillation zone, the catalyst entrained in droplets is not recovered from the gas-liquid separation zone, and there is a problem that it is not economically feasible when an expensive catalyst is used.

【0005】本発明の目的は、酢酸と無水酢酸を連続す
る一連の製造設備で製造する際に、ヨウ化メチル、酢酸
メチル、ジメチルエーテルなどの低沸点成分、更には、
気液分離帯域から飛沫同伴する触媒を効率的に回収する
酢酸、無水酢酸の製造方法を提供する。
The object of the present invention is to produce low-boiling components such as methyl iodide, methyl acetate, and dimethyl ether when producing acetic acid and acetic anhydride in a series of continuous production facilities.
Provided is a method for producing acetic acid and acetic anhydride, which efficiently recovers a catalyst entrained from a gas-liquid separation zone.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記目的を
達成するため鋭意検討した結果、メタノール及び酢酸メ
チル並びに場合によりジメチルエーテルと一酸化炭素を
反応させることによって無水酢酸及び酢酸を製造する方
法において、主にヨウ化メチル、酢酸メチル、ジメチル
エーテルからなる低沸点成分の分離を2つ以上の蒸留帯
域でもって行い、又、気液分離帯域からの飛沫同伴触媒
を反応帯域及び/又は気液分離帯域に戻すことによっ
て、更には、気液分離帯域及び前記蒸留帯域を5バール
以下の加圧下に制御することによって、効率的に一連の
製造設備で無水酢酸及び酢酸を製造する方法を見出だし
た。
Means for Solving the Problems As a result of intensive studies made by the present inventors in order to achieve the above object, a method for producing acetic anhydride and acetic acid by reacting methanol and methyl acetate and optionally dimethyl ether with carbon monoxide. In, the separation of low-boiling components mainly consisting of methyl iodide, methyl acetate and dimethyl ether is carried out in two or more distillation zones, and the entrainment catalyst from the gas-liquid separation zone is used in the reaction zone and / or gas-liquid separation. By returning to the zone, and further by controlling the gas-liquid separation zone and the distillation zone under a pressure of 5 bar or less, a method for efficiently producing acetic anhydride and acetic acid in a series of production facilities was found. .

【0007】すなわち本発明は、メタノール及び酢酸メ
チル並びに場合によりジメチルエーテルと一酸化炭素を
反応させることによって無水酢酸及び酢酸を製造する方
法において、 イ)メタノール及び酢酸メチル並びに場合によりジメチ
ルエーテルを触媒の存在下に、一酸化炭素又は一酸化炭
素と水素からなる混合物と反応帯域中で150〜250
℃の温度及び5〜120バールの圧力で反応させ、 ロ)反応帯域から去るカルボニル化混合物を気液分離帯
域で5バール以下の加圧下に放圧し、揮発性成分の主量
を蒸発させて、第一の蒸留帯域に供給し、気液分離帯域
で蒸発しなかった触媒溶液を反応帯域に戻し、 ハ)第一の蒸留帯域において、低沸点成分を塔頂部より
得て反応帯域に戻し、飛沫同伴などにより混入した触媒
を一部含有する高沸点成分を塔底部より得て、反応帯域
及び/又は気液分離帯域に戻し、主に無水酢酸、酢酸を
含有する中沸点成分をサイドカットにより得て、 ニ)第一の蒸留帯域でサイドカットにより得られた、主
に無水酢酸、酢酸を含有する中沸点成分を、さらに第二
の蒸留帯域に供給し、 ホ)第二の蒸留帯域において、更に、残存低沸点成分を
塔頂部より得て反応帯域に戻し、 ヘ)主に無水酢酸と酢酸とからなる成分をサイドカッ
ト、あるいは塔底部より得て、更に第三の蒸留帯域に供
給し、又は、飛沫同伴などにより触媒を一部含有する高
沸点成分を塔底部より得て、反応帯域及び/又は気液分
離帯域に戻し、主に無水酢酸と酢酸とからなる成分をサ
イドカットにより得て、更に第三の蒸留帯域に供給し、 ト)第三の蒸留帯域において、塔頂部より酢酸を得て、
サイドカット、あるいは塔底部より無水酢酸を得ること
からなる無水酢酸及び酢酸の製造方法を提供する。
That is, the present invention provides a method for producing acetic anhydride and acetic acid by reacting methanol and methyl acetate and optionally dimethyl ether with carbon monoxide, in which: a) methanol and methyl acetate and optionally dimethyl ether in the presence of a catalyst. 150 to 250 in the reaction zone with carbon monoxide or a mixture of carbon monoxide and hydrogen.
At a temperature of ℃ and a pressure of 5 to 120 bar, b) releasing the carbonylation mixture leaving the reaction zone in a gas-liquid separation zone under a pressure of 5 bar or less, to evaporate the main amount of volatile components, The catalyst solution that was supplied to the first distillation zone and did not evaporate in the gas-liquid separation zone was returned to the reaction zone. C) In the first distillation zone, low boiling point components were obtained from the top of the column and returned to the reaction zone, and sprayed. A high boiling point component containing a part of the catalyst mixed by entrainment is obtained from the bottom of the column and returned to the reaction zone and / or the gas-liquid separation zone to obtain a medium boiling point component mainly containing acetic anhydride and acetic acid by side-cutting. D) The acetic anhydride, a medium boiling point component mainly containing acetic acid, obtained by side-cutting in the first distillation zone, is further fed to the second distillation zone, and e) in the second distillation zone, In addition, residual low boiling point components are obtained from the top of the column. And then returned to the reaction zone, and f) a component mainly consisting of acetic anhydride and acetic acid is side-cut or obtained from the bottom of the column and further fed to the third distillation zone, or partially containing a catalyst by entrainment of droplets. To obtain a high boiling point component from the bottom of the column, return to the reaction zone and / or gas-liquid separation zone, to obtain a component mainly consisting of acetic anhydride and acetic acid by side-cut, further fed to the third distillation zone, G) Acetic acid was obtained from the top of the column in the third distillation zone,
Provided is acetic anhydride and a method for producing acetic acid, which comprises obtaining acetic anhydride from a side cut or a column bottom.

【0008】反応に使用される触媒としては、ヨウ化メ
チルと共に、元素周期律表の第VIII族の各金属を使用す
ることができる。例えば、パラジウム、イリジウム、ロ
ジウム、ニッケル、コバルト等が挙げられるが、特にロ
ジウム、ニッケルが好ましい。中でも、ロジウムが最も
高い活性を有している。触媒の使用形態としては、どの
ような形態でもよいが、反応条件下に可溶性のものが好
ましく、中でも特に、反応系中でカルボニル錯体種を形
成するものが特に好ましい。
As the catalyst used in the reaction, each metal of Group VIII of the Periodic Table of the Elements can be used together with methyl iodide. For example, palladium, iridium, rhodium, nickel, cobalt and the like can be mentioned, but rhodium and nickel are particularly preferable. Of these, rhodium has the highest activity. The catalyst may be used in any form, but one that is soluble under the reaction conditions is preferable, and one that forms a carbonyl complex species in the reaction system is particularly preferable.

