JPH07324047A - Treatment of impure ethylene stream in ehtylene hydration - Google Patents

Treatment of impure ethylene stream in ehtylene hydration

Info

Publication number
JPH07324047A
JPH07324047A JP13974194A JP13974194A JPH07324047A JP H07324047 A JPH07324047 A JP H07324047A JP 13974194 A JP13974194 A JP 13974194A JP 13974194 A JP13974194 A JP 13974194A JP H07324047 A JPH07324047 A JP H07324047A
Authority
JP
Japan
Prior art keywords
ethylene
membrane
gas
stream
aromatic polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13974194A
Other languages
Japanese (ja)
Other versions
JP2756459B2 (en
Inventor
Hirotaka Saitou
熹敬 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GOSEI ARCO LE KK
NIPPON GOSEI ARCO-LE KK
Original Assignee
NIPPON GOSEI ARCO LE KK
NIPPON GOSEI ARCO-LE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GOSEI ARCO LE KK, NIPPON GOSEI ARCO-LE KK filed Critical NIPPON GOSEI ARCO LE KK
Priority to JP13974194A priority Critical patent/JP2756459B2/en
Publication of JPH07324047A publication Critical patent/JPH07324047A/en
Application granted granted Critical
Publication of JP2756459B2 publication Critical patent/JP2756459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To purify an impure ethylene stream, in producing ethanol by hydration of ethylene, by membrane separation, using a specific aromatic polyimlde membrane, of impurities in a circulating unreacted ethylene stream to separate them from the ethylene. CONSTITUTION:The inert gases such as nitrogen, methane and ethane and >=4C hydrocarbon components in the purge gas of a circulating unreacted ethylene stream are subjected to membrane separation at 20-150 deg.C under a pressure of 0-80kg/cm<2>G using an aromatic polyimide membrane having >=80% of recurring unit of the formula (R is a divalent residue resulted from removing the amino groups of a diamine compound) to separate them from the ethylene. This method has the following advantages: investment cost is low, utility cost can be reduced, ethylene recovery is high, and high-purity recovered ethylene can be obtained esp. through effectively removing C<4+> polymers and from this ethylene, ethanol can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0007】[0007]

【産業上の利用分野】本発明は、高分子膜を用いる膜分
離法による不純エチレン流の処理方法に係り、更に詳記
すれば、触媒を用いたエチレンの水和反応によりエタノ
ールを製造する際に、循環未反応エチレン流のパージガ
ス中に含まれる窒素、メタン及びエタン等の不活性ガス
並びに炭素数4以上の炭化水素成分(以下C4+ポリマ
ーと称す。)を、膜分離法によりエチレンと分離させる
不純エチレン流の精製処理法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an impure ethylene stream by a membrane separation method using a polymer membrane, and more specifically, for producing ethanol by a hydration reaction of ethylene using a catalyst. In addition, the inert gas such as nitrogen, methane and ethane contained in the purge gas of the circulating unreacted ethylene stream and the hydrocarbon component having 4 or more carbon atoms (hereinafter referred to as C4 + polymer) are separated from ethylene by the membrane separation method. The present invention relates to a method for purifying an impure ethylene stream.

【0008】[0008]

【従来の技術】例えば燐酸,硫酸等の鉱酸類、ケイタン
グステン酸,リンモリブデン酸等のヘテロポリ酸類、酸
化タングステン,シリカアルミナ或はニオブ酸等の金属
酸化物またはゼオライト類等の触媒を用いて、エチレン
の水和反応によりエタノールを製造することは公知であ
る。この反応に一般的に適用される温度、圧力及び水/
エチレンのモル比等の反応条件下では、反応平衡の制約
により、1回通過のエチレンのエタノールへの転化率
は、高々6%程度に過ぎない。そこで、大量の未反応エ
チレンを循環ガスとして操作し、反応に再度供すること
により、エタノールの全収率を通常約96%に向上させ
ている。この反応の副反応生成物は、主としてジエチル
エーテルであり、その他に例えば少量のアセトアルデヒ
ドやアセトン等のカルボニル化合物が生成する。またエ
チレンの約1〜2%がエチレンの二〜五量体の飽和及び
不飽和の炭化水素等の前記したC4+ポリマーに変化
し、更に、エチレンの二〜五量体に対応した少量の高級
アルコール類も副生する。
2. Description of the Related Art For example, by using a mineral acid such as phosphoric acid or sulfuric acid, a heteropolyacid such as silicotungstic acid or phosphomolybdic acid, a metal oxide such as tungsten oxide, silica alumina or niobate, or a catalyst such as zeolites, It is known to produce ethanol by the hydration reaction of ethylene. Temperature, pressure and water /
Under the reaction conditions such as the molar ratio of ethylene, the conversion rate of ethylene into ethanol in one pass is only about 6% at most due to the restriction of the reaction equilibrium. Therefore, by operating a large amount of unreacted ethylene as a circulating gas and again supplying it to the reaction, the total yield of ethanol is usually improved to about 96%. The side reaction product of this reaction is mainly diethyl ether, and in addition, a small amount of carbonyl compounds such as acetaldehyde and acetone is produced. Further, about 1 to 2% of ethylene is converted to the above-mentioned C4 + polymer such as saturated and unsaturated hydrocarbons of di-pentamer of ethylene, and further, a small amount of higher grade corresponding to di-pentamer of ethylene is used. Alcohol is also a byproduct.

【0009】C4+ポリマーは、炭素数約10位までの
ものであり、通常の反応条件下ではガス状であるが、こ
れら低分子量のポリマーから逐次高分子量のポリマーが
生成され、主反応生成物であるエタノールと共に下流の
反応系外にわずかに除去されることにより、一定に保た
れる平衡状態になるまで蓄積する。しかして、この高分
子量のポリマーは、操作上重大な障害を惹起する。例え
ば、触媒表面を覆うことによって、活性の低下や触媒寿
命の短縮が引き起こされるほか、反応塔からの流出物を
冷却する熱交換器の流入口に沈着物を形成させたり、圧
縮機及び/或は下流にあるエタノールを濃縮精製するた
めの蒸留塔を汚染する。従って、このような高分子量の
ポリマーの生成を防止するため、循環未反応エチレン流
中に低分子量のポリマーが高い比率で存在する事態は避
ける必要がある。
C4 + polymers are those having up to about 10 carbon atoms and are gaseous under normal reaction conditions. However, these low molecular weight polymers are successively produced into high molecular weight polymers, and the main reaction products are It is slightly removed to the outside of the downstream reaction system together with ethanol, and accumulates until an equilibrium state is maintained. Thus, this high molecular weight polymer poses significant operational obstacles. For example, covering the surface of the catalyst causes a decrease in activity and a reduction in catalyst life, as well as the formation of deposits at the inlet of a heat exchanger that cools the effluent from the reaction tower, the compressor and / or Pollutes the distillation column for concentrating and purifying downstream ethanol. Therefore, in order to prevent the formation of such high molecular weight polymers, it is necessary to avoid the situation where a high proportion of low molecular weight polymers are present in the circulating unreacted ethylene stream.

【0010】また、原料エチレン中には、メタン及びエ
タン等の不活性ガスが含まれている。更に、反応開始時
において、反応系を窒素でパージした後、エチレンを導
入するので、循環未反応エチレン流中には少量の窒素が
残存する。これらの不活性ガスは、C4+ポリマーのよ
うに反応操作に重大な障害を引き起こすことはないが、
反応系外に抜き出される量が微量であると、次第に循環
未反応エチレン流中に蓄積或は残存し、エチレン濃度が
低下する。エタノールの生成量はエチレン濃度に比例す
ることから、エチレン濃度を高めに維持することも重要
である。原料エチレン中には、不活性ガスとして極微量
の水素も存在するが、極めて少量であるので、循環未反
応エチレン流中のエチレン濃度を低下させる程度までは
蓄積しないことから、水素は蓄積量の関係から反応上特
段の問題はない。
Further, the raw material ethylene contains an inert gas such as methane and ethane. Further, at the start of the reaction, ethylene is introduced after purging the reaction system with nitrogen, so that a small amount of nitrogen remains in the circulating unreacted ethylene stream. These inert gases do not cause serious problems in the reaction operation like C4 + polymer,
If the amount extracted out of the reaction system is very small, it gradually accumulates or remains in the circulating unreacted ethylene stream, and the ethylene concentration decreases. Since the amount of ethanol produced is proportional to the ethylene concentration, it is important to keep the ethylene concentration high. Although a very small amount of hydrogen is also present as an inert gas in the raw material ethylene, it does not accumulate to the extent that it reduces the ethylene concentration in the circulating unreacted ethylene stream because it is an extremely small amount of hydrogen. Because of the relationship, there is no particular problem in terms of reaction.

【0011】ジエチルエーテルはエタノール及び水と反
応平衡にあるので、反応操作上特段の問題はない。ま
た、アセトアルデヒド、アセトン等のカルボニル化合物
及び高級アルコール類は、水を用いた吸収操作により、
主反応生成物であるエタノールと一緒に下流の反応系外
に抜き出されるので蓄積することはなく、ジエチルエー
テルと同様に反応上特段の問題はない。公知方法では、
循環未反応エチレン流の一部をパージガスとして排出
し、精製処理し、反応系に戻すことにより、循環未反応
エチレン流中のエチレン濃度を約85モル%程度に保つ
のが普通である。なぜならば、エチレン濃度を高くする
と反応は増大するので、製造装置の建設費や製造エネル
ギー経費は減少するが、循環未反応エチレン流中の不純
物の増加量はそれほど大きくないので、排出すべきガス
量を著しく増大させねばならず精製処理費の増大やエチ
レン損失量の増加を招き、結局、経済性を悪化させるか
らである。また、エチレン濃度が85モル%を著しく下
回るような操作方法は、エタノールの生成量がエチレン
濃度に比例することから、生産量が低下するだけでな
く、C4+ポリマーの蓄積により前述した種々の重大な
障害を惹起する。
Since diethyl ether is in reaction equilibrium with ethanol and water, there are no particular problems in the reaction operation. In addition, carbonyl compounds such as acetaldehyde and acetone, and higher alcohols, by absorption operation using water,
Since it is extracted with the main reaction product, ethanol, out of the downstream reaction system, it does not accumulate, and there is no particular problem in the reaction like diethyl ether. In the known method,
It is usual to discharge a part of the circulating unreacted ethylene stream as a purge gas, purify it, and return it to the reaction system to keep the ethylene concentration in the circulating unreacted ethylene stream at about 85 mol%. Because the reaction will increase with increasing ethylene concentration, the construction cost of the manufacturing equipment and the manufacturing energy cost will decrease, but the increase of impurities in the circulating unreacted ethylene stream is not so large, so the amount of gas to be discharged The reason is that the refining treatment cost and the ethylene loss amount must be increased, and the economic efficiency is deteriorated. Further, the operation method in which the ethylene concentration is significantly lower than 85 mol% not only lowers the production amount because the production amount of ethanol is proportional to the ethylene concentration, but also causes various serious problems described above due to the accumulation of C4 + polymer. Cause disabilities.

