JPH07323226A - Amination catalyst and production of aliphatic amine by using the same - Google Patents

Amination catalyst and production of aliphatic amine by using the same

Info

Publication number
JPH07323226A
JPH07323226A JP6118052A JP11805294A JPH07323226A JP H07323226 A JPH07323226 A JP H07323226A JP 6118052 A JP6118052 A JP 6118052A JP 11805294 A JP11805294 A JP 11805294A JP H07323226 A JPH07323226 A JP H07323226A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
weight
silica
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6118052A
Other languages
Japanese (ja)
Other versions
JP3800632B2 (en
Inventor
Toshio Hironaka
敏夫 弘中
Mitsuru Takahashi
満 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP11805294A priority Critical patent/JP3800632B2/en
Publication of JPH07323226A publication Critical patent/JPH07323226A/en
Application granted granted Critical
Publication of JP3800632B2 publication Critical patent/JP3800632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the rate and selectivity of reaction for converting an aliphatic alcohol to an aliphatic amine and improve the mechanical strength of a catalyst by constituting an amination catalyst so as to deposit Al and a Ni based metallic component on a carrier and allowing the aliphatic alcohol to react with ammonia in the presence of the catalyst and hydrogen. CONSTITUