JPH0732375U - Corrugated pipe for heat exchanger - Google Patents
Corrugated pipe for heat exchangerInfo
- Publication number
- JPH0732375U JPH0732375U JP6758493U JP6758493U JPH0732375U JP H0732375 U JPH0732375 U JP H0732375U JP 6758493 U JP6758493 U JP 6758493U JP 6758493 U JP6758493 U JP 6758493U JP H0732375 U JPH0732375 U JP H0732375U
- Authority
- JP
- Japan
- Prior art keywords
- heat
- corrugated
- upstream side
- transport medium
- transfer coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】
【目的】 熱交換器用コルゲート管の長手方向での熱伝
達率のバラツキを是正する。
【構成】 熱輸送媒体を一定方向に流す熱交換器用コル
ゲート管1において、コルゲートのピッチpが熱輸送媒
体2の上流側ほど大きく形成されている。したがって下
流側では、放熱もしくは吸熱による内外の温度差が小さ
くなるが、コルゲートによる表面積の増大効果や熱媒体
の乱流状態が、上流側に比較して促進されているから、
温度差が小さいことによる熱伝達率の低下が補われ、そ
の結果、コルゲート管1の全体としての熱伝達率が均一
化される。
(57) [Summary] [Purpose] To correct the variation in heat transfer coefficient in the longitudinal direction of corrugated pipes for heat exchangers. In a heat exchanger corrugated tube 1 for flowing a heat transport medium in a certain direction, a corrugated pitch p is formed so as to become larger toward an upstream side of a heat transport medium 2. Therefore, on the downstream side, the temperature difference between the inside and outside due to heat dissipation or heat absorption becomes small, but the effect of increasing the surface area due to corrugations and the turbulent flow state of the heat medium are promoted compared to the upstream side.
The decrease in heat transfer coefficient due to the small temperature difference is compensated, and as a result, the heat transfer coefficient as a whole of the corrugated tube 1 is made uniform.
Description
【0001】[0001]
この考案は、熱交換器において熱輸送媒体を流すために使用されるコルゲート 管に関するものである。 The present invention relates to a corrugated tube used for flowing a heat transport medium in a heat exchanger.
【0002】[0002]
例えば温水循環式融雪システムにおける放熱器としてコルゲート管が使用され ている。周知のようにコルゲート管は、その周壁部を波状に湾曲させたパイプで あって、可撓性に優れ、また周壁部を波状に形成されていることにより、表面積 が広いなどの利点があり、上述した熱交換器などに多用されている。 For example, corrugated pipes are used as radiators in hot water circulation type snow melting systems. As is well known, a corrugated pipe is a pipe whose peripheral wall portion is curved in a wavy shape, has excellent flexibility, and has an advantage that it has a large surface area because the peripheral wall portion is formed in a wavy shape. It is often used in the heat exchangers described above.
【0003】[0003]
この種の放熱器に例えば融雪用の温水を流した場合の温水と外気もしくはパイ プの外面側の雪との間の熱交換量、すなわち温水から外部への熱伝達量は、温水 の流れる状態および内外の温度差あるいは熱伝達面積などによって大きく異なる 。例えば一定温度に加熱した温水をコルゲート管に一定方向から流した場合、温 度の高い上流側においては、温水からコルゲート管の外部への熱伝達量が、内外 の温度差が大きいことにより多くなり、これに反して下流側においては、温水温 度が低下して内外の温度差が小さくなることにより、熱伝達量が少なくなる。 For example, the amount of heat exchanged between hot water and the outside air or snow on the outer surface of the pipe when hot water for melting snow is passed through this type of radiator, that is, the amount of heat transfer from the hot water to the outside is the state in which hot water flows. It also greatly differs depending on the temperature difference between inside and outside or the heat transfer area. For example, when hot water heated to a certain temperature is flowed through the corrugated pipe from a certain direction, the amount of heat transfer from the hot water to the outside of the corrugated pipe increases on the upstream side where the temperature is high due to the large temperature difference between the inside and outside. On the contrary, on the downstream side, the temperature of the hot water is lowered and the temperature difference between the inside and the outside is reduced, so that the heat transfer amount is reduced.