【0012】循環未反応エチレン流中のC4+ポリマー
を減らすための公知の処理方法としては、深冷或は低温
蒸留分離法(米国特許第3,827,245号、特公昭
51ー9728号)及び重質炭化水素による吸収法(特
開昭48ー15805号)が提案されている。米国特許
第3,827,245号によれば、エチレン濃度85〜
95モル%の循環未反応エチレン流の一部を抜き出し、
これをアルミナ等の乾燥剤が充填されているドライヤー
に導き、該ガス流を乾燥させ、深冷蒸留塔に供給する。
深冷蒸留塔の操作圧力は、約290PSIG(19.7
気圧)、塔頂温度は約−19°F(−28.3℃)、塔
底温度は約+260°F(+126.7℃)とし、塔頂
流をコンデンサーで約−22°F(−30℃)まで冷却
し、塔頂に還流させる。還流液のエチレン濃度は97〜
99モル%まで精製される。還流液の一部を抜き出し回
収エチレンとして反応系に再循環させる。この方法は、
エチレンの精製度合が高いので、循環未反応エチレン流
の抜き出し量を少なくし、それだけエチレン損失量を低
下させることができるが、ドライヤー、低温用の蒸留
塔、比較的大容量の冷凍機、ポンプ、リボイラー、コン
デンサー等の設備費が増大するだけでなく、冷凍機用の
電力やリボイラー用のスチーム等が必要なので、ユーテ
イリテイ費用も増大し、経済性は悪化する。
Known treatment methods for reducing the C4 + polymer in the circulating unreacted ethylene stream include deep-chill or low-temperature distillation separation methods (US Pat. No. 3,827,245, Japanese Patent Publication No. 51-9728). And an absorption method using heavy hydrocarbons (JP-A-48-15805) have been proposed. According to U.S. Pat. No. 3,827,245, an ethylene concentration of 85-
Withdraw a portion of the 95 mol% of the circulating unreacted ethylene stream,
This is introduced into a dryer filled with a desiccant such as alumina, and the gas stream is dried and supplied to a cryogenic distillation column.
The operating pressure of the cryogenic distillation column is about 290 PSIG (19.7).
Atmospheric pressure), the top temperature is about -19 ° F (-28.3 ° C), the bottom temperature is about + 260 ° F (+ 126.7 ° C), and the overhead stream is about -22 ° F (-30 ° C) with a condenser. (° C) and reflux at the top of the column. The ethylene concentration of the reflux liquid is 97-
Purified to 99 mol%. A part of the reflux liquid is extracted and recycled as recycled ethylene to the reaction system. This method
Since the degree of purification of ethylene is high, the amount of the unreacted ethylene stream that is circulated can be reduced and the amount of ethylene loss can be reduced accordingly.However, a dryer, a low temperature distillation column, a relatively large capacity refrigerator, a pump, Not only the equipment cost of the reboiler, condenser, etc. will increase, but also electricity for the refrigerator, steam for the reboiler, etc. will be needed, so the utility cost will increase and the economic efficiency will deteriorate.

【0013】特公昭51ー9728号の公知発明は、上
記深冷蒸留分離法の経済性を高める方法として、エチレ
ン濃度90.0モル%以上の循環未反応エチレン流の一
部を抜き出し、水和物の形成による装置の閉塞を阻止す
るために、少量のエチレングリコールを添加した後、還
流冷却器を備えた低温蒸留塔に該ガスを直接供給し、該
蒸留塔は、エチレンの臨界点に近い塔頂操作条件下で操
作され、塔頂冷却器の頂部からエチレン濃度95〜97
モル%のガス状回収エチレンを抜き出し、これを反応系
に再循環させるものである。この方法は、エチレンの臨
界圧近くで操作することにより、不純物の分離を容易に
し、しかも0℃程度の低温で操作できるので、米国特許
第3,827,245号の方法よりは、操作温度の高い
分だけやや経済的であるが、低温蒸留であるので、依然
として冷凍機等の設備費やユーテイリテイ費用の大幅な
改善はなされていない。
The known invention of Japanese Examined Patent Publication No. 51-9728 is a method for enhancing the economical efficiency of the above-mentioned cryogenic distillation separation method, in which a part of the circulating unreacted ethylene stream having an ethylene concentration of 90.0 mol% or more is extracted and hydrated. In order to prevent the blockage of the device due to the formation of a substance, after a small amount of ethylene glycol was added, the gas was directly supplied to a low temperature distillation column equipped with a reflux condenser, and the distillation column was close to the critical point of ethylene. Operating under overhead operating conditions, ethylene concentration 95-97 from the top of the overhead cooler
Molten gaseous ethylene recovered is withdrawn and recycled to the reaction system. This method facilitates the separation of impurities by operating near the critical pressure of ethylene, and can be operated at a low temperature of about 0 ° C., so that the operating temperature is higher than that of US Pat. No. 3,827,245. Although it is a little economical because of the high cost, it is still low-temperature distillation, so that the facility costs of utilities such as refrigerators and utility costs have not been significantly improved.

【0014】特開昭48ー15805号の方法は、吸収
法で操作することで設備費やユーテイリテイ費用の改善
を目指した方法である。この方法によれば、エチレン濃
度85〜90モル%の循環未反応エチレン流の一部を抜
き出し洗浄塔の底部に導く。洗浄塔は、圧力55〜85
気圧、温度15〜75℃で操作され、該エチレンガスは
水で洗浄されて含酸素化合物を除去して、上部より抜き
出し、吸収塔の底部に導かれる。吸収塔は圧力20〜6
5気圧で操作され、軽ガス油からなる重質炭化水素を用
いて該ガス中のC4+ポリマーを吸収除去し、上部から
実質的にC4+ポリマーを含まない回収エチレンとして
抜き出し、反応系に再循環させる。C4+ポリマーを吸
収した軽ガス油は、圧力1〜8気圧で操作するストリッ
ピング塔に導かれ、エチレン及びC4+ポリマーを含む
廃ガスとC4+ポリマーを含まない軽ガス油とに分離さ
れ、C4+ポリマーを含まない軽ガス油は吸収塔に再循
環される。
The method disclosed in Japanese Patent Laid-Open No. 48-15805 is a method aimed at improving equipment costs and utility costs by operating the absorption method. According to this method, a part of the circulating unreacted ethylene stream having an ethylene concentration of 85 to 90 mol% is withdrawn and introduced to the bottom of the washing tower. Washing tower pressure 55-85
It is operated at atmospheric pressure and a temperature of 15 to 75 ° C., and the ethylene gas is washed with water to remove oxygen-containing compounds, withdrawn from the upper part and introduced to the bottom part of the absorption tower. Absorption tower pressure is 20-6
The C4 + polymer in the gas is absorbed and removed using a heavy hydrocarbon consisting of light gas oil, which is operated at 5 atm, and is withdrawn as recovered ethylene substantially free of the C4 + polymer from the upper part, and is recycled to the reaction system. Circulate. The light gas oil having absorbed the C4 + polymer is introduced into a stripping column operated at a pressure of 1 to 8 atm, and separated into a waste gas containing ethylene and a C4 + polymer and a light gas oil containing no C4 + polymer, The light gas oil containing no C4 + polymer is recycled to the absorber.

【0015】この方法は蒸留法より簡便な吸収法であ
り、なるほど設備費やユーテイリテイ費用はかなり改善
されるが、ストリッピング塔の廃ガス中に含まれるエチ
レン濃度がかなり高いために、主原料であるエチレンの
回収率が悪く、深冷蒸留法或は低温蒸留法よりもエチレ
ン原単位が悪化するという欠点がある他、窒素、メタ
ン、エタン等の不活性ガスはこの吸収法ではほとんど除
去されず、操業が長期に亙ると次第に反応系内に蓄積
し、循環未反応エチレン流中のエチレン純度が悪化する
ため、生産量や経済性が低下するという欠点もある。
This method is a simpler absorption method than the distillation method, and the equipment cost and utility cost are considerably improved, but since the ethylene concentration contained in the waste gas of the stripping column is considerably high, it is a main raw material. There is a drawback that the recovery rate of certain ethylene is poor and that the ethylene consumption rate is worse than in the cryogenic distillation method or the low temperature distillation method. In addition, inert gases such as nitrogen, methane and ethane are hardly removed by this absorption method. However, when the operation is continued for a long period of time, it is gradually accumulated in the reaction system, and the purity of ethylene in the circulating unreacted ethylene stream is deteriorated.

【0016】このように、触媒を用いたエチレンの水和
反応により、エタノールを製造する際の循環未反応エチ
レン流中から特にC4+ポリマーを除去する従来法は、
いずれも装置の設備費用、ユーテイリテイ費用、エチレ
ン原単位等の点で未だ充分に満足すべきものではない。
As described above, the conventional method of removing C4 + polymer from the circulating unreacted ethylene stream during the production of ethanol by the hydration reaction of ethylene using a catalyst is as follows.
None of them are yet to be fully satisfied in terms of equipment costs, utility costs, ethylene unit consumption, etc.

【0017】[0017]

【発明が解決しようとする課題】この発明はこのような
事情に鑑みなされたものであり、設備費用が安価で、ユ
ーテイリテイ費用も低減でき、しかもエチレンの回収率
が高く、特にC4+ポリマーを効果的に除去して、高純
度の回収エチレンが得られるエタノールを製造する際の
不純エチレン流の精製処理方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a low equipment cost, a low utility cost, and a high ethylene recovery rate. Particularly, a C4 + polymer is effective. It is an object of the present invention to provide a method for purifying an impure ethylene stream in the production of ethanol that can be highly removed to obtain highly purified recovered ethylene.

【0018】[0018]

【課題を解決するための手段】本発明者は、上記目的を
達成するために、エチレンと窒素、メタン及びエタン等
の不活性ガス並びにC4+ポリマーとの経済的で効果的
な分離法を化学工学的観点からまず検討した。触媒を用
いたエチレンの水和反応によりエタノールを製造する際
の循環未反応エチレン流は、圧力50〜80kg/cm2Gで
操作されており、膜分離法の駆動力が圧力差であること
から、膜分離法で未反応エチレン流からエチレンを効率
よく精製処理できれば、未反応エチレン流の圧力を利用
できることから、電力は必要とせず、分離のための膜モ
ジュールを設備すれば逐次操作圧力を下げていけばよい
ので、その他の高価な設備は必要がなく、また、気体状
の不純エチレン流を加温処理するだけなので、深冷蒸留
分離と比較して、スチ−ム使用量は大幅に節減でき、更
に、エチレンと上述の不純物とを効率良く分離できる分
離膜を見つけることができれば、エチレン回収率が良好
となり、エチレン原単位が向上するだけでなく、循環未
反応エチレン流のエチレン純度が向上した分、エタノ−
ル収量も増加することに着目した。即ち、エチレン原単
位、設備費用及びユーテイリテイ費用の点から、極めて
安価で経済的なエチレン回収装置になるからである。
In order to achieve the above-mentioned object, the present inventor has conducted a chemical and effective separation method of ethylene and an inert gas such as nitrogen, methane and ethane and a C4 + polymer. It was examined first from an engineering point of view. The circulating unreacted ethylene flow when producing ethanol by ethylene hydration using a catalyst is operated at a pressure of 50 to 80 kg / cm 2 G, and the driving force of the membrane separation method is the pressure difference. As long as the ethylene can be efficiently purified from the unreacted ethylene stream by the membrane separation method, the pressure of the unreacted ethylene stream can be used, so no electric power is required, and if a membrane module for separation is installed, the operating pressure will be lowered sequentially. It does not require any other expensive equipment, and since it only heats the gaseous impure ethylene stream, it significantly reduces the amount of steam used compared to the cryogenic distillation separation. Furthermore, if a separation membrane capable of efficiently separating ethylene from the above-mentioned impurities can be found, the recovery rate of ethylene will be good, not only the ethylene unit consumption will be improved, but also the unreacted circulating ethylene Min ethylene purity flow is improved, ethanol -
We focused on the fact that the yield also increased. In other words, it is an extremely inexpensive and economical ethylene recovery device in terms of the ethylene consumption rate, equipment cost, and utility cost.

【0019】そこで、種々の高分子膜のエチレン、不活
性ガス及びC4+ポリマーの膜透過性能(透過係数、分
離係数)について鋭意探求した結果、下記式Iで表され
る芳香族ポリイミド膜のエチレンの透過係数は、実用上
充分な大きさを有し、かつ、エチレンの透過係数は、不
活性ガス類の透過係数及びC4+ポリマーの透過係数よ
り大きく、また、エチレンの透過係数は分離温度を上昇
させると大きくなるが、C4+ポリマーの透過係数は、
分離温度を上昇させても、余り変化しないか、或は逆に
小さくなるという驚くべき事実を発見した。即ち、下記
式Iで表される芳香族ポリイミド膜は、分離温度を上昇
させると、エチレン透過量が増加するだけでなく、C4
+ポリマーの分離係数も大きくなり、エチレンと不純物
との分離が簡単に効果的にできることを見いだし、本発
明を完成した。
Then, as a result of keen search for the membrane permeation performance (permeation coefficient, separation coefficient) of ethylene, inert gas and C4 + polymer of various polymer membranes, ethylene of the aromatic polyimide membrane represented by the following formula I was obtained. Has a practically sufficient magnitude, the permeation coefficient of ethylene is larger than the permeation coefficient of inert gases and the C4 + polymer, and the permeation coefficient of ethylene depends on the separation temperature. Although it increases with increase, the permeability coefficient of C4 + polymer is
We have discovered the surprising fact that increasing the separation temperature does not change much, or vice versa. That is, the aromatic polyimide membrane represented by the following formula I not only increases the amount of ethylene permeation but also C4 when the separation temperature is increased.
The present invention has been completed by finding that the separation coefficient of the polymer is increased, and that ethylene and impurities can be easily and effectively separated.

【0020】即ち、本発明は、触媒を用いたエチレンの
水和反応によりエタノールを製造する際に、循環未反応
エチレン流中の不純物を、次式I:
That is, according to the present invention, when ethanol is produced by the hydration reaction of ethylene using a catalyst, impurities in the circulating unreacted ethylene stream are removed by the following formula I:

【0021】[0021]

【化1】[Chemical 1]

【0022】[式中、Rはジアミン化合物のアミノ基を
除いた二価の残基を表し、前記ジアミン化合物は、次式
II:
[In the formula, R represents a divalent residue of the diamine compound excluding the amino group, and the diamine compound is represented by the following formula:
II:

【0023】[0023]

【化2】[Chemical 2]

【0024】(式中、R1及びR2は、水素またはメチル
基を表す。)及び次式III:
(Wherein R 1 and R 2 represent hydrogen or a methyl group) and the following formula III:

【0025】[0025]

【化3】[Chemical 3]

【0026】で表されるジアミン化合物からなる群から
選ばれた少なくとも1種の芳香族ジアミン化合物を表
す。]で表される反復単位を80%以上の割合で有する
芳香族ポリイミド膜を用いる膜分離法によりエチレンと
分離させることを特徴とする。
It represents at least one aromatic diamine compound selected from the group consisting of diamine compounds represented by: ] It is characterized in that it is separated from ethylene by a membrane separation method using an aromatic polyimide membrane having a repeating unit represented by the above formula at a ratio of 80% or more.

【0027】次に、本発明に使用する芳香族ポリイミド
膜について詳述する。本発明で使用する芳香族ポリイミ
ド膜は、前述の式Iで表される反復単位を、全主鎖結合
単位に対して80%以上、特に90〜100%の割合で
有する、均質膜或は非対称性膜で、平膜状、中空糸状等
の形状の分離膜が効果的である。特に、中空糸状の非対
称性芳香族ポリイミド膜は、膜モジュ−ルの小型化及び
ガス透過性の向上等の面から、特に効果的である。前記
式Iで表される芳香族ポリイミドは、例えば、ビフエニ
ルテトラカルボン酸類を、主成分とする(好ましくは、
少なくとも80モル%、特に好ましくは90〜100モ
ル%含有する)芳香族テトラカルボン酸成分と、前記式
II及び式IIIで表される芳香族ジアミン化合物からなる
群から選ばれる少なくとも1種のジアミン化合物を、全
ジアミン成分に対して少なくとも80モル%、好ましく
は85〜100モル%、特に好ましくは90〜100モ
ル%の割合で含有する芳香族ジアミン成分とを、有機溶
媒中、高温下、若しくは低温でイミド化剤の存在下に、
重合及びイミド化する公知方法によって得ることができ
る。
Next, the aromatic polyimide film used in the present invention will be described in detail. The aromatic polyimide film used in the present invention is a homogeneous film or asymmetric film having the repeating unit represented by the above formula I in a proportion of 80% or more, particularly 90 to 100%, based on the total main chain bonding units. As the permeable membrane, a separation membrane having a flat membrane shape, a hollow fiber shape, or the like is effective. In particular, the hollow fiber asymmetric aromatic polyimide membrane is particularly effective in terms of downsizing the membrane module and improving gas permeability. The aromatic polyimide represented by the formula I has, for example, a biphenyl tetracarboxylic acid as a main component (preferably,
Aromatic tetracarboxylic acid component containing at least 80 mol%, particularly preferably 90 to 100 mol%,
II and at least one diamine compound selected from the group consisting of aromatic diamine compounds represented by formula III, based on the total diamine components, at least 80 mol%, preferably 85 to 100 mol%, particularly preferably 90 to An aromatic diamine component contained at a ratio of 100 mol% in an organic solvent at a high temperature or at a low temperature in the presence of an imidizing agent,
It can be obtained by a known method of polymerization and imidization.

【0028】前記のビフエニルテトラカルボン酸類とし
ては、2,3,3′,4′−若しくは3,3′,4,
4′−ビフエニルテトラカルボン酸若しくはその酸二無
水物、或はその酸の低級アルコ−ルエステル化物を挙げ
ることができる。分離膜の耐久性等から、3,3′,
4,4′−ビフエニルテトラカルボン酸二無水物を主成
分とする芳香族テトラカルボン酸成分と、前述のジアミ
ン成分とから得られた前記式Iで表される芳香族ポリイ
ミドが、特に好ましい。前述の芳香族ポリイミドの製法
において、前記ビフエニルテトラカルボン酸類と共に使
用することのできるテトラカルボン酸成分としては、ピ
ロメリット酸、3,3′,4,4′−ビフエニルエ−テ
ルテトラカルボン酸、3,3′,4,4′−ベンゾフエ
ノンテトラカルボン酸、またはこれらの酸二無水物等が
挙げられる。しかしながら、テトラカルボン酸中のビフ
エニルテトラカルボン酸類の含有割合が余り少なくなり
すぎると、耐久性が低下するため適当でない。
The above-mentioned biphenyltetracarboxylic acids include 2,3,3 ', 4'- or 3,3', 4.
Mention may be made of 4'-biphenyltetracarboxylic acid or its acid dianhydride, or the lower alcohol ester of the acid. From the durability of the separation membrane, 3,3 ',
An aromatic polyimide represented by the above formula I obtained from an aromatic tetracarboxylic acid component containing 4,4'-biphenyltetracarboxylic dianhydride as a main component and the above diamine component is particularly preferable. In the above-mentioned method for producing an aromatic polyimide, the tetracarboxylic acid component that can be used together with the biphenyl tetracarboxylic acids is pyromellitic acid, 3,3 ', 4,4'-biphenyl ether tetracarboxylic acid, 3 , 3 ′, 4,4′-benzophenonetetracarboxylic acid, or their acid dianhydrides. However, if the content ratio of the biphenyltetracarboxylic acids in the tetracarboxylic acid is too small, the durability is lowered, which is not suitable.

【0029】また、前記ジアミン成分としては、式II及
び式IIIで表されるジアミン化合物からなる群から選ば
れた少なくとも一種のジアミン化合物、好ましくは二種
以上のジアミン化合物の混合物を、全ジアミン成分に対
して、少なくとも80モル%,好ましくは85〜100
モル%、特に好ましくは90〜100モル%の割合で含
有しているものである。前記ジアミン成分として、式II
及び式IIIで表されるジアミン化合物からなる群から選
ばれた二種以上のジアミン化合物を含有する場合には、
その含有されている式II及び式IIIで表されるジアミン
化合物の少なくとも一種が、全ジアミン成分に対して、
約20〜80モル%の割合の範囲内で含有されていて、
かつ、式II及び式IIIで表されるジアミン化合物の合計
量が、全ジアミン成分に対して少なくとも80モル%、
特に、85〜100モル%、更に好ましくは90〜10
0モル%の割合となる量であることが好ましい。
As the diamine component, at least one diamine compound selected from the group consisting of diamine compounds represented by the formulas II and III, preferably a mixture of two or more diamine compounds, is used as the total diamine component. With respect to at least 80 mol%, preferably 85-100
It is contained at a mol%, particularly preferably 90 to 100 mol%. As the diamine component, formula II
And when containing two or more diamine compounds selected from the group consisting of diamine compounds represented by Formula III,
At least one of the diamine compounds represented by Formula II and Formula III contained therein, based on the total diamine component,
It is contained in the range of about 20 to 80 mol%,
And, the total amount of the diamine compounds represented by the formula II and the formula III is at least 80 mol% based on all the diamine components,
In particular, 85 to 100 mol%, more preferably 90 to 10
The amount is preferably 0 mol%.

【0030】前記ジアミン成分として使用される式IIで
表される芳香族ジアミン化合物としては、3,3′−ジ
アミノジフエニルメタン、4,4′−ジアミノジフエニル
メタン等のジフエニルメタン系のジアミン化合物、ま
た、2,2−ビス[4−アミノフエニル]プロパン、
2,2−ビス[3−アミノフエニル]プロパン、2,2
−ビス[3,4−ジアミノジフエニル]プロパン等の
2,2−ビスフエニルプロパン系のジアミン化合物等が
挙げられる。更に、前記ジアミン成分として使用される
式IIIで表される芳香族ジアミン化合物としては、3,
3′−ジアミノジフエニルエ−テル、4,4′−ジアミ
ノジフエニルエ−テル、3,4′−ジアミノジフエニルエ
−テル等のジフエニルエ−テル系のジアミン化合物を挙
げることができる。
Examples of the aromatic diamine compound represented by the formula II used as the diamine component include diphenylmethane type diamine compounds such as 3,3'-diaminodiphenylmethane and 4,4'-diaminodiphenylmethane. In addition, 2,2-bis [4-aminophenyl] propane,
2,2-bis [3-aminophenyl] propane, 2,2
Examples include 2,2-bisphenylpropane-based diamine compounds such as -bis [3,4-diaminodiphenyl] propane. Furthermore, as the aromatic diamine compound represented by the formula III used as the diamine component, 3,
Examples include diphenyl ether-based diamine compounds such as 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and 3,4'-diaminodiphenyl ether.

【0031】前記ジアミン成分として式II及び/または
式IIIで表される化合物と共に使用することができる他
の芳香族ジアミン化合物としては、例えば、(a)1,
4−ビス(4−アミノフエノキシ)ベンゼン、1,4−
ビス(3−アミノフエノキシ)ベンゼン、1,3−ビス
(4−アミノフエノキシ)ベンゼン、1,3−ビス(3
−アミノフエノキシ)ベンゼン等のビスフエノキシベンゼ
ン系のジアミン化合物、(b)ビス[4−(4−アミノ
フエノキシ)フエニル]エ−テル、ビス[4−(3−アミ
ノフエノキシ)フエニル]エ−テル等のビス[4−(フエ
ノキシ)フエニル]エ−テル系のジアミン化合物、
(c)ビス[4−(4−アミノフエノキシ)フエニル]メ
タン、2,2−ビス[4−(4−アミノフエノキシ)フエ
ニル]プロパン等のビス[4−(フエノキシ)フエニル]
アルカン系のジアミン化合物、(d)o−トリジン、m
−トリジン等のビフエニル系のジアミン化合物、(e)
m−フエニレンジアミン、p−フエニレンジアミン等のフ
エニレンジアミン系のジアミン化合物、等が挙げられ
る。
Other aromatic diamine compounds that can be used as the diamine component together with the compounds represented by formula II and / or formula III include, for example, (a) 1,
4-bis (4-aminophenoxy) benzene, 1,4-
Bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3
-Bisphenoxybenzene-based diamine compounds such as aminophenoxy) benzene, (b) bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether and the like A bis [4- (phenoxy) phenyl] ether-based diamine compound,
(C) Bis [4- (4-aminophenoxy) phenyl] methane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane and other bis [4- (phenoxy) phenyl]
Alkane-based diamine compound, (d) o-tolidine, m
A biphenyl-based diamine compound such as tolidine, (e)
Examples thereof include phenylenediamine-based diamine compounds such as m-phenylenediamine and p-phenylenediamine.

【0032】本発明においては、前記式Iで表される芳
香族ポリイミドは、式I中のRを形成するジアミン化合
物が、4,4′−ジアミノジフエニルメタンまたは4,
4′−ジアミノジフエニルエ−テル、特に好ましくはこ
れら二種のジアミン化合物であることが好ましい。本発
明に使用する式Iで表される芳香族ポリイミドからなる
分離膜は、従来公知の方法で製造することができる。例
えば、芳香族ポリイミド溶液の薄膜(平膜状または中空
糸状)を流延、または押し出しによって形成し、ついで
その薄膜を凝固液に浸漬して凝固させ、その凝固液から
溶媒、凝固液等を洗浄除去し、最後に熱処理して、芳香
族ポリイミド製の分離膜を形成する製膜法が挙げられ
る。
In the present invention, in the aromatic polyimide represented by the formula I, the diamine compound forming R in the formula I is 4,4'-diaminodiphenylmethane or 4,4'-diaminodiphenylmethane.
4'-diaminodiphenyl ether, particularly preferably these two kinds of diamine compounds are preferable. The separation membrane composed of the aromatic polyimide represented by the formula I used in the present invention can be produced by a conventionally known method. For example, a thin film (flat film shape or hollow fiber shape) of an aromatic polyimide solution is formed by casting or extrusion, and then the thin film is immersed in a coagulating liquid to coagulate, and the solvent, coagulating liquid, etc. are washed from the coagulating liquid. There is a film forming method of removing and finally heat treating to form a separation film made of aromatic polyimide.

【0033】次に、本発明で使用する芳香族ポリイミド
膜に対するエチレン、不活性ガス及びC4+ポリマ−等
の不純物の気体透過性質について説明する。芳香族ポリ
イミドは、他の高分子と比べ、極めて高いガラス転移温
度(Tg)を示し、200℃以上の高温においても、ガ
ラス状高分子の形態を維持しているので、高度に耐熱性
を有する高分子であることは良く知られている。本発明
で使用する芳香族ポリイミド膜は、式Iで示されるよう
に、芳香族テトラカルボン酸成分及び芳香族ジアミン成
分は、ベンゼン環を有しているので、その積み重なり効
果のため、高分子間隙が高度に緻密化されている。この
ため、分子径の異なる気体、例えば、水素/一酸化炭
素、水素/メタン或は窒素/一酸化炭素等の分離膜とし
て有用なことは既に公知である(仲川 勤,化学工業,
1993年6月号,452〜459頁、特開昭56−1
57,435号、特開昭57−209,608号)。
Next, the gas permeation properties of impurities such as ethylene, inert gas and C4 + polymer into the aromatic polyimide film used in the present invention will be described. Aromatic polyimide has a very high glass transition temperature (Tg) as compared with other polymers, and maintains the form of glassy polymer even at a high temperature of 200 ° C. or higher, and thus has a high heat resistance. It is well known that it is a polymer. The aromatic polyimide film used in the present invention has an aromatic tetracarboxylic acid component and an aromatic diamine component having a benzene ring, as shown in Formula I, and therefore, due to the stacking effect, a polymer gap is formed. Is highly densified. Therefore, it is already known that it is useful as a separation membrane for gases having different molecular diameters such as hydrogen / carbon monoxide, hydrogen / methane or nitrogen / carbon monoxide (T. Nakagawa, Chemical Industry,
June 1993, pages 452-459, JP-A-56-1
57,435, JP-A-57-209,608).

【0034】上記化学工業第452〜459頁には、本
発明で使用する芳香族ポリイミド膜の無機ガス、水蒸気
及び炭素数3迄の有機ガスや有機蒸気等の気体透過性質
について詳細に検討されている。この公知文献によれ
ば、測定範囲において、水蒸気は温度に関係なく一定の
透過速度を示し、且つ、最も透過し易い。無機ガス及び
炭素数3迄の有機ガスや有機蒸気の透過速度は、温度の
上昇と共に、指数関数的に増大することが明らかにされ
ている。そして、分離の傾向は、必ずしも分子径の順番
ではない。残念ながら、芳香族ポリイミド膜の化学構造
と分離傾向の理論的関係について明らかにされていない
現状では、用途毎に実ガスで実測する必要がある。本発
明者の探求によれば、芳香族ポリイミド膜の気体透過傾
向は、気体或は蒸気の種類により、純ガスと混合ガスと
では必ずしも一致せず、また、炭素数4以上の有機ガス
或は蒸気は温度の上昇と共に透過速度が増大するとは限
らないことが明らかとなった。また、テトラカルボン酸
成分が脂肪族炭化水素からなるポリイミド膜(脂肪族ポ
リイミド膜)は、炭素数の多い炭化水素ほど良く透過す
ることが知られている。それ故、エチレンから不活性ガ
スやC4+ポリマ−等の不純物を分離するのに効果的に
用いられると考えられていた。しかしながら、本発明で
処理すべき不純エチレン流に用いると、膜の可塑化が進
行し、耐久性の面から使用できないことが判明した。
In the above Chemical Industry, pages 452 to 459, the gas permeation properties of the aromatic polyimide film used in the present invention, such as inorganic gas, water vapor, and organic gas and organic vapor having up to 3 carbon atoms, are examined in detail. There is. According to this known document, water vapor shows a constant permeation rate regardless of temperature and is most easily permeated in the measurement range. It has been clarified that the permeation rate of the inorganic gas and the organic gas having up to 3 carbon atoms or the organic vapor increases exponentially as the temperature rises. And the tendency of separation is not necessarily in the order of molecular diameter. Unfortunately, in the present situation where the theoretical relationship between the chemical structure of the aromatic polyimide membrane and the separation tendency has not been clarified, it is necessary to measure the actual gas for each application. According to the quest of the present inventor, the gas permeation tendency of the aromatic polyimide membrane is not always the same between the pure gas and the mixed gas depending on the type of gas or vapor, and the organic gas or carbon atoms having 4 or more carbon atoms or It has become clear that the permeation rate of steam does not always increase with the increase of temperature. Further, it is known that a polyimide film in which the tetracarboxylic acid component is an aliphatic hydrocarbon (aliphatic polyimide film) has better permeability as the hydrocarbon has a larger number of carbon atoms. Therefore, it was considered to be effectively used for separating impurities such as inert gas and C4 + polymer from ethylene. However, it was found that when used in the impure ethylene stream to be treated in the present invention, the plasticization of the film progressed, and it could not be used in terms of durability.