【0009】助触媒として使用されるアルカリ金属塩
は、反応条件下に可溶性であればどの様なものでもかま
わないが、ヨウ化物塩、酢酸塩が好ましく、中でも特に
ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、
酢酸リチウム、酢酸ナトリウム、酢酸カリウムなどが好
ましい。更には助触媒として元素周期律表の第III 族の
ルイス酸性を有する各元素の塩を使用することもでき
る。塩の形態は反応条件下に可溶性であればどの様なも
のでもかまわないが、ヨウ化物塩、酢酸塩が好ましく、
中でも特にアルミニウムやホウ素などのヨウ化物塩、酢
酸塩や塩化アルミニウム、ホウ酸、メタホウ酸などが好
ましい。
The alkali metal salt used as a co-catalyst may be any one as long as it is soluble under the reaction conditions, but iodide salts and acetates are preferable, and among them, lithium iodide, sodium iodide, Potassium iodide,
Lithium acetate, sodium acetate, potassium acetate and the like are preferable. Further, as a cocatalyst, a salt of each element having Lewis acidity of Group III of the Periodic Table of Elements can be used. Any form of salt may be used as long as it is soluble under the reaction conditions, but iodide salt and acetate are preferable,
Of these, iodide salts such as aluminum and boron, acetates, aluminum chloride, boric acid, and metaboric acid are particularly preferable.

【0010】以下、ロジウム触媒を例に挙げて説明す
る。
The rhodium catalyst will be described below as an example.

【0011】反応液中のロジウムの濃度は100〜1
0,000ppm、好ましくは300〜3,000pp
mである。反応液中のヨウ化メチルの濃度は10〜30
wt%、酢酸メチル及び/又はジメチルエーテルの濃度
は5〜40wt%、無水酢酸の濃度は10〜40wt
%,酢酸の濃度は0〜40wt%である。メタノール、
酢酸メチル、ジメチルエーテルの濃度は、無水酢酸、酢
酸の製造比率によって、随時、変更され得る。又、原料
として、水を仕込むこともできる。文献(Adv.Ch
em.Ser.,230,377−394(199
2))にも示されている様に、高助触媒濃度、高酢酸メ
チル濃度域に於ける、本反応の律速段階はロジウムとヨ
ウ化メチルの反応段階であるが、実用的な反応速度から
得られる高ロジウム濃度、高ヨウ化メチル濃度域に於け
る、本反応の律速段階は助触媒のヨウ化物塩と酢酸メチ
ルの反応段階である。
The concentration of rhodium in the reaction solution is 100 to 1
10,000 ppm, preferably 300-3,000 pp
m. The concentration of methyl iodide in the reaction solution is 10 to 30.
wt%, concentration of methyl acetate and / or dimethyl ether is 5-40 wt%, concentration of acetic anhydride is 10-40 wt
%, The concentration of acetic acid is 0 to 40 wt%. methanol,
The concentrations of methyl acetate and dimethyl ether can be changed at any time depending on the production ratio of acetic anhydride and acetic acid. Also, water can be charged as a raw material. Literature (Adv.Ch
em. Ser. , 230, 377-394 (199
As shown in 2)), the rate-determining step of this reaction in the high promoter concentration and high methyl acetate concentration regions is the reaction step of rhodium and methyl iodide. In the obtained high rhodium concentration and high methyl iodide concentration regions, the rate-determining step of this reaction is the reaction step of the iodide salt of the promoter and methyl acetate.

【0012】反応のために使用される一酸化炭素は必ず
しも純粋である必要はない。反応器中で一酸化炭素分圧
が一定に保持されれば、極少量の不活性ガス、例えば二
酸化炭素、窒素、又はメタンがカルボニル化の妨害因子
になることはない。水素含量は触媒活性に対して有利な
作用を有するが、しかし水素化生成物、例えばエチリデ
ンジアセテートを形成することによって方法の選択性を
低下させ得る。よって、反応器中の水素分圧は0〜10
気圧が好ましい。
The carbon monoxide used for the reaction does not necessarily have to be pure. If the carbon monoxide partial pressure is kept constant in the reactor, then very small amounts of inert gases such as carbon dioxide, nitrogen or methane do not interfere with the carbonylation. Hydrogen content has a positive effect on the catalytic activity, but it can reduce the selectivity of the process by forming hydrogenation products such as ethylidene diacetate. Therefore, the hydrogen partial pressure in the reactor is 0-10.
Atmospheric pressure is preferred.

【0013】反応器中の反応圧力は5〜120バール、
反応温度は150〜250℃、一酸化炭素分圧は5〜7
0気圧で行われる。
The reaction pressure in the reactor is 5 to 120 bar,
The reaction temperature is 150 to 250 ° C, and the carbon monoxide partial pressure is 5 to 7
It is carried out at 0 atm.

【0014】触媒、助触媒の存在下で反応して得られた
反応粗液は反応器から引き出され、反応圧力以下に制御
された気液分離帯域にフラッシュ蒸発されて、蒸発しな
い循環触媒液と生成した酢酸、無水酢酸を含む蒸気に分
離される。この際に気液分離帯域の圧力は、反応帯域以
下の圧力であればどのような圧力でもかまわないが、反
応帯域の圧力との差が小さい場合には、フラッシュによ
る蒸発蒸気量が少なくなり、循環触媒液量が多くなっ
て、プロセス上不利となる。蒸発蒸気量を稼ぐ方法とし
て、例えば、気液分離帯域を加熱する方法や、CO、H
存在下に気液分離帯域を加熱する方法が考えられる。
しかしながら、加熱する場合には触媒が気液分離帯域で
不安定になり析出するという問題がある。一方、CO、
存在下に気液分離帯域を加熱する場合にはCO、H
ガスが必要となる問題や、供給したCO、Hガスに
同伴されて、蒸留帯域から低沸点原料などがロスし、そ
の回収設備が膨大なものになるという問題がある。逆
に、反応帯域の圧力との差が大きい場合には、気液分離
帯域の圧力が小さいために、気液分離帯域以降の蒸留帯
域へ蒸気を供給する前に昇圧する必要に迫られる他に、
当該気液分離帯域で触媒が不安定になり析出するという
問題がある。しかるに、気液分離帯域の圧力は、5バー
ル以下の加圧下に制御されること、中でも特に4バール
以下、1.5バール以上に制御されることが好ましい。
又、必要に応じて、CO及び/又はHガスを導入して
もよい。
A reaction crude liquid obtained by reacting in the presence of a catalyst and a cocatalyst is withdrawn from the reactor and flash-evaporated into a gas-liquid separation zone controlled to a reaction pressure or less, and a circulating catalyst liquid that does not evaporate. It is separated into vapor containing acetic acid and acetic anhydride produced. At this time, the pressure of the gas-liquid separation zone may be any pressure as long as it is a pressure equal to or lower than the reaction zone, but when the difference from the pressure of the reaction zone is small, the amount of vaporized vapor due to flash decreases, The amount of circulating catalyst liquid increases, which is disadvantageous in the process. As a method of earning the amount of vaporized vapor, for example, a method of heating a gas-liquid separation zone, CO, H
A method of heating the gas-liquid separation zone in the presence of 2 can be considered.
However, when heated, there is a problem that the catalyst becomes unstable and precipitates in the gas-liquid separation zone. On the other hand, CO,
When heating the gas-liquid separation zone in the presence of H 2, CO, H
There are problems that two gases are required, and that low boiling point raw materials and the like are lost from the distillation zone when they are entrained in the supplied CO and H 2 gases, and the recovery equipment becomes enormous. On the other hand, when the difference between the pressure in the reaction zone and the pressure in the reaction zone is large, the pressure in the gas-liquid separation zone is so small that it is necessary to raise the pressure before supplying vapor to the distillation zone after the gas-liquid separation zone. ,
There is a problem that the catalyst becomes unstable and precipitates in the gas-liquid separation zone. However, it is preferable that the pressure in the gas-liquid separation zone is controlled under a pressure of 5 bar or less, and more preferably, 4 bar or less and 1.5 bar or more.
Further, if necessary, it may be introduced CO and / or H 2 gas.