【0004】 したがって温水式融雪システムにおける放熱器においては、上流側において融 雪量が多く、下流側においては融雪量が少なくなる不都合があり、このような融 雪量の相違を是正するために温水の循環経路に工夫を凝らしたり、あるいは温水 の流れ方向が互いに反対となる2本の温水管を平行に配置するなどの複雑な構成 あるいは制御を必要とする不都合があった。Therefore, in the radiator in the hot water type snow melting system, there is an inconvenience that the amount of snow melting is large on the upstream side and the amount of snow melting is small on the downstream side. However, there is a problem in that it requires a complicated configuration or control, such as elaborately devising the circulation route of the above, or arranging two hot water pipes in which the hot water flow directions are opposite to each other in parallel.
【0005】 この考案は上記の事情を背景としてなされたもので、熱伝達率を軸線方向にお いて可及的に均一ならしめることのできる熱交換器用コルゲート管を提供するこ とを目的とするものである。The present invention has been made in view of the above circumstances, and an object thereof is to provide a corrugated tube for a heat exchanger, which can make the heat transfer coefficient as uniform as possible in the axial direction. It is a thing.
【0006】[0006]
この考案は、上記の目的を達成するために、熱輸送媒体を一定方向に流す熱交 換器用コルゲート管において、コルゲートのピッチが前記熱輸送媒体の上流側ほ ど大きく形成されていることを特徴とするものである。 In order to achieve the above object, the present invention is characterized in that, in a heat exchanger corrugated tube for flowing a heat transport medium in a fixed direction, the corrugated pitch is formed to be as large as the upstream side of the heat transport medium. It is what
【0007】[0007]
この考案における熱交換器用コルゲート管においても、温水あるいは冷媒など の熱輸送媒体は、一定方向に流される。そしてこの考案おけるコルゲート管では その熱輸送媒体の上流側においてコルゲートのピッチが大きくなっているから、 上流側においては、熱交換面積が下流側よりも小さく、また乱流状態も生じにく い。したがって上流側における熱伝達率が下流側に比較して低く抑制され、その ため上流側における熱伝達率が小さくなるので、上流側での熱媒体と外部との熱 交換量が少なくなり、これに比較して熱輸送媒体と外部と温度差が小さくなる下 流側においては、コルゲートのピッチが小さくなることによる表面積の増大およ び乱流状態の促進によって熱伝達率が高くなるので、温度差の減少に伴う熱交換 量の減少を抑制する。その結果、コルゲート管の長手方向での全体としての熱交 換量は、より均一化される。 Also in the heat exchanger corrugated tube according to the present invention, the heat transport medium such as hot water or refrigerant flows in a fixed direction. In the corrugated pipe in this device, the corrugated pitch is large on the upstream side of the heat transport medium, so that the heat exchange area on the upstream side is smaller than that on the downstream side, and a turbulent state is less likely to occur. Therefore, the heat transfer coefficient on the upstream side is suppressed to be lower than that on the downstream side, which reduces the heat transfer coefficient on the upstream side, which reduces the amount of heat exchange between the heat medium and the outside on the upstream side. On the downstream side, where the temperature difference between the heat transport medium and the outside is small, the heat transfer coefficient increases due to the increase in surface area due to the smaller corrugated pitch and the promotion of turbulent flow conditions. It suppresses the decrease in heat exchange amount due to the decrease in heat. As a result, the heat exchange amount as a whole in the longitudinal direction of the corrugated pipe is made more uniform.
【0008】[0008]
つぎにこの考案の実施例を図面を参照して説明する。図1はこの考案にかかる コルゲート管1を示す模式的な断面図であって、このコルゲート管1はステンレ スや胴などの金属によって形成されており、所定の熱交換器(図示せず)に組み 込まれて図における左側から右側に温水などの熱輸送媒体2を流すように使用さ れる。そして図に示すように、このコルゲート管1の上流側の所定長さの部分は 、コルゲートのないほぼ直管として形成され、それに続く部分は、ピッチpの大 きいコルゲートが形成されている。このコルゲートのピッチpは、図1の右方向 における熱輸送媒体2の下流側において次第に小さく設定されており、図1の最 下流側では最も小さくなっている。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a corrugated pipe 1 according to the present invention. The corrugated pipe 1 is made of metal such as stainless steel or a shell, and is attached to a predetermined heat exchanger (not shown). It is installed and used to flow the heat transport medium 2 such as hot water from the left side to the right side in the figure. As shown in the figure, a portion of the corrugated pipe 1 having a predetermined length on the upstream side is formed as a substantially straight pipe without a corrugated pipe, and a subsequent corrugated pipe having a large pitch p is formed. The pitch p of the corrugations is set to be gradually smaller on the downstream side of the heat transport medium 2 in the right direction of FIG. 1, and is smallest on the most downstream side of FIG.
【0009】 図1に示すコルゲート管1は、例えば温水を熱輸送媒体2とした融雪用放熱器 として用いられ、積雪時にその上流側から温水を流した場合、その温水と外部の 雪との温度差が上流側で最も大きくなる。しかしながらコルゲート管1の上流側 においてはコルゲートのピッチpが大きいことにより、温水は上流からわずかな 乱流状態に変化するが、その程度が低く、しかもコルゲートのピッチpが大きい ことによる表面積の増大効果が少ないことにより、温水と外部の雪との間の熱伝 達率は所定の値以下に設定される。The corrugated pipe 1 shown in FIG. 1 is used, for example, as a heat radiator for snow melting using warm water as a heat transport medium 2. When warm water flows from the upstream side during snow accumulation, the temperature of the warm water and the external snow The difference is greatest on the upstream side. On the upstream side of the corrugated pipe 1, however, the hot water changes from upstream to a slight turbulent state due to the large pitch p of the corrugated pipe, but the extent is low, and the large corrugated pitch p has the effect of increasing the surface area. Due to the small amount of heat, the heat transfer coefficient between the hot water and the external snow is set below a predetermined value.
【0010】 コルゲート管1の中を流れる温水は下流側に流れて行くに従って放熱すること により温度が次第に下がり、内外の温度差が次第に小さくなる。これに対してコ ルゲート管1の下流側では、コルゲートのピッチpが小さいことにより、表面積 が拡大されており、しかも温水の乱流状態が増大する。その結果、下流側では、 温水から外部の雪への熱伝達率は上流側に比較して大きくなり、内外の温度差の 減少に伴う熱伝達率の低下を補うことになる。The hot water flowing in the corrugated pipe 1 radiates heat as it flows downstream, whereby the temperature gradually decreases, and the temperature difference between the inside and outside gradually decreases. On the other hand, on the downstream side of the corrugated pipe 1, the surface area is enlarged due to the small pitch p of the corrugated pipe, and the turbulent flow of hot water is increased. As a result, on the downstream side, the heat transfer coefficient from the hot water to the external snow becomes larger than on the upstream side, which compensates for the decrease in the heat transfer coefficient due to the decrease in the temperature difference between the inside and outside.
【0011】 すなわち上流側では、温度差が大きいが、表面積や乱流状態が下流側に比較し て小さく、これに対して下流側では温度差が小さいものの表面積や乱流状態が増 大されているから、結局、コルゲート管1全体としての熱伝達率は、上流側と下 流側とでは等しく、もしくはほぼ等しくなる。そのためコルゲート管1の外部に ある雪の受ける熱量は、コルゲート管1の軸線方向の全体に亘ってほぼ均一化さ れ、コルゲート管1の軸線方向において融雪量に差が生じることはない。That is, on the upstream side, the temperature difference is large, but the surface area and turbulent flow state are smaller than on the downstream side. On the other hand, on the downstream side, the surface area and turbulent flow state are increased although the temperature difference is small. Therefore, the heat transfer coefficient of the corrugated tube 1 as a whole becomes equal or almost equal between the upstream side and the downstream side. Therefore, the amount of heat received by the snow outside the corrugated tube 1 is almost uniform over the entire axial direction of the corrugated tube 1, and there is no difference in the amount of snow melting in the axial direction of the corrugated tube 1.
【0012】 なおこの考案は、上記の実施例に限られるものではないのであって、熱輸送媒 体は、温水でなくてもよく、冷却用の熱交換器に使用される場合には、冷媒をコ ルゲート管の内部に熱輸送媒体として流してもよい。またコルゲート管の外径は 、上流側と下流側とで等しくなくてもよく、下流側で径を大きくして熱輸送媒体 の流速を低下させるようにしてもよい。Note that the present invention is not limited to the above-mentioned embodiment, and the heat transport medium may not be hot water, and when it is used for a heat exchanger for cooling, a refrigerant is used. May flow as a heat transport medium inside the corrugated tube. The outer diameter of the corrugated tube does not have to be the same on the upstream side and the downstream side, and the diameter may be increased on the downstream side to reduce the flow velocity of the heat transport medium.