【0035】次に、本発明で用いられる芳香族ポリイミ
ド膜の不純エチレン流処理における気体透過性能につい
て、純ガス及び混合ガスを用いた測定例を示して説明す
る。 (測定例1)前記式Iで示される芳香族ポリイミド膜の
一例として、芳香族テトラカルボン酸成分として3,
3′,4,4′−ビフエニルテトラカルボン酸二無水物
(以下BPDAと略す)を40ミリモル、式IIで示され
る芳香族ジアミン化合物として4,4′−ジアミノジフ
エニルメタン(以下DADMと略す)及び4,4′−ジ
アミノジフエニルエ−テル(以下DADEと略す)をそ
れぞれ16ミリモル及び24ミリモル用いて、常法によ
りイミド化重合・製膜し(膜厚:0.12mm)、非対
称性芳香族ポリイミド膜(以下芳香族ポリイミド膜−1
と略す)を得た。これを50mmφに切り取り、市販の
ガス膜透過実験装置に取り付け(有効膜面積:12.6
cm2)、不活性ガスとして、窒素、メタン、エタン
等、C4+ポリマ−として、イソブタン、イソブテン、ト
ランス−2−ブテン等及び主成分のエチレンについて、
それぞれの純ガスを用いて、ガス透過量を種々の温度及
び圧力で測定し、透過係数(cc(STP)・cm/cm2・sec・cmH
g)を求めた。得られた透過係数(Pi)から一般的に用い
られている式(1)を用いて各種ガス(i 成分)のエチ
レンとの分離係数(αi C2H4)を求めた。 αi C2H4=( Pi/ PC2H4) (1)
Next, the gas permeation performance of the aromatic polyimide membrane used in the present invention in the impure ethylene flow treatment will be described with reference to measurement examples using pure gas and mixed gas. (Measurement Example 1) As an example of the aromatic polyimide film represented by the formula I, as an aromatic tetracarboxylic acid component, 3,
40 mmol of 3 ', 4,4'-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as BPDA) and 4,4'-diaminodiphenylmethane (hereinafter abbreviated as DADM) as an aromatic diamine compound represented by the formula II. ) And 4,4'-diaminodiphenyl ether (hereinafter abbreviated as DADE) using 16 mmol and 24 mmol, respectively, and performing imidization polymerization / film formation (film thickness: 0.12 mm) by a conventional method to obtain asymmetry. Aromatic polyimide film (hereinafter aromatic polyimide film-1
Abbreviated). This was cut into 50 mmφ and attached to a commercially available gas membrane permeation experiment device (effective membrane area: 12.6).
cm 2 ), nitrogen, methane, ethane and the like as an inert gas, isobutane, isobutene, trans-2-butene and the like as a C 4 + polymer and ethylene as a main component,
Using each pure gas, the gas permeation amount was measured at various temperatures and pressures, and the permeation coefficient (cc (STP) ・ cm / cm 2・ sec ・ cmH
g) was asked. From the obtained permeation coefficient (P i ), the separation coefficient (α i C2H4 ) from ethylene of various gases (i component) was obtained using the formula (1) that is generally used. α i C2H4 = (P i / P C2H4 ) (1)

【0036】次表1に、芳香族ポリイミド膜−1の各種
ガスの透過性能を示し、次表2に、式(1)で求めた同
膜のエチレンに対する各種ガスの分離係数を示す。
The following Table 1 shows the permeation performance of various gases of the aromatic polyimide membrane-1, and the following Table 2 shows the separation coefficients of various gases with respect to ethylene of the same membrane determined by the equation (1).

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表1の結果をわかりやすくするために、図
1に、芳香族ポリイミド膜−1の各種ガスの透過係数を
温度の逆数に対してプロット(アレニウスプロット)した
グラフを示す。表1、表2及び図1の結果から明らかな
ように、この温度範囲では、トランス−2−ブテン以外
は、いずれのガスもエチレンよりも芳香族ポリイミド膜
−1を透過しにくい。エチレンの透過係数は、温度を3
0〜70℃に上昇させると、指数関数的に増大する。窒
素、メタン及びエタン等の不活性ガスは、エチレンと比
較すると、透過係数は小さく、温度に対してはエチレン
とほぼ同じ透過傾向を示す。このことは、エチレンを透
過側に濃縮でき、温度を上昇させると、これらのガスと
エチレンとの分離については、分離係数が余り変化する
ことなく、単位膜面積当たりの処理量を増大できること
を示している。
In order to make the results in Table 1 easy to understand, FIG. 1 shows a graph in which the permeation coefficient of various gases of the aromatic polyimide film-1 is plotted against the reciprocal of temperature (Arrhenius plot). As is clear from the results of Tables 1 and 2 and FIG. 1, in this temperature range, all gases except trans-2-butene are less likely to permeate the aromatic polyimide membrane-1 than ethylene. The permeability coefficient of ethylene is 3
Increasing exponentially with increasing temperature from 0 to 70 ° C. Inert gases such as nitrogen, methane and ethane have a smaller permeation coefficient as compared with ethylene, and show almost the same permeation tendency with respect to temperature as ethylene. This shows that ethylene can be concentrated on the permeate side, and when the temperature is raised, the separation rate of these gases and ethylene can be increased and the throughput per unit membrane area can be increased without much change. ing.

【0040】一方、イソブタン、イソブテン及びトラン
ス−2−ブテン等の透過傾向は、従来知られている芳香
族ポリイミド膜の気体透過傾向と大きく異なることを発
見した。即ち、イソブタンの透過係数はエチレンの透過
係数より小さく、温度を上昇させると低減する。イソブ
テンの透過係数は、エチレンの透過係数より小さく、温
度を上昇させると、温度60℃付近に極小値を持ち、温
度約60℃迄は僅かに低減し、それ以上の温度になると
増大する。トランス−2−ブテンの透過係数は、エチレ
ンの透過係数より大きく、温度を上昇させると、僅かに
大きくなる程度で殆ど変化しない。エチレンとトランス
−2−ブテンの透過係数変化のラインを外挿すると、温
度約120℃付近で、エチレンの透過係数とトランス−
2−ブテンの透過係数は交差する。エチレンとイソブタ
ン及びイソブテンとの分離においては、エチレンを透過
側に濃縮でき、温度を上昇させるほど、分離性能が向上
するだけでなく、単位膜面積当たりの処理量を増大でき
ることを示している。エチレンとトランス−2−ブテン
の分離においては、温度約120℃付近迄は、エチレン
は高圧側に濃縮され、透過側にはトランス−2−ブテン
が濃縮されることを示している。
On the other hand, it was discovered that the permeation tendency of isobutane, isobutene, trans-2-butene, etc. is significantly different from the gas permeation tendency of the conventionally known aromatic polyimide membrane. That is, the permeation coefficient of isobutane is smaller than that of ethylene, and decreases with increasing temperature. The permeation coefficient of isobutene is smaller than that of ethylene, and when the temperature is increased, it has a minimum value around a temperature of 60 ° C, decreases slightly up to a temperature of about 60 ° C, and increases at higher temperatures. The permeation coefficient of trans-2-butene is larger than that of ethylene, and when the temperature is increased, the permeation coefficient of trans-2-butene is slightly increased and hardly changes. Extrapolating the lines of the change in the transmission coefficient of ethylene and trans-2-butene, the transmission coefficient of ethylene and trans-
The transmission coefficients of 2-butene intersect. In the separation of ethylene from isobutane and isobutene, it is shown that ethylene can be concentrated on the permeate side, and that the higher the temperature, the higher the separation performance and the greater the throughput per unit membrane area. In the separation of ethylene and trans-2-butene, it is shown that ethylene is concentrated on the high pressure side and trans-2-butene is concentrated on the permeation side up to a temperature of about 120 ° C.

【0041】エチレンと不活性ガス及びC4+ポリマ−
等の不純物とを、芳香族ポリイミド膜を用いて分離する
には、一段目の分離操作で透過側にエチレン及びトラン
ス−2−ブテンを他のガスと分離した後、二段目でエチ
レンを高圧側に濃縮するか、温度約120℃以下で膜分
離することで、一段で透過側にエチレンを濃縮して、不
純エチレン流を精製処理できることを示している。しか
しながら、驚くべきことに、次に示す混合ガスによる測
定例2のように、不純エチレン流の芳香族ポリイミド膜
を用いた精製処理においては、不活性ガス及びトランス
−2−ブテンを含む全てのC4+ポリマ−は、芳香族ポ
リイミド膜をエチレンより透過しにくく、特に、エチレ
ン水和反応において大きな障害となるC4+ポリマ−
は、高温で操作するほどエチレンとの分離は良好とな
り、透過側にエチレンが一段で効果的に濃縮精製できる
ことを発見した。
Ethylene and inert gas and C4 + polymer
In order to separate impurities such as ethylene oxide using an aromatic polyimide membrane, ethylene and trans-2-butene are separated from the other gas on the permeate side in the first stage separation operation, and then ethylene is pressurized to high pressure in the second stage. It is shown that the impure ethylene stream can be purified by one-step concentration of ethylene on the permeate side by concentrating on the side or performing membrane separation at a temperature of about 120 ° C. or less. However, surprisingly, as in the measurement example 2 using the mixed gas shown below, in the purification treatment using an aromatic polyimide membrane with an impure ethylene flow, all the C4 containing an inert gas and trans-2-butene was used. The + polymer is less likely to permeate the aromatic polyimide membrane than ethylene, and in particular, the C4 + polymer is a major obstacle in the ethylene hydration reaction.
Found that the higher the temperature, the better the separation from ethylene and the more effective ethylene purification on the permeate side.

【0042】(測定例2)測定例1と同一の芳香族ポリ
イミド膜及び同一のガス膜透過実験装置を用いて、触媒
を用いたエチレンの水和反応によりエタノ−ルを製造す
る際の循環未反応エチレン流と同様組成の不純エチレン
ガスを、約3NL/hで供給した。高圧側圧力は、10
Kg/cm2G、透過側圧力は0Kg/cm2G、温度は60〜120
℃の範囲で変化させ、ガス透過量及び不純物の分離係数
を測定した。結果を次表3に示す。尚、混合ガスの分離
における分離係数は、エチレン及び各ガス(i 成分)の
高圧側供給ガス組成(CFC2H4、CFi)、高圧側出口ガス
組成(CRC2H4、CRi)と透過側ガス組成(CPC2H4
Pi)をガスクロマトグラフイ-で分析し、次式(2)を
用いて求めた。 αi C2H4=(CPi/CPC2H4)/[(CFi+CRi)/(CFC2H4+CRC2H4)] (2)
(Measurement Example 2) Using the same aromatic polyimide membrane and the same gas membrane permeation experimental apparatus as those used in Measurement Example 1, no circulation was carried out in the production of ethanol by the hydration reaction of ethylene using a catalyst. Impurity ethylene gas having the same composition as the reaction ethylene stream was supplied at about 3 NL / h. High side pressure is 10
Kg / cm 2 G, permeation side pressure is 0 Kg / cm 2 G, temperature is 60 to 120
The gas permeation amount and the separation factor of impurities were measured while changing the temperature range. The results are shown in Table 3 below. The separation factors in the separation of the mixed gas are ethylene and the gas (i component) high-pressure side supply gas composition (C FC2H4 , C Fi ), high-pressure side outlet gas composition (C RC2H4 , C Ri ) and permeation side gas composition. (C PC2H4 ,
C Pi ) was analyzed by gas chromatography and determined using the following equation (2). α i C2H4 = (C Pi / C PC2H4 ) / [(C Fi + C Ri ) / (C FC2H4 + C RC2H4 )] (2)

【0043】[0043]

【表3】 [Table 3]

【0044】表3から明らかなように、上記不純エチレ
ンガス中に含まれる不活性ガス及びトランス−2−ブテ
ンを含めたC4+ポリマ−の分離係数は、いずれも1よ
り小さく、温度を60〜120℃と高温にするほど、透
過側にエチレンが効果的に濃縮されることが判明した。
As is clear from Table 3, the separation coefficient of the C4 + polymer including the inert gas and trans-2-butene contained in the impure ethylene gas is less than 1 and the temperature is 60 to 60 ° C. It was found that the higher the temperature was 120 ° C., the more effectively ethylene was concentrated on the permeate side.