【0015】気液分離帯域で、蒸発せずに分離された触
媒溶液はそのまま、あるいは何らかの処理後に反応帯域
に戻される。気液分離帯域で蒸発しなかった触媒溶液中
には、タールやエチリデンジアセテートなどの高沸点不
純物が含まれている。従って、必要ならばそれら不純物
の分解除去、分離精製などを行った後に反応帯域に戻し
てもよい。又、気液分離帯域で蒸発せずに分離された触
媒溶液を分解除去や分離精製の処理後に反応帯域に戻す
場合には、その処理量が触媒溶液の全量であってもよい
し、一部のみであってもよい。
In the gas-liquid separation zone, the catalyst solution separated without evaporation is returned to the reaction zone as it is or after some treatment. The catalyst solution that did not evaporate in the gas-liquid separation zone contains high-boiling impurities such as tar and ethylidene diacetate. Therefore, if necessary, the impurities may be decomposed and removed, separated and purified, and then returned to the reaction zone. When the catalyst solution separated without evaporating in the gas-liquid separation zone is returned to the reaction zone after decomposition and removal or separation and purification, the treatment amount may be the whole amount of the catalyst solution, or a part thereof. May be only.

【0016】気液分離帯域でフラッシュ蒸発された、酢
酸、無水酢酸を含む蒸気は、第一の蒸留帯域に供給され
る。第一の蒸留帯域の制御圧力が気液分離帯域の制御圧
力よりも高い場合には、気液分離帯域から第一の蒸留帯
域に供給する前に当該蒸気を昇圧する必要に迫られるだ
けでなく、第一の蒸留帯域そのものの設備費や分離に要
するエネルギーコストが上昇し、プロセス上不利にな
る。逆に、第一の蒸留帯域の制御圧力が低すぎる場合に
は、蒸留塔塔頂部でのヨウ化メチル、酢酸メチル、ジメ
チルエーテルなどの冷却回収能力が低下する。このこと
は当該蒸留塔塔頂部に必要な熱交換器が大きくなるこ
と、冷却に必要なエネルギー量が増大すること、当該蒸
留塔塔頂部からの廃ガス回収設備が大きくなること、飛
沫同伴触媒が不安定になって蒸留塔内に析出するなどの
問題を引き起こす。しかるに、第一の蒸留帯域の圧力は
5バール以下の加圧下に制御されること、中でも特に4
バール以下、1.5バール以上に制御されることが好ま
しい。
The vapor containing acetic acid and acetic anhydride flash-evaporated in the gas-liquid separation zone is supplied to the first distillation zone. When the control pressure of the first distillation zone is higher than the control pressure of the gas-liquid separation zone, not only is it necessary to pressurize the vapor before supplying it from the gas-liquid separation zone to the first distillation zone, The equipment cost of the first distillation zone itself and the energy cost required for separation increase, which is disadvantageous in the process. On the other hand, if the control pressure in the first distillation zone is too low, the cooling recovery capacity of methyl iodide, methyl acetate, dimethyl ether, etc. at the top of the distillation column will decrease. This means that the heat exchanger required at the top of the distillation column is large, the amount of energy required for cooling is increased, the waste gas recovery facility from the top of the distillation column is large, and the entrained catalyst is It becomes unstable and causes problems such as precipitation in the distillation column. However, the pressure in the first distillation zone should be controlled under a pressure of 5 bar or less, especially 4
It is preferably controlled to below bar and above 1.5 bar.

【0017】さらに気液分離帯域(Aとする)と第一の
蒸留帯域(Bとする)の圧力の関係はA=Bあるいは、
AがBよりわずかに高いのがより好ましい。
Furthermore, the relationship between the pressure in the gas-liquid separation zone (denoted as A) and the pressure in the first distillation zone (denoted as B) is A = B, or
More preferably, A is slightly higher than B.

【0018】気液分離帯域から蒸留帯域に供給される蒸
気中には、ヨウ化メチル、酢酸メチル、ジメチルエーテ
ルなど低沸点成分と、生成物である酢酸、無水酢酸の他
に気液分離帯域からの飛沫同伴により触媒が一部混入し
ている。ヨウ化メチル、酢酸メチル、ジメチルエーテル
からなる低沸点成分蒸気と、気液分離帯域からの飛沫同
伴触媒と、生成物である酢酸、無水酢酸との三者の完全
な分離を一つの蒸留帯域のみで試みることは、分離に必
要な蒸留塔の規模(段数、塔径、塔高)や、分離に必要
なエネルギーが膨大になり現実的でないという問題点を
引き起こす。しかるに、気液分離帯域から蒸留帯域に供
給されるヨウ化メチル、酢酸メチル、ジメチルエーテル
など低沸点蒸気と、生成物である酢酸、無水酢酸との分
離には2つ以上の蒸留帯域を用いるのが好ましい。
In the vapor supplied from the gas-liquid separation zone to the distillation zone, low boiling point components such as methyl iodide, methyl acetate and dimethyl ether, acetic acid and acetic anhydride as products, as well as those from the gas-liquid separation zone, are obtained. Part of the catalyst is mixed due to entrainment. Complete separation of low boiling point component vapor consisting of methyl iodide, methyl acetate and dimethyl ether, entrained catalyst from gas-liquid separation zone, acetic acid and acetic anhydride as products in only one distillation zone. Attempting to try causes a problem that the scale of the distillation column required for the separation (the number of plates, the column diameter, the column height) and the energy required for the separation become enormous and unrealistic. However, it is necessary to use two or more distillation zones to separate low boiling point vapors such as methyl iodide, methyl acetate and dimethyl ether supplied from the gas-liquid separation zone into the distillation zone and acetic acid and acetic anhydride as products. preferable.