【0013】[0013]
以上の説明から明らかなようにこの考案によれば、コルゲートのピッチを上流 側で大きくし、下流側で小さくしたので、その全体としての熱伝達率を均一化す ることができ、内部を流れる熱輸送媒体の温度変化に起因する放熱量もしくは吸 熱量の上流側と下流側とでのバリツキを是正することができる。 As is clear from the above description, according to the present invention, the pitch of the corrugated is increased on the upstream side and decreased on the downstream side, so that the heat transfer coefficient as a whole can be made uniform, and the heat flowing in the inside can be made uniform. It is possible to correct the variation in the amount of heat radiation or the amount of heat absorption due to the temperature change of the transport medium between the upstream side and the downstream side.
【図1】この考案の一実施例を模式的に示す断面図であ
る。FIG. 1 is a sectional view schematically showing an embodiment of the present invention.
1…コルゲート管、 2…熱輸送媒体、 p…ピッチ。 1 ... Corrugated tube, 2 ... Heat transport medium, p ... Pitch.
───────────────────────────────────────────────────── フロントページの続き (72)考案者 石井 慎二 北海道千歳市泉沢1007番地151 株式会社 北海道フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Shinji Ishii 151, 1007 Izumisawa, Chitose-shi, Hokkaido 151 Fujikura, Hokkaido
Claims (1)
コルゲート管において、コルゲートのピッチが前記熱輸
送媒体の上流側ほど大きく形成されていることを特徴と
する熱交換器用コルゲート管。1. A corrugated tube for a heat exchanger in which a heat transport medium flows in a fixed direction, wherein a pitch of the corrugated is formed so as to become larger toward an upstream side of the heat transport medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6758493U JPH0732375U (en) | 1993-11-25 | 1993-11-25 | Corrugated pipe for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6758493U JPH0732375U (en) | 1993-11-25 | 1993-11-25 | Corrugated pipe for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0732375U true JPH0732375U (en) | 1995-06-16 |
Family
ID=13349121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6758493U Pending JPH0732375U (en) | 1993-11-25 | 1993-11-25 | Corrugated pipe for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732375U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010151363A (en) * | 2008-12-25 | 2010-07-08 | Hitachi Metals Ltd | Sealed type cooling apparatus |
US8215380B2 (en) | 2005-03-25 | 2012-07-10 | Tsinghua University | Hot water heat transfer pipe |
CN111121509A (en) * | 2020-01-09 | 2020-05-08 | 俞祁浩 | Bellows type height-balanced heat pipe |
-
1993
- 1993-11-25 JP JP6758493U patent/JPH0732375U/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8215380B2 (en) | 2005-03-25 | 2012-07-10 | Tsinghua University | Hot water heat transfer pipe |
JP2010151363A (en) * | 2008-12-25 | 2010-07-08 | Hitachi Metals Ltd | Sealed type cooling apparatus |
CN111121509A (en) * | 2020-01-09 | 2020-05-08 | 俞祁浩 | Bellows type height-balanced heat pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0118353B2 (en) | ||
US4709753A (en) | Uni-directional fin-and-tube heat exchanger | |
JPS6073298A (en) | Heat exchanging tube with square contour fin | |
JPH0732375U (en) | Corrugated pipe for heat exchanger | |
JPS60185094A (en) | Heat transfer pipe of uniform heat flow type | |
JPS6317393A (en) | Heat exchanger | |
CN116294703A (en) | Fin tube type heat exchanger | |
JPH11223484A (en) | Heat exchanger | |
JPS63197887A (en) | Heat exchanger | |
JPS6334489A (en) | Heat exchanger | |
JPS632792Y2 (en) | ||
JPS6152589A (en) | Air-to-air heat exchanger | |
JP4174478B2 (en) | Heat exchange pipe | |
JPH04340094A (en) | Heat exchanger | |
CN215524318U (en) | Louver fin heat exchanger with vortex generator | |
CN118089460A (en) | Heat exchange micro-channel aluminum flat tube | |
JP3617538B2 (en) | Heat exchanger tube for absorber | |
JP2585558Y2 (en) | Radiant heat exchanger | |
JPH04194595A (en) | Shell and tube type heat exchanger | |
JPH0622777U (en) | Heat exchanger with fins | |
JPS6218863Y2 (en) | ||
JP3001701U (en) | Wavy heat pipe heat exchanger | |
JPH0481105B2 (en) | ||
JP2000154991A (en) | Heat exchanging coil for small water quantity fan coil unit | |
JPS6222993A (en) | Multi-tubular heat exchanger |