【0045】次に、本発明方法における不純エチレン流
の一段処理方法を図2(実線)に基づいて説明する。触
媒を用いたエチレンの水和反応によりエタノールを製造
する際の循環未反応エチレン流の一部を公知方法により
水洗(図示せず)した後、必要に応じて脱湿する。該ガ
スは同伴されるエタノールを回収するために、通常水で
洗浄されるので、水洗の操作条件に於ける飽和水蒸気を
含有している。エチレンは低温になると、固形の水との
分子化合物(エチレン水和物)を形成するので、減圧操
作時の断熱膨張による温度低下などの際に装置閉塞等の
障害が生じる。そこで公知方法では、ドライヤーで乾燥
するか、エチレングリコールを添加するか、或は加温し
てエチレン水和物の形成を阻止している。
Next, the one-step treatment method of the impure ethylene stream in the method of the present invention will be described with reference to FIG. 2 (solid line). A part of the circulating unreacted ethylene stream when ethanol is produced by the hydration reaction of ethylene using a catalyst is washed with water (not shown) by a known method, and then dehumidified if necessary. Since the gas is usually washed with water to recover the entrained ethanol, it contains saturated steam under the operating conditions of washing. When ethylene becomes a low temperature, it forms a molecular compound (ethylene hydrate) with solid water. Therefore, when the temperature is lowered due to adiabatic expansion during depressurization operation, troubles such as device clogging occur. Therefore, in the known method, drying with a dryer, addition of ethylene glycol, or heating is performed to prevent the formation of ethylene hydrate.

【0046】本発明方法では、従来の脱湿方法或は加温
方法の他、市販の水蒸気選択透過性高分子膜、例えばポ
リビニルアルコール系膜、キトサン系膜或はポリイミド
系膜等からなる脱湿用膜モジュールを用いて、透過側
(低圧側)に水蒸気を選択的に不純エチレン流と分離さ
せる脱湿方法等の前処理(図示せず)により、エチレン
水和物の形成を効果的に阻止することができる。この前
処理されたエチレン流をライン1から不純物分離用の膜
モジュールM1に供給する。
In the method of the present invention, in addition to the conventional dehumidification method or heating method, a commercially available water vapor selectively permeable polymer membrane such as polyvinyl alcohol membrane, chitosan membrane or polyimide membrane is used for dehumidification. Effectively prevent ethylene hydrate formation by pretreatment (not shown) such as dehumidification method that selectively separates water vapor from impure ethylene stream on permeate side (low pressure side) using membrane module can do. This pretreated ethylene stream is fed from line 1 to the membrane module M1 for separating impurities.

【0047】芳香族ポリイミド膜からなる膜モジュール
M1で、高圧側に窒素、メタン、エタン等の不活性ガス
及びC4+ポリマ−等の不純物が濃縮され、ライン2か
ら排出される。低圧側にエチレンを選択的に透過させ、
不純物を分離したエチレン流を、ライン3から回収エチ
レンとして反応系に戻される。膜モジュールM1の高圧
側の操作圧力は、2kg/cm2G以上であればよいが、反応
系の圧力をそのまま導けばよいので、圧力30■80kg
/cm2Gが好ましい。透過側圧力は、高圧側圧力より低圧
であればよいが、分離効率及び反応系のエチレン供給用
コンプレッサーの吸入圧力の関係から、1■70kg/cm2
Gとするのが好ましい。操作温度は、前記したように芳
香族ポリイミド膜のガス透過性質から、高温ほど効果的
であるが、芳香族ポリイミド膜の耐熱性等から、温度2
0〜150℃、特に好ましくは50〜120℃で操作す
るのが良い。
In the membrane module M1 made of an aromatic polyimide membrane, an inert gas such as nitrogen, methane and ethane and impurities such as C4 + polymer are concentrated on the high pressure side and discharged from the line 2. Selectively permeate ethylene to the low pressure side,
The ethylene stream from which impurities have been separated is returned to the reaction system through line 3 as recovered ethylene. The operating pressure on the high-pressure side of the membrane module M1 may be 2 kg / cm 2 G or more, but since the pressure of the reaction system may be introduced as it is, the pressure is 30 to 80 kg.
/ cm 2 G is preferred. The pressure on the permeate side may be lower than the pressure on the high pressure side, but in view of the separation efficiency and the suction pressure of the ethylene feeding compressor of the reaction system, 1 70 kg / cm 2
It is preferably G. As described above, the higher the operating temperature, the more effective it is because of the gas permeable property of the aromatic polyimide membrane.
It is preferable to operate at 0 to 150 ° C, particularly preferably 50 to 120 ° C.

【0048】エチレンの回収率を良好にするには、ライ
ン2からの抜き出し量を絞れば、効果的に達成できる
が、回収エチレン純度はやや低下する。エチレンの回収
率及び回収エチレン純度を更に良好に維持する方法とし
ては、逐次段に芳香族ポリイミド膜からなる膜モジュー
ルを組み合わせることにより、効果的に達成される。次
に、二段処理の一例を図2(破線)に基づいて説明す
る。即ち、膜モジュールM1での分離操作により、低圧
側にエチレンを選択的に透過させ、ライン3から回収エ
チレンとして反応系に戻される。ライン2から排出され
るべき不純物を多く含んだ膜モジュールM1の高圧側の
排出ガスを、破線ライン4から次の芳香族ポリイミド膜
からなる膜モジュールM2に導入し、高圧側に更に不純
物を高度に濃縮させ、破線ライン5から廃ガスとして排
出すると共に、低圧側にエチレンを選択的に透過させ
る。膜モジュールM2の低圧側に透過したエチレン流
は、不純物含有量がまだ多いので、通常は破線ライン6
から、次の芳香族ポリイミド膜からなる膜モジュールM
3に導入する。膜モジュールM3で高圧側に不純物を濃
縮させ、破線ライン7から廃ガスとして排出する。低圧
側にエチレンを選択的に透過させ、回収エチレンとして
破線ライン8から反応系に戻される。
In order to improve the recovery rate of ethylene, it is possible to effectively achieve it by narrowing down the withdrawal amount from the line 2, but the purity of recovered ethylene is slightly lowered. A method of maintaining the recovery rate of ethylene and the purity of recovered ethylene more favorably is effectively achieved by combining a membrane module made of an aromatic polyimide membrane in successive stages. Next, an example of the two-step processing will be described based on FIG. 2 (broken line). That is, by the separation operation in the membrane module M1, ethylene is selectively permeated to the low pressure side and returned to the reaction system as recovered ethylene from the line 3. The exhaust gas on the high-pressure side of the membrane module M1 containing a large amount of impurities to be discharged from the line 2 is introduced from the broken line 4 to the next membrane module M2 made of an aromatic polyimide film to further increase the impurities on the high-pressure side. It is concentrated and discharged as waste gas from the broken line 5, and ethylene is selectively permeated to the low pressure side. The ethylene stream that has permeated to the low pressure side of the membrane module M2 usually has a high impurity content, so it is normally a broken line 6
From the following, a membrane module M consisting of the following aromatic polyimide membrane
Introduce to 3. Impurities are concentrated on the high pressure side in the membrane module M3 and discharged as a waste gas from the broken line 7. Ethylene is selectively permeated to the low pressure side, and is returned to the reaction system through the broken line 8 as recovered ethylene.

【0049】膜モジュールM1の操作条件は、前記した
一段処理と同じである。膜モジュールM2の高圧側の操
作圧力は、2kg/cm2G以上であればよいが、膜モジュール
M1の高圧側ガス流をそのまま導けばよいので、通常は
圧力30■80kg/cm2Gで操作される。膜モジュールM
2の透過側圧力は高圧側圧力より低圧であればよいが、
分離効率及び次の膜モジュールM3での操作圧力の関係
から、10■70kg/cm2Gが好ましい。膜モジュールM
3の高圧側の操作圧力は、2kg/cm2G以上であればよい
が、膜モジュールM2の透過側ガス流をそのまま導けば
よいので、通常は圧力10■70kg/cm2Gで操作するの
が好ましい。膜モジュールM3の透過側の操作圧力は高
圧側圧力より低圧であればよいが、分離効率及び反応系
の低圧エチレン供給用若しくは回収用コンプレッサーの
吸入圧力の関係から、1■60kg/cm2Gが好ましい。
The operating conditions of the membrane module M1 are the same as in the one-step treatment described above. The operating pressure on the high-pressure side of the membrane module M2 may be 2 kg / cm 2 G or more, but since the gas flow on the high-pressure side of the membrane module M1 may be introduced as it is, it is normally operated at a pressure of 30 to 80 kg / cm 2 G. To be done. Membrane module M
The permeation side pressure of 2 may be lower than the high pressure side pressure,
From the relationship between the separation efficiency and the operating pressure in the next membrane module M3, 10 □ 70 kg / cm 2 G is preferable. Membrane module M
The operating pressure on the high-pressure side of 3 may be 2 kg / cm 2 G or more, but since the gas flow on the permeate side of the membrane module M2 may be guided as it is, it is normally operated at a pressure of 10 70 kg / cm 2 G. Is preferred. The operating pressure on the permeation side of the membrane module M3 may be lower than the pressure on the high pressure side. However, in consideration of the separation efficiency and the suction pressure of the low pressure ethylene supply or recovery compressor of the reaction system, 1 ■ 60 kg / cm 2 G preferable.