【0019】又、気液分離帯域から蒸留帯域に供給され
る蒸気中には、飛沫同伴などにより混入した触媒を一部
含有している。しかるに第一の蒸留帯域では、飛沫同伴
などにより混入した触媒を一部含有する高沸点成分を塔
底部より得て、主に酢酸と無水酢酸を含む中沸点成分を
サイドカットにより得るのが好ましい。この際、主に酢
酸と無水酢酸を含む中沸点成分のサイドカットの形態は
液状であっても蒸気状であってもかまわないが、特に蒸
気状であるほうが好ましい。
Further, the vapor supplied from the gas-liquid separation zone to the distillation zone partially contains a catalyst mixed by entrainment. However, in the first distillation zone, it is preferable to obtain a high boiling point component containing a part of the catalyst mixed by entrainment of droplets from the bottom of the column, and to obtain a medium boiling point component mainly containing acetic acid and acetic anhydride by side cut. At this time, the form of the side cut of the medium boiling point component mainly containing acetic acid and acetic anhydride may be liquid or vapor, but is particularly preferably vapor.

【0020】第一の蒸留帯域において塔頂部より得られ
る、主としてヨウ化メチルと酢酸メチルからなる低沸点
成分は反応帯域に戻される。第一の蒸留帯域においてサ
イドカットにより得られる、主に酢酸と無水酢酸を含む
中沸点成分は第二の蒸留帯域に供給される。第一の蒸留
帯域において塔底部より得られる、飛沫同伴などにより
混入した触媒を一部含有する高沸点成分は反応帯域、及
び/又は気液分離帯域に戻される。
The low-boiling components, mainly methyl iodide and methyl acetate, obtained from the top of the column in the first distillation zone are returned to the reaction zone. The medium-boiling-point components containing mainly acetic acid and acetic anhydride, which are obtained by side-cutting in the first distillation zone, are supplied to the second distillation zone. The high-boiling-point component obtained from the bottom of the column in the first distillation zone and partially containing the catalyst mixed by the entrainment of droplets is returned to the reaction zone and / or the gas-liquid separation zone.

【0021】第一の蒸留帯域における分別蒸留時に、主
としてCO、CO、CH、Nからなる廃ガスを塔
頂部を介して引き出して、装入物質メタノール、及び/
又は酢酸メチル、及び/又はジメチルエーテルで洗浄す
ることによって残存のヨウ化メチルを除去して、燃焼に
供給し、かつメタノールと酢酸メチル、ジメチルエーテ
ルの内、少なくとも一つの成分を含んだ混合物は反応帯
域に供給してもよい。ここで用いられる廃ガスの洗浄方
法は通常の方法、例えば特開昭61−58803号公報
記載の方法が用いられる。
During the fractional distillation in the first distillation zone, a waste gas consisting mainly of CO 2 , CO, CH 4 , N 2 is withdrawn via the top of the column, charging methanol and / or
Alternatively, residual methyl iodide is removed by washing with methyl acetate and / or dimethyl ether, and the mixture is fed to combustion, and a mixture containing at least one of methanol, methyl acetate and dimethyl ether is added to the reaction zone. May be supplied. As a method for cleaning the waste gas used here, an ordinary method, for example, the method described in JP-A-61-58803 is used.

【0022】第一の蒸留帯域においてサイドカットによ
り得られる、主として酢酸と無水酢酸を含み、微量のヨ
ウ化メチル、酢酸メチル等を含む成分は第二の蒸留帯域
に供給される。第二の蒸留帯域では主としてヨウ化メチ
ルと酢酸メチルからなる低沸点成分が塔頂部より得ら
れ、主として酢酸と無水酢酸を含む成分がサイドカッ
ト、あるいは塔底部より得られる。飛沫同伴などによ
り、触媒を一部含有する高沸点成分が残存している場合
には、主としてヨウ化メチルと酢酸メチルからなる低沸
点成分が塔頂部より得られ、主として酢酸と無水酢酸を
含む成分がサイドカットより得られ、触媒を一部含有す
る高沸点成分は塔底部より得られ、反応帯域、及び/又
は気液分離帯域に戻される。サイドカットの形態は液状
であっても蒸気状であってもかまわないが、特に蒸気状
が好ましい。この際、第二の蒸留帯域の制御圧力が第一
の蒸留帯域の制御圧力よりも高い場合には、第一の蒸留
帯域から第二の蒸留帯域に供給する前に当該成分を昇圧
する必要に迫られるだけでなく、第二の蒸留帯域そのも
のの設備費や分離に要するエネルギーコストが上昇し、
プロセス上、不利になる。逆に、第二の蒸留帯域の制御
圧力が低すぎる場合には、蒸留塔塔頂部でのヨウ化メチ
ル、酢酸メチル、ジメチルエーテルなどの冷却回収能力
が低下する。このことは、当該蒸留塔塔頂部に必要な熱
交換器が大きくなること、冷却に必要なエネルギー量が
増大すること、飛沫同伴触媒が蒸留塔内で不安定になっ
て、析出するなどの問題を引き起こす。しかるに、第二
の蒸留帯域の圧力は5バール以下の加圧下に制御される
こと、中でも特に4バール以下、1.5バール以上に制
御されることが好ましい。
The components obtained by side-cutting in the first distillation zone, containing mainly acetic acid and acetic anhydride and a trace amount of methyl iodide, methyl acetate, etc., are fed to the second distillation zone. In the second distillation zone, low-boiling components mainly consisting of methyl iodide and methyl acetate are obtained from the column top, and components mainly containing acetic acid and acetic anhydride are side-cut or obtained from the column bottom. When a high-boiling component partially containing the catalyst remains due to entrainment, a low-boiling component mainly consisting of methyl iodide and methyl acetate is obtained from the top of the column, and a component mainly containing acetic acid and acetic anhydride. Is obtained from the side cut, and the high boiling point component containing a part of the catalyst is obtained from the bottom of the column and returned to the reaction zone and / or the gas-liquid separation zone. The form of the side cut may be liquid or vapor, but vapor is particularly preferable. At this time, if the control pressure of the second distillation zone is higher than the control pressure of the first distillation zone, it is necessary to pressurize the component before supplying it from the first distillation zone to the second distillation zone. In addition to being pressed, the equipment cost of the second distillation zone itself and the energy cost required for separation rise,
It is disadvantageous in the process. On the contrary, if the control pressure in the second distillation zone is too low, the cooling recovery capacity of methyl iodide, methyl acetate, dimethyl ether, etc. at the top of the distillation column will decrease. This means that the heat exchanger required at the top of the distillation column becomes large, the amount of energy required for cooling increases, and the entrained catalyst becomes unstable in the distillation column and precipitates. cause. However, it is preferable that the pressure in the second distillation zone is controlled under a pressure of 5 bar or less, and particularly preferably 4 bar or less and 1.5 bar or more.

【0023】必要ならば第二の蒸留帯域における分別蒸
留時に、主としてCO、CO、CH、Nからなる
廃ガスを塔頂部を介して引き出して、装入物質メタノー
ル、及び/又は酢酸メチル、及び/又はジメチルエーテ
ルで洗浄することによって残存のヨウ化メチルを除去し
て、燃焼に供給し、かつメタノールと酢酸メチル、ジメ
チルエーテルの内、少なくとも一つの成分を含有する混
合物は反応帯域に供給してもよい。この場合、第二の蒸
留帯域からの廃ガス洗浄設備は、上記第一の蒸留帯域に
付随する廃ガス洗浄設備を共用してもよい。
If necessary, during the fractional distillation in the second distillation zone, a waste gas consisting mainly of CO 2 , CO, CH 4 , N 2 is withdrawn via the top of the column, the charge material methanol and / or methyl acetate being used. And / or dimethyl ether to remove residual methyl iodide and feed to the combustion, and a mixture containing at least one of methanol, methyl acetate and dimethyl ether is fed to the reaction zone. Good. In this case, the waste gas cleaning equipment from the second distillation zone may share the waste gas cleaning equipment associated with the first distillation zone.

【0024】第二の蒸留帯域においてサイドカット、あ
るいは塔底部より得られる、主として酢酸と無水酢酸を
含む成分は第三の蒸留塔に供給される。第三の蒸留帯域
では主として酢酸からなる成分が塔頂部より得られ、主
として無水酢酸からなる成分がサイドカット、あるいは
塔底部より得られる。
The components mainly containing acetic acid and acetic anhydride, which are obtained from the side cut or the bottom of the column in the second distillation zone, are supplied to the third distillation column. In the third distillation zone, a component mainly consisting of acetic acid is obtained from the top of the column, and a component mainly consisting of acetic anhydride is obtained from the side cut or the bottom of the column.

【0025】この際、第三の蒸留帯域の制御圧力はどの
様な圧力であってもかまわないが、第三の蒸留帯域の制
御圧力が第二の蒸留帯域の制御圧力よりも高い場合に
は、第二の蒸留帯域から第三の蒸留帯域に供給する前に
当該成分を昇圧する必要に迫られるだけでなく、第三の
蒸留帯域そのものの設備費や分離に要するエネルギーコ
ストが上昇し、プロセス上不利になる。しかるに、第三
の蒸留帯域の制御圧力は5バール以下、中でも特に1バ
ール以下が好ましい。
At this time, the control pressure of the third distillation zone may be any pressure, but when the control pressure of the third distillation zone is higher than the control pressure of the second distillation zone, In addition to the need to pressurize the component before supplying it from the second distillation zone to the third distillation zone, the equipment cost of the third distillation zone itself and the energy cost required for separation increase, Will be at a disadvantage. However, the control pressure in the third distillation zone is preferably 5 bar or less, and more preferably 1 bar or less.

【0026】第三の蒸留帯域においてサイドカットを行
う場合、無水酢酸を含む成分のサイドカットの形態は液
状であっても蒸気状であってもかまわないが、特に蒸気
状が好ましい。
When the side cut is performed in the third distillation zone, the form of the side cut of the component containing acetic anhydride may be liquid or vapor, but vapor is particularly preferable.

【0027】また、第二の蒸留帯域より得られた酢酸と
無水酢酸からなる留分中に含まれる微量不純物の除去を
目的に、第三の蒸留帯域に供給する前に、必要に応じ
て、分離工程、処理工程を設けてもよい。
Further, for the purpose of removing trace impurities contained in the fraction composed of acetic acid and acetic anhydride obtained from the second distillation zone, before feeding to the third distillation zone, if necessary, A separation step and a treatment step may be provided.

【0028】第三の蒸留帯域において塔頂部より得られ
た酢酸は、そのまま製品としてもよいし、再び反応に利
用してもよい。更に必要に応じ、オゾン処理、イオン交
換樹脂処理、更なる蒸留精製などの内、少なくとも一つ
を実施して製品化してもよいし、これらの内、二つ以上
を組み合わせて製品化してもよい。同様に、第三の蒸留
帯域においてサイドカット、あるいは塔底部より得られ
た無水酢酸は、そのまま製品としてもよい。更に必要に
応じ、オゾン処理、イオン交換樹脂処理、更なる蒸留精
製などの内、少なくとも一つを実施して製品化してもよ
いし、これらの内、二つ以上を組み合わせて製品化して
もよい。
The acetic acid obtained from the top of the column in the third distillation zone may be directly used as a product or may be reused in the reaction. Further, if necessary, at least one of ozone treatment, ion exchange resin treatment, further distillation purification, etc. may be carried out for commercialization, or two or more of these may be combined for commercialization. . Similarly, acetic anhydride obtained from the side cut in the third distillation zone or from the bottom of the column may be directly used as a product. Further, if necessary, at least one of ozone treatment, ion exchange resin treatment, further distillation purification, etc. may be carried out for commercialization, or two or more of these may be combined for commercialization. .

【0029】[0029]

【発明の効果】本発明は、設備費や、分離に要するエネ
ルギーコストの低減をはかりながら、低沸点成分の回収
能力をアップさせ、さらに飛沫同伴触媒を回収し、効率
的に無水酢酸及び酢酸を一連の製造設備でもって製造す
ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, while lowering the equipment cost and the energy cost required for separation, the ability to recover low boiling point components is improved, the entrained catalyst is recovered, and acetic anhydride and acetic acid are efficiently produced. It can be manufactured with a series of manufacturing equipment.

【0030】[0030]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例により限定され
るものではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by these examples.

【0031】[0031]

【実施例1】内容積500mlの反応帯域(反応器)を
備えた酢酸、無水酢酸の試験製造設備において、製品無
水酢酸を毎時0.2kg、製品酢酸を毎時0.2kg試
験製造した。反応液中のロジウムの濃度は1,000p
pm、ヨウ化メチルの濃度は20wt%、酢酸メチルの
濃度は17wt%であり、反応促進剤としての助触媒
は、酢酸アルミニウム、ヨウ化リチウム、ホウ酸をロジ
ウムに対してそれぞれ10モル倍、20モル倍、20モ
ル倍添加した。反応温度は190℃、反応圧力は29.
4バールであった。反応液を、圧力2.4バールに制御
した気液分離帯域(蒸発槽)に抜き出し、フラッシュ蒸
発し、フラッシュ蒸発で蒸発しなかった触媒を含む液成
分は、反応器に戻した。
Example 1 In a test and production facility for acetic acid and acetic anhydride equipped with a reaction zone (reactor) having an internal volume of 500 ml, 0.2 kg / h of product acetic anhydride and 0.2 kg / h of product acetic acid were tested and manufactured. The concentration of rhodium in the reaction solution is 1,000 p
The concentration of pm and methyl iodide is 20 wt% and the concentration of methyl acetate is 17 wt%. The co-catalyst as a reaction promoter is aluminum acetate, lithium iodide, and boric acid at 10 mol times and 20 mol respectively relative to rhodium. Molar times and 20 times by mole were added. The reaction temperature is 190 ° C., and the reaction pressure is 29.
It was 4 bar. The reaction liquid was withdrawn into a gas-liquid separation zone (evaporation tank) controlled at a pressure of 2.4 bar, flash-evaporated, and a liquid component containing a catalyst which was not evaporated by flash evaporation was returned to the reactor.

【0032】蒸発槽にてフラッシュ蒸発した蒸気を一旦
冷却放圧し液化させた後、再度仕込みポンプにて、内径
40mm、実段20段のオールダーショウ蒸留塔である
第一の蒸留帯域(蒸留塔)の上から20段目に供給し
た。第一の蒸留帯域への仕込み液中の組成はヨウ化メチ
ル37.2wt%、酢酸メチル25.3wt%、酢酸1
7.3wt%、無水酢酸18.5wt%、その他1.7
wt%であった。第一の蒸留塔を、圧力2.4バール、
還流比3.5で制御した。第一の蒸留塔では、塔頂部か
ら主としてヨウ化メチルと酢酸メチルからなる低沸点成
分を留出率45%で得て反応器に戻し、主として酢酸と
無水酢酸を含む中沸点成分をサイドカットによりサイド
カット率52%で得て、飛沫同伴などにより混入した触
媒を一部含有する高沸点成分を塔底部より得た。第一の
蒸留塔の塔頂部から得られた低沸点成分の組成は、ヨウ
化メチル72.9wt%、酢酸メチル26.0wt%、
その他1.1wt%であった。又、サイドカットの位置
は下から2段目(塔底部を一段目と数えたとき)であっ
た。
After the vapor evaporated by flash evaporation in the evaporation tank is once cooled and released to be liquefied, the first distillation zone (distillation column) which is an Older Shaw distillation column with an inner diameter of 40 mm and actual stages of 20 stages is again charged with a charging pump. ) From the top). The composition of the feed liquid to the first distillation zone was methyl iodide 37.2 wt%, methyl acetate 25.3 wt%, acetic acid 1
7.3 wt%, acetic anhydride 18.5 wt%, others 1.7
It was wt%. The first distillation column with a pressure of 2.4 bar,
The reflux ratio was controlled at 3.5. In the first distillation column, a low boiling point component mainly consisting of methyl iodide and methyl acetate was obtained at a distillation rate of 45% from the column top and returned to the reactor, and a medium boiling point component mainly containing acetic acid and acetic anhydride was side-cut by a side cut. A side cut rate of 52% was obtained, and a high boiling point component containing a part of the catalyst mixed by entrainment of droplets was obtained from the bottom of the column. The composition of the low boiling point component obtained from the top of the first distillation column was as follows: methyl iodide 72.9 wt%, methyl acetate 26.0 wt%,
Others were 1.1 wt%. The position of the side cut was the second stage from the bottom (when the tower bottom was counted as the first stage).

【0033】第一の蒸留塔のサイドカットにより得た、
主に酢酸と無水酢酸を含む中沸点成分を第二の蒸留帯域
(蒸留塔)に供給し、第一の蒸留塔の塔底部より得た高
沸点成分を反応器に戻した。前記中沸点成分の組成は、
酢酸32.0wt%、無水酢酸32.5wt%、ヨウ化
メチル8.1wt%、酢酸メチル25.8wt%、その
他1.6wt%であった。
Obtained by side-cutting the first distillation column,
The medium boiling point component mainly containing acetic acid and acetic anhydride was supplied to the second distillation zone (distillation column), and the high boiling point component obtained from the bottom of the first distillation column was returned to the reactor. The composition of the medium boiling point component is
The content was 32.0 wt% acetic acid, 32.5 wt% acetic anhydride, 8.1 wt% methyl iodide, 25.8 wt% methyl acetate, and 1.6 wt% other.

【0034】第二の蒸留塔は、内径40mm、実段30
段のオールダーショウ蒸留塔で、圧力2.4バール、還
流比2.3で制御した。又、仕込み段は上から13段目
であった。第二の蒸留塔では、塔頂部から主としてヨウ
化メチルと酢酸からなる低沸点成分を留出率35%で得
て反応器に戻し、主として酢酸と無水酢酸を含む中沸点
成分をサイドカットによりサイドカット率64%で得
て、飛沫同伴などにより混入した触媒を一部含有する高
沸点成分を塔底部より得た。第二の蒸留塔の塔頂部から
得られた低沸点成分の組成は、ヨウ化メチル22.9w
t%、酢酸メチル72.9wt%、その他4.2wt%
であった。第二の蒸留塔のサイドカットにより得た、主
に酢酸と無水酢酸を含む中沸点成分を第三の蒸留帯域
(蒸留塔)に供給し、第二の蒸留塔の塔底部より得た高
沸点成分液を反応器に戻した。前記中沸点成分の組成
は、酢酸49.6wt%、無水酢酸50.3wt%、そ
の他0.1wt%であった。又、サイドカットの位置は
下から2段目(塔底部を1段目と数えたとき)であっ
た。
The second distillation column has an inner diameter of 40 mm and an actual stage of 30 mm.
The pressure was controlled at 2.4 bar with a reflux ratio of 2.3 in a one-stage Oldershaw distillation column. Further, the charging stage was the 13th stage from the top. In the second distillation column, a low boiling point component mainly consisting of methyl iodide and acetic acid was obtained at a distillation rate of 35% from the column top and returned to the reactor, and a medium boiling point component mainly containing acetic acid and acetic anhydride was side-cut by a side cut. A high boiling point component containing a part of the catalyst mixed by the entrainment of droplets was obtained from the bottom of the column. The composition of the low boiling point component obtained from the top of the second distillation column is methyl iodide 22.9w.
t%, methyl acetate 72.9 wt%, other 4.2 wt%
Met. High boiling point obtained from the bottom of the second distillation column by feeding the middle boiling point component mainly containing acetic acid and acetic anhydride to the third distillation zone (distillation column) obtained by the side cut of the second distillation column. The component liquid was returned to the reactor. The composition of the medium boiling point component was 49.6 wt% acetic acid, 50.3 wt% acetic anhydride, and 0.1 wt% other. The position of the side cut was the second stage from the bottom (when the tower bottom was counted as the first stage).

【0035】第三の蒸留塔は、内径40mm、実段60
段のオールダーショウ蒸留塔で、圧力0.4バール、還
流比5.0で制御した。又、仕込み段は上から37段目
であった。第三の蒸留塔では、塔頂部から99.9wt
%の製品酢酸を得て、塔底部より、無水酢酸99.8w
t%、酢酸0.1wt%の主として無水酢酸からなる成
分を得た。第三の蒸留塔塔底部より得られた、主として
無水酢酸からなる成分を更に、脱低沸ならびに脱高沸す
ることにより、製品無水酢酸を得た。
The third distillation column has an inner diameter of 40 mm and an actual stage of 60.
The pressure was controlled at 0.4 bar with a reflux ratio of 5.0 in a one-stage Oldershaw distillation column. Further, the charging stage was the 37th stage from the top. In the third distillation column, 99.9 wt from the top of the column
% Product acetic acid was obtained, and from the bottom of the column acetic anhydride 99.8w
A component mainly consisting of acetic anhydride of t% and acetic acid 0.1 wt% was obtained. The product mainly containing acetic anhydride obtained from the bottom of the third distillation column was further deboiling and deboiling to obtain acetic anhydride as a product.

【0036】試験製造中、反応器中のロジウム濃度を測
定し続けたところ、約1ppm/dayの割合で減少し
ていた。
When the rhodium concentration in the reactor was continuously measured during the test production, it decreased at a rate of about 1 ppm / day.

【0037】[0037]

【比較例1】実施例1で得られた、蒸発槽にてフラッシ
ュ蒸発した蒸気を一旦冷却放圧し液化させた後、再度液
化ポンプにて、内径40mm、実段30段の第一の蒸留
塔の上から13段目に導入し、常圧、還流比3.5に制
御した。塔頂部から主としてヨウ化メチルと酢酸メチル
からなる低沸点成分を得て反応器に戻し、主として酢酸
と無水酢酸からなる液を塔底部より得て第三の蒸留塔に
供給した。(低沸点成分の分離を1つの蒸留帯域で行
い、又、飛沫同伴触媒を反応器に戻さなかったことを示
す)。
[Comparative Example 1] The vapor obtained by flash evaporation in Example 1 in the evaporation tank was once cooled and released to liquefy, and then again liquefied by a liquefaction pump to a first distillation column having an inner diameter of 40 mm and 30 actual stages. Was introduced into the 13th stage from the top, and the reflux ratio was controlled to 3.5 at normal pressure. A low boiling point component mainly consisting of methyl iodide and methyl acetate was obtained from the column top and returned to the reactor, and a liquid mainly consisting of acetic acid and acetic anhydride was obtained from the column bottom and fed to the third distillation column. (Indicating that the low boiling components were separated in one distillation zone and that the entrained catalyst was not returned to the reactor).

【0038】第三の蒸留塔は、内径40mm、実段60
段のオールダーショウ蒸留塔で、圧力0.4バール、還
流比5.0で制御した。第三の蒸留塔では、塔頂部から
製品酢酸を得て、塔底部より、主として無水酢酸からな
る成分を得た。第三の蒸留塔塔底部より得られた、主と
して無水酢酸からなる成分を更に、脱低沸ならびに脱高
沸することにより、製品無水酢酸を得た。
The third distillation column has an inner diameter of 40 mm and an actual stage of 60.
The pressure was controlled at 0.4 bar with a reflux ratio of 5.0 in a one-stage Oldershaw distillation column. In the third distillation column, a product acetic acid was obtained from the top of the column and a component mainly consisting of acetic anhydride was obtained from the bottom of the column. The product mainly containing acetic anhydride obtained from the bottom of the third distillation column was further deboiling and deboiling to obtain acetic anhydride as a product.

【0039】気液分離帯域からの飛沫同伴触媒の回収が
行われなかったため、反応液中のロジウム濃度が約3p
pm/dayの割合で減少していた。
Since the entrained catalyst was not recovered from the gas-liquid separation zone, the rhodium concentration in the reaction solution was about 3 p.
It was decreasing at the ratio of pm / day.

【0040】更に、製品酢酸へのヨウ化メチルの混入量
が増大していただけでなく、第一の蒸留塔塔頂のコンデ
ンサーのベントからガス状で排出されるヨウ化メチルの
量が増大した結果、反応液中のヨウ化メチル濃度を一定
に保つことができなかった。
Further, not only the amount of methyl iodide mixed in the product acetic acid was increased, but also the amount of methyl iodide discharged in a gaseous state from the vent of the condenser at the top of the first distillation column was increased. However, the concentration of methyl iodide in the reaction solution could not be kept constant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 51/54 53/12 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C07C 51/54 53/12 // C07B 61/00 300

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 メタノール及び酢酸メチル並びに場合に
よりジメチルエーテルと一酸化炭素を反応させることに
よって無水酢酸及び酢酸を製造する方法において、 イ)メタノール及び酢酸メチル並びに場合によりジメチ
ルエーテルを触媒の存在下に、一酸化炭素又は一酸化炭
素と水素からなる混合物と反応帯域中で150〜250
℃の温度及び5〜120バールの圧力で反応させ、 ロ)反応帯域から去るカルボニル化混合物を気液分離帯
域で5バール以下の加圧下に放圧し、揮発性成分の主量
を蒸発させて、第一の蒸留帯域に供給し、気液分離帯域
で蒸発しなかった触媒溶液を反応帯域に戻し、 ハ)第一の蒸留帯域において、低沸点成分を塔頂部より
得て反応帯域に戻し、飛沫同伴などにより混入した触媒
を一部含有する高沸点成分を塔底部より得て、反応帯域
及び/又は気液分離帯域に戻し、主に無水酢酸、酢酸を
含有する中沸点成分をサイドカットにより得て、 ニ)第一の蒸留帯域でサイドカットにより得られた、主
に無水酢酸、酢酸を含有する中沸点成分を、さらに第二
の蒸留帯域に供給し、 ホ)第二の蒸留帯域において、更に、残存低沸点成分を
塔頂部より得て反応帯域に戻し、 ヘ)主に無水酢酸と酢酸とからなる成分をサイドカッ
ト、あるいは塔底部より得て、更に第三の蒸留帯域に供
給し、又は、飛沫同伴などにより触媒を一部含有する高
沸点成分を塔底部より得て、反応帯域及び/又は気液分
離帯域に戻し、主に無水酢酸と酢酸とからなる成分をサ
イドカットにより得て、更に第三の蒸留帯域に供給し、 ト)第三の蒸留帯域において、塔頂部より酢酸を得て、
サイドカット、あるいは塔底部より無水酢酸を得ること
からなる無水酢酸及び酢酸の製造法。
1. A method for producing acetic anhydride and acetic acid by reacting methanol and methyl acetate, and optionally dimethyl ether with carbon monoxide, comprising: (a) methanol and methyl acetate and optionally dimethyl ether in the presence of a catalyst; 150-250 in the reaction zone with carbon oxide or a mixture of carbon monoxide and hydrogen
At a temperature of ℃ and a pressure of 5 to 120 bar, b) releasing the carbonylation mixture leaving the reaction zone in a gas-liquid separation zone under a pressure of 5 bar or less, to evaporate the main amount of volatile components, The catalyst solution that was supplied to the first distillation zone and did not evaporate in the gas-liquid separation zone was returned to the reaction zone. C) In the first distillation zone, low boiling point components were obtained from the top of the column and returned to the reaction zone, and sprayed. A high boiling point component containing a part of the catalyst mixed by entrainment is obtained from the bottom of the column and returned to the reaction zone and / or the gas-liquid separation zone to obtain a medium boiling point component mainly containing acetic anhydride and acetic acid by side-cutting. D) The acetic anhydride, a medium boiling point component mainly containing acetic acid, obtained by side-cutting in the first distillation zone, is further fed to the second distillation zone, and e) in the second distillation zone, In addition, residual low boiling point components are obtained from the top of the column. And then returned to the reaction zone, and f) a component mainly consisting of acetic anhydride and acetic acid is side-cut or obtained from the bottom of the column and further fed to the third distillation zone, or partially containing a catalyst by entrainment of droplets. To obtain a high boiling point component from the bottom of the column, return to the reaction zone and / or gas-liquid separation zone, to obtain a component mainly consisting of acetic anhydride and acetic acid by side-cut, further fed to the third distillation zone, G) Acetic acid was obtained from the top of the column in the third distillation zone,
A process for producing acetic anhydride and acetic acid, which comprises obtaining acetic anhydride from a side cut or a column bottom.
【請求項2】 第一、及び/又は第二の蒸留帯域におけ
る分別蒸留時に、主としてCO、CO、CH、N
からなる廃ガスを塔頂部を介して引き出して、装入物質
メタノール、及び/又は酢酸メチルで洗浄することによ
って残存のヨウ化メチルを除去して、燃焼に供給し、か
つメタノール、及び/又は酢酸メチルからなる混合物を
反応帯域に供給する請求項1記載の無水酢酸及び酢酸の
製造法。
2. Predominantly CO 2 , CO, CH 4 , N 2 during the fractional distillation in the first and / or the second distillation zone.
The residual methyl iodide is withdrawn via the top of the column and the residual methyl iodide is removed by washing with the charge methanol and / or methyl acetate and fed to the combustion and methanol and / or acetic acid. The method for producing acetic anhydride and acetic acid according to claim 1, wherein a mixture of methyl is supplied to the reaction zone.
【請求項3】 第一及び第二の蒸留帯域を、5バール以
下の加圧下で制御する請求項1又は2記載の無水酢酸及
び酢酸の製造法。
3. The process for producing acetic anhydride and acetic acid according to claim 1, wherein the first and second distillation zones are controlled under a pressure of 5 bar or less.
【請求項4】 第三の蒸留帯域を5バール以下の圧力で
制御する請求項1、2又は3記載の無水酢酸及び酢酸の
製造法。
4. The process for producing acetic anhydride and acetic acid according to claim 1, 2 or 3, wherein the third distillation zone is controlled at a pressure of 5 bar or less.
【請求項5】 第三の蒸留帯域を1バール以下の圧力で
制御する請求項1、2又は3記載の無水酢酸及び酢酸の
製造法。
5. The method for producing acetic anhydride and acetic acid according to claim 1, 2 or 3, wherein the third distillation zone is controlled at a pressure of 1 bar or less.
JP7067989A 1994-04-04 1995-03-27 Production of acetic anhydride and acetic acid Pending JPH07324055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7067989A JPH07324055A (en) 1994-04-04 1995-03-27 Production of acetic anhydride and acetic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6631994 1994-04-04
JP6-66319 1994-04-04
JP7067989A JPH07324055A (en) 1994-04-04 1995-03-27 Production of acetic anhydride and acetic acid

Publications (1)

Publication Number Publication Date
JPH07324055A true JPH07324055A (en) 1995-12-12

Family

ID=26407521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7067989A Pending JPH07324055A (en) 1994-04-04 1995-03-27 Production of acetic anhydride and acetic acid

Country Status (1)

Country Link
JP (1) JPH07324055A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226319A (en) * 2000-02-17 2001-08-21 Daicel Chem Ind Ltd Method for purifying crude acetic anhydride and method of producing polyoxytetramethylene glycol by using acetic anhydride
JP2002037756A (en) * 2000-05-18 2002-02-06 Daicel Chem Ind Ltd Acetic anhydride
JP2002512995A (en) * 1998-04-24 2002-05-08 イーストマン ケミカル カンパニー Method for producing acetic anhydride
JP2004506704A (en) * 2000-08-24 2004-03-04 セラニーズ・インターナショナル・コーポレーション Method and apparatus for sequestering entrained volatile catalyst species in a carbonylation process
JP2012514591A (en) * 2009-01-06 2012-06-28 ビーピー ケミカルズ リミテッド Method for removing acetone from a stream comprising acetone, methyl acetate and methyl iodide
JP2014500255A (en) * 2010-11-12 2014-01-09 イーストマン ケミカル カンパニー Purification method of unpurified acetyl mixture
JP2014502917A (en) * 2010-11-12 2014-02-06 イーストマン ケミカル カンパニー Treatment of gas streams resulting from carbonylation processes.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512995A (en) * 1998-04-24 2002-05-08 イーストマン ケミカル カンパニー Method for producing acetic anhydride
JP4662624B2 (en) * 1998-04-24 2011-03-30 イーストマン ケミカル カンパニー Method for producing acetic anhydride
JP2001226319A (en) * 2000-02-17 2001-08-21 Daicel Chem Ind Ltd Method for purifying crude acetic anhydride and method of producing polyoxytetramethylene glycol by using acetic anhydride
JP2002037756A (en) * 2000-05-18 2002-02-06 Daicel Chem Ind Ltd Acetic anhydride
JP2004506704A (en) * 2000-08-24 2004-03-04 セラニーズ・インターナショナル・コーポレーション Method and apparatus for sequestering entrained volatile catalyst species in a carbonylation process
JP2012006963A (en) * 2000-08-24 2012-01-12 Celanese Internatl Corp Method and apparatus for sequestering entrained and volatile catalyst species in carbonylation process
JP4855635B2 (en) * 2000-08-24 2012-01-18 セラニーズ・インターナショナル・コーポレーション Method and apparatus for sequestering entrained volatile catalyst species in a carbonylation process
JP2012514591A (en) * 2009-01-06 2012-06-28 ビーピー ケミカルズ リミテッド Method for removing acetone from a stream comprising acetone, methyl acetate and methyl iodide
US9233902B2 (en) 2009-01-06 2016-01-12 Bp Chemicals Limited Process for removing acetone from a stream comprising acetone, methyl acetate and methyl iodide
JP2014500255A (en) * 2010-11-12 2014-01-09 イーストマン ケミカル カンパニー Purification method of unpurified acetyl mixture
JP2014502917A (en) * 2010-11-12 2014-02-06 イーストマン ケミカル カンパニー Treatment of gas streams resulting from carbonylation processes.

Similar Documents

Publication Publication Date Title
EP2653460B1 (en) Acetic acid production method
US6657078B2 (en) Low energy carbonylation process
JP3105326B2 (en) Removal of carbonyl impurities from carbonylation process streams
KR0144154B1 (en) Process for the preparation of acetic acid and acetic anhydride
CA2119609C (en) Process for the recovery of a carbonylation product
US5756836A (en) Process for producing highly purified acetic acid
EP2366439A2 (en) Method and apparatus for making acetic acid with improved light ends column productivity
CA2073830C (en) Continuous process for preparing dimethyl carbonate
KR20000049277A (en) Removal of permanganate reducing compounds and alkyl iodides from a carbonylation process stream
EP0665210B2 (en) Process for producing acetic anhydride alone or both of acetic anhydride and acetic acid
KR0132405B1 (en) Purification of acetic acid and/or caetic anhydride using ozone
US5554790A (en) Process for producing acetic anhydride and acetic acid
JPH07324055A (en) Production of acetic anhydride and acetic acid
JPH07133249A (en) Production of high-purity acetic acid
US4241219A (en) Treatment of carbonylation effluent
EP0645362A1 (en) Process for producing highly purified acetic acid
JP7169353B2 (en) Method for producing acetic acid
JP3581725B2 (en) Separation method of acetaldehyde and methyl iodide
US5514829A (en) Process for continuously producing dimethyl carbonate
JPH0470245B2 (en)
US20230127564A1 (en) Processes for removing and/or reducing permanganate reducing compounds and alkyl iodides
US20230202957A1 (en) Production and purification of acetic acid
US5990347A (en) Process for preparing a carboxylic acid
JP3217242B2 (en) Acetic acid purification method
JPH11279125A (en) Production of dialkyl carbonate