【0050】膜モジュールM2及びM3の操作温度は、
膜モジュールM1と同様に、芳香族ポリイミド膜の耐熱
性等から20〜150℃、特に好ましくは50〜120
℃である。このように、芳香族ポリイミド膜からなる膜
モジュールを逐次段に組み合わせて不純エチレン流を精
製処理することで、エチレン回収率及び回収エチレンの
純度を良好に維持することができる。更に、三段、四段
と逐次段に芳香族ポリイミド膜からなる膜モジュールを
組み合わせた逐次段処理は、エチレン回収率及び回収エ
チレンの純度を良好に維持するためには効果的である
が、膜モジュールを多く設置すると設備費が高価になる
ので、逐次段処理は二〜三段の組み合わせが好適であ
る。不純エチレン流の三段処理方法の一例を図3に示
す。これまで、循環未反応エチレン流の処理方法の例に
ついて説明したが、従来の吸収法プロセスにおけるスト
リッピング塔の廃ガスを芳香族ポリイミド膜を用いた膜
分離法でエチレンを回収する方法も本発明に包含され
る。
The operating temperature of the membrane modules M2 and M3 is
Similar to the membrane module M1, from the heat resistance of the aromatic polyimide membrane, the temperature is 20 to 150 ° C., particularly preferably 50 to 120.
℃. In this way, by combining the membrane modules made of an aromatic polyimide membrane in successive stages to purify the impure ethylene stream, the ethylene recovery rate and the purity of the recovered ethylene can be favorably maintained. Further, the sequential step treatment in which a membrane module composed of an aromatic polyimide membrane is combined in three steps, four steps and a sequential step is effective for maintaining good ethylene recovery rate and recovered ethylene purity. Since installing a large number of modules increases the equipment cost, it is preferable to use a combination of two to three stages for the sequential treatment. FIG. 3 shows an example of a three-stage treatment method for an impure ethylene stream. So far, an example of a method for treating a circulating unreacted ethylene stream has been described, but a method for recovering ethylene by a membrane separation method using an aromatic polyimide membrane for the waste gas of the stripping column in the conventional absorption process is also the present invention. Included in.

【0051】次に、実施例及び比較例を挙げて本発明を
更に説明する。
The present invention will be further described with reference to examples and comparative examples.

【実施例1〜3】次表4に示す仕込み比からなる酸成分
とジアミン成分とを略等モル使用して、非対称性芳香族
ポリイミド膜を常法によりイミド化重合・製膜し、これ
を50mmφに切り取り、測定例1と同一のガス膜透過
実験装置に取り付け、測定例2と同一の不純エチレンガ
スを測定例2と同様の供給量及び圧力条件並びに温度1
20℃で、ガス透過量及び不純物の分離係数を測定し
た。結果を次表4に併記した。
[Examples 1 to 3] An asymmetric aromatic polyimide film was imidized and polymerized into a film by a conventional method using approximately equal moles of an acid component and a diamine component having the charging ratios shown in Table 4 below. It was cut into 50 mmφ and attached to the same gas membrane permeation experimental device as in Measurement Example 1, and the same impure ethylene gas as in Measurement Example 2 was supplied in the same amount and pressure conditions as in Measurement Example 2 and at the temperature
The gas permeation amount and the separation factor of impurities were measured at 20 ° C. The results are also shown in Table 4 below.

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【実施例4】エチレン水和反応に使用した循環未反応エ
チレン流の一部を、不純エチレン流(エチレン濃度8
7.2モル%)として、測定例1で用いた芳香族ポリイ
ミド膜−1と同様組成からなる芳香族ポリイミド非対称
性中空糸膜0.2m2(中空糸外径0.4mm×中空糸
内径0.2mm×中空糸有効長230mm)を内蔵する
ステンレス製の膜モジュール(外径60mmφ×全長3
40mm)に、スチ−ムを用いて温度118℃まで加熱
後、153.1 NL/hで供給し、高圧側圧力50kg/cm
2G、透過側圧力3kg/cm2Gの分離条件で分離させ、高圧
側から、不活性ガス及びC4+ポリマ−を多く含む廃ガ
ス(エチレン濃度54.0モル%)を13.9NL/hで排
出した。透過側からエチレン濃度90.5モル%の回収
エチレンが139.2NL/hで得られた。この時のエチレ
ン回収率は、94.4%であった。
Example 4 A part of the circulating unreacted ethylene stream used for the ethylene hydration reaction was converted into an impure ethylene stream (ethylene concentration 8
Aromatic polyimide asymmetric hollow fiber membrane having the same composition as the aromatic polyimide membrane-1 used in Measurement Example 1 0.2 m 2 (hollow fiber outer diameter 0.4 mm × hollow fiber inner diameter 0) 0.2 mm x hollow fiber effective length 230 mm) built-in stainless steel membrane module (outer diameter 60 mmφ x total length 3)
40mm), after heating to a temperature of 118 ° C using a steam, supply at 153.1 NL / h, high pressure side pressure 50kg / cm
2 G, permeation side pressure 3 kg / cm 2 G was separated under a separation condition, and an inert gas and a waste gas containing a large amount of C4 + polymer (ethylene concentration 54.0 mol%) were 13.9 NL / h from the high pressure side. Discharged at. From the permeate side, recovered ethylene having an ethylene concentration of 90.5 mol% was obtained at 139.2 NL / h. The ethylene recovery rate at this time was 94.4%.

【0054】本発明方法の回収エチレン濃度は、90.
5モル%で、比較例の吸収法の回収エチレン濃度88.
2モル%よりも良好であり、それだけ反応系のエチレン
純度が向上するので、エタノ−ル生産量を増加させるこ
とができる。また、廃ガス中に不純物を高濃度まで濃縮
することで、廃ガス中のエチレン濃度を低くできること
から、本発明方法のエチレン回収率は、94.4%(エ
チレン損失率5.6%)となる。比較例のエチレン回収
率89.8%(エチレン損失率10.2%)と比較する
と、本発明方法のエチレン損失量は、比較例の約1/2
にすることができるので、本発明方法はそれだけ経済的
に優れている。
The recovered ethylene concentration of the method of the present invention is 90.
At 5 mol%, the recovered ethylene concentration in the absorption method of the comparative example was 88.
It is better than 2 mol%, and the ethylene purity of the reaction system is improved accordingly, so that the ethanol production amount can be increased. Further, since the concentration of ethylene in the waste gas can be lowered by concentrating the impurities in the waste gas to a high concentration, the ethylene recovery rate of the method of the present invention is 94.4% (ethylene loss rate 5.6%). Become. Compared with the ethylene recovery rate of the comparative example of 89.8% (ethylene loss rate of 10.2%), the ethylene loss amount of the method of the present invention is about 1/2 of that of the comparative example.
Therefore, the method of the present invention is economically superior.

【0055】[0055]

【比較例】エチレン水和反応に使用した循環未反応エチ
レン流(エチレン濃度87.2モル%)の一部を抜き出
し、圧力21kg/cm2G、温度38℃で操作されている吸
収塔(塔径284mm×塔高7500mm)の下段に3
54.4Nm3/hで供給し、次のストリッピング塔から循
環される軽ガス油を、上段から342リットル/hで降
らして主としてエチレン及びC4+ポリマーを吸収さ
せ、吸収塔塔頂からエチレン濃度88.2モル%の回収
エチレンが314.5Nm3/hで得られた。主としてエチ
レン及びC4+ポリマーを吸収した軽ガス油は、熱交換
器で圧力7kg/cm2Gのスチームで120℃に加熱され、
次の圧力3kg/cm2Gで操作されているストリッピング塔
(塔径上部298mm×塔径下部700mm×塔高28
50mm)に供給し、ストリッピング塔塔頂から廃ガス
(エチレン濃度79.2モル%)を39.9Nm3/hで排
出した。ストリッピング塔塔底からポンプを用いて軽ガ
ス油を抜き出し、熱交換器で工業用水を使用して冷却
後、吸収塔に循環させた。この時のエチレン回収率は、
89.8%であった。
[Comparative Example] A part of the circulating unreacted ethylene stream (ethylene concentration 87.2 mol%) used for the ethylene hydration reaction was withdrawn, and the absorption tower (tower was operated at a pressure of 21 kg / cm 2 G and a temperature of 38 ° C). (Diameter 284 mm x tower height 7500 mm) 3 at the bottom
Light gas oil supplied at 54.4 Nm 3 / h and circulated from the next stripping tower is lowered from the upper stage at 342 liters / h to mainly absorb ethylene and C4 + polymer, and the ethylene concentration from the top of the absorption tower is reduced. 88.2 mol% of recovered ethylene was obtained at 314.5 Nm 3 / h. Light gas oil which mainly absorbed ethylene and C4 + polymer was heated to 120 ° C by steam with a pressure of 7 kg / cm 2 G in a heat exchanger,
Stripping tower operated at the following pressure of 3 kg / cm 2 G (tower diameter upper 298 mm × tower diameter lower 700 mm × tower height 28
50 mm), and a waste gas (ethylene concentration 79.2 mol%) was discharged at 39.9 Nm 3 / h from the top of the stripping tower. Light gas oil was extracted from the bottom of the stripping tower using a pump, cooled with industrial water in a heat exchanger, and then circulated in an absorption tower. The ethylene recovery rate at this time is
It was 89.8%.

【0056】[0056]

【作用】膜を用いたガス分離におけるガスの透過機構
は、溶解拡散機構と言われている。本発明に用いられる
芳香族ポリイミド膜は、その高分子構造にベンゼン環を
高度に有しているので、その積み重なり効果のため、高
分子間隙が高度に緻密化されている。このため、分子径
の大きな気体は、分子径の小さな気体より拡散阻害を受
けるので、芳香族ポリイミド膜は分子径の異なる気体の
分離には効果的である。しかしながら、イミド基の存在
により、極性の高い気体の溶解が促進されるので、例え
ば、分子径が比較的小さく高極性の水蒸気は、高透過性
を示すものと思われる。分子径がほぼ同じ場合は、極性
の高い分子のほうが芳香族ポリイミド膜を透過し易い。
即ち、エタンよりエチレン、或はイソブタンよりイソブ
テンの方が高透過性を示す。このことは、芳香族ポリイ
ミド膜の気体透過性質は、透過気体の分子径と極性が芳
香族ポリイミド膜への溶解度及び芳香族ポリイミド膜内
での拡散速度に影響を与えているためと考えられる。
The gas permeation mechanism in gas separation using a membrane is called a dissolution diffusion mechanism. Since the aromatic polyimide film used in the present invention has a high degree of benzene ring in its polymer structure, the polymer gap is highly densified due to its stacking effect. Therefore, a gas having a large molecular diameter is more hindered from diffusion than a gas having a small molecular diameter, and thus the aromatic polyimide membrane is effective for separating gases having different molecular diameters. However, since the presence of the imide group promotes the dissolution of highly polar gas, it is considered that, for example, highly polar water vapor having a relatively small molecular diameter exhibits high permeability. When the molecular diameters are almost the same, molecules with higher polarity are more likely to pass through the aromatic polyimide film.
That is, ethylene has a higher permeability than ethane, or isobutene has a higher permeability than isobutane. This is considered to be because the gas permeation property of the aromatic polyimide film is that the molecular diameter and polarity of the permeated gas influence the solubility in the aromatic polyimide film and the diffusion rate in the aromatic polyimide film.

【0057】トランス−2−ブテンの透過は、純ガスと
混合ガスの場合で、その透過傾向が大きく異なることが
発見された。これは溶解気体による芳香族ポリイミド膜
界面の可塑化により、透過気体の溶解速度が変化するた
めと思われる。即ち、トランス−2−ブテンの純ガスの
場合、短尺側の分子径はエチレンと余り変わらないが、
極性がエチレンよりかなり高いので、膜界面での溶解が
相乗的に促進され、高透過性を示したものと思われる。
一方、混合ガスの場合、トランス−2−ブテンの濃度は
1%以下であるので、主成分であるエチレン或は他のC
+ポリマーとの相互作用や膜界面での溶解性が純ガス
の場合と異なってくる。その結果、不純エチレンのよう
な混合ガスでは、トランス−2−ブテンを含めたC4+
ポリマーは、エチレンより低透過性を示したものと思わ
れる。即ち、本発明方法で用いられる芳香族ポリイミド
膜の分離性は、エチレン水和反応に使用した循環未反応
エチレン流のような不純エチレン流の分離方法において
のみ、特有の作用を示したものと考えられる。
It has been discovered that trans-2-butene has a significantly different permeation tendency between the pure gas and the mixed gas. It is considered that this is because the dissolution rate of the permeated gas changes due to the plasticization of the aromatic polyimide membrane interface by the dissolved gas. That is, in the case of pure gas of trans-2-butene, the molecular diameter on the short side is not much different from ethylene,
Since the polarity is much higher than that of ethylene, it is considered that the dissolution at the membrane interface is synergistically promoted and the high permeability is exhibited.
On the other hand, in the case of the mixed gas, the concentration of trans-2-butene is 1% or less, so that ethylene or other C
The interaction with 4 + polymer and the solubility at the film interface are different from those of pure gas. As a result, in mixed gas such as impure ethylene, C4 + including trans-2-butene is included.
The polymer appears to have exhibited a lower permeability than ethylene. That is, the separability of the aromatic polyimide membrane used in the method of the present invention is considered to have shown a unique action only in the separation method of the impure ethylene stream such as the circulating unreacted ethylene stream used for the ethylene hydration reaction. To be

【0058】[0058]

【効果】本発明方法によれば、特定の芳香族ポリイミド
膜を使用したことにより、深冷蒸留法或は吸収法による
従来のエチレン回収法と比較して、膜モジュールを設備
するだけでよいので、設備費が深冷蒸留法の1/5〜1
/3程度、吸収法の1/2〜2/3程度で済むほか、電
力は一切使用せず、スチームは不純エチレンを加熱する
だけでよいので、ランニングコストは深冷蒸留法の1/
20〜1/10程度で済むと共に、エチレン回収率は吸
収法より優れており、エチレン損失量が少ないので、エ
タノール製造に於けるエチレン原単位を向上させ得るこ
とから、それだけ安価にエタノールを製造できる等、従
来のこの種エチレン回収法と比べて著しく顕著な効果を
奏する。
[Effect] According to the method of the present invention, since a specific aromatic polyimide membrane is used, it is only necessary to equip a membrane module as compared with a conventional ethylene recovery method by a cryogenic distillation method or an absorption method. , Equipment cost is 1/5 to 1 of cryogenic distillation method
/ 3, about 1/2 to 2/3 of the absorption method, no electric power is used, and steam only needs to heat impure ethylene.
In addition to about 20 to 1/10, the ethylene recovery rate is superior to that of the absorption method, and the ethylene loss amount is small, so that the ethylene basic unit in ethanol production can be improved, and thus ethanol can be produced at a lower cost. And the like, a remarkably remarkable effect is obtained as compared with the conventional ethylene recovery method of this kind.

【0059】[0059]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する芳香族ポリイミド膜の各種ガ
スの透過係数を温度の逆数に対してプロット(アレニウ
スプロット)したグラフである。
FIG. 1 is a graph obtained by plotting (Arrhenius plot) the permeation coefficient of various gases of an aromatic polyimide membrane used in the present invention against the reciprocal of temperature.

【図2】本発明の膜分離プロセスフロー概念図である。FIG. 2 is a conceptual diagram of a membrane separation process flow of the present invention.

【図3】本発明の膜分離プロセスフローの他の例を示す
概念図である。
FIG. 3 is a conceptual diagram showing another example of the membrane separation process flow of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】触媒を用いたエチレンの水和反応によりエ
タノールを製造する際に、循環未反応エチレン流中の不
純物を、次式I: 【0001】 【化1】 【0002】[式中、Rはジアミン化合物のアミノ基を
除いた二価の残基を表し、前記ジアミン化合物は、次式
II: 【0003】 【化2】 【0004】(式中、R1及びR2は、水素またはメチル
基を表す。)及び次式III: 【0005】 【化3】 【0006】で表されるジアミン化合物からなる群から
選ばれた少なくとも1種の芳香族ジアミン化合物を表
す。]で表される反復単位を80%以上の割合で有する
芳香族ポリイミド膜を用いる膜分離法によりエチレンと
分離させることを特徴とする不純エチレン流の処理方
法。
1. When producing ethanol by a hydration reaction of ethylene using a catalyst, impurities contained in a circulating unreacted ethylene stream are represented by the following formula I: ## STR1 ## [In the formula, R represents a divalent residue of the diamine compound excluding the amino group, and the diamine compound is represented by the following formula:
II: [Chemical formula 2] (Wherein R 1 and R 2 represent hydrogen or a methyl group) and the following formula III: ## STR3 ## It represents at least one aromatic diamine compound selected from the group consisting of diamine compounds represented by: ] The process for treating an impure ethylene stream, which comprises separating ethylene from an ethylene by a membrane separation method using an aromatic polyimide membrane having a repeating unit represented by 80% or more.
【請求項2】前記操作温度が、20〜150℃である請
求項1に記載の処理方法。
2. The processing method according to claim 1, wherein the operating temperature is 20 to 150 ° C.
【請求項3】前記操作圧力が、0〜80Kg/cm2Gである
請求項1及び2に記載の処理方法。
3. The processing method according to claim 1, wherein the operating pressure is 0 to 80 kg / cm 2 G.
【請求項4】前記膜分離法における膜モジュ−ルが、一
段または膜モジュ−ルの組み合わせが逐次段に二〜三段
である請求項1〜3に記載の処理方法。
4. The treatment method according to claim 1, wherein the membrane module in the membrane separation method has one stage or a combination of membrane modules having two to three stages in successive stages.
【請求項5】前記不純エチレン流中のエチレン濃度が、
40〜95モル%である請求項1〜4に記載の処理方
法。
5. The ethylene concentration in the impure ethylene stream is
It is 40-95 mol%, The processing method of Claims 1-4.
【請求項6】前記不純エチレン流中に含まれる不純物
が、窒素、ジエチルエ−テル及び炭素数1〜10の飽和
若しくは不飽和炭化水素を含む不純物である請求項1〜
4に記載の処理方法。
6. The impurities contained in the impure ethylene stream are impurities containing nitrogen, diethyl ether and a saturated or unsaturated hydrocarbon having 1 to 10 carbon atoms.
4. The processing method according to 4.
JP13974194A 1994-05-31 1994-05-31 Treatment of impure ethylene stream in ethylene hydration Expired - Fee Related JP2756459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13974194A JP2756459B2 (en) 1994-05-31 1994-05-31 Treatment of impure ethylene stream in ethylene hydration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13974194A JP2756459B2 (en) 1994-05-31 1994-05-31 Treatment of impure ethylene stream in ethylene hydration

Publications (2)

Publication Number Publication Date
JPH07324047A true JPH07324047A (en) 1995-12-12
JP2756459B2 JP2756459B2 (en) 1998-05-25

Family

ID=15252303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13974194A Expired - Fee Related JP2756459B2 (en) 1994-05-31 1994-05-31 Treatment of impure ethylene stream in ethylene hydration

Country Status (1)

Country Link
JP (1) JP2756459B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128034A (en) * 1996-10-31 1998-05-19 Air Prod And Chem Inc Separation and recovering method of fluorochemical by membrane
WO2008081638A1 (en) * 2006-12-28 2008-07-10 Mitsubishi Chemical Corporation PROCESS FOR PRODUCTION OF α-OLEFIN LOW POLYMERS
JP2010529905A (en) * 2007-06-14 2010-09-02 アレバ・エヌペ Apparatus and system for treating gas mixtures by permeation
JP2014511274A (en) * 2011-03-07 2014-05-15 ジョージア テック リサーチ コーポレイション Polyimide carbon molecular sieve membrane for ethylene / ethane separation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128034A (en) * 1996-10-31 1998-05-19 Air Prod And Chem Inc Separation and recovering method of fluorochemical by membrane
WO2008081638A1 (en) * 2006-12-28 2008-07-10 Mitsubishi Chemical Corporation PROCESS FOR PRODUCTION OF α-OLEFIN LOW POLYMERS
US9421534B2 (en) 2006-12-28 2016-08-23 Mitsubishi Chemical Corporation Production method of α-olefin low polymer
EA024462B1 (en) * 2006-12-28 2016-09-30 Мицубиси Кемикал Корпорейшн PROCESS FOR PRODUCTION OF α-OLEFIN LOW POLYMER
JP2010529905A (en) * 2007-06-14 2010-09-02 アレバ・エヌペ Apparatus and system for treating gas mixtures by permeation
JP2014511274A (en) * 2011-03-07 2014-05-15 ジョージア テック リサーチ コーポレイション Polyimide carbon molecular sieve membrane for ethylene / ethane separation

Also Published As

Publication number Publication date
JP2756459B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US5452581A (en) Olefin recovery method
KR100766830B1 (en) Process for manufacturing reduced water content (meth)acrylic acid
KR20030020966A (en) Process for the production of purified terephthalic acid
KR20160122749A (en) Process and system for producing acrylic acid
WO2009099109A1 (en) Gas separation membrane made of polyimide and method for gas separation
JP2013537099A (en) Process and apparatus for drying and compressing a CO2-rich stream
JP2756459B2 (en) Treatment of impure ethylene stream in ethylene hydration
JP2618589B2 (en) Ethylene recovery method
US5817841A (en) Membrane process for argon purging from ethylene oxide reactors
JP2004089882A (en) Separation apparatus for mixture, separation method using the same and method for producing aromatic carboxylic acid
JP3153451B2 (en) Gas drying method using liquid desiccant
EA038387B1 (en) Ethane oxidative dehydrogenation with co-production of vinyl acetate
US5292963A (en) Process for producing ether compound
JP2556771B2 (en) Manufacturing method of ether compound
WO2020066639A1 (en) Nitrous oxide purification method
US2943701A (en) Effect of chso oonoenteation in the chhf
KR100584677B1 (en) A high-efficient method for preparing acrylic acid
JP2005060241A (en) Method for purifying solvent and apparatus used therefor
JPS63143923A (en) Concentration of organic substance aqueous solution
JP2010202864A (en) New polyimide
RU2738512C1 (en) Apparatus for concentrating and purifying helium
US3827245A (en) Recovery and purification of ethylene from direct hydration ethanol vent gas streams
KR102673700B1 (en) Method for preraring isopropyl alcohol
JPH0411192B2 (en)
JP2009208071A (en) Polyimide gas separation membrane and gas separation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100313

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100313

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100313

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100313

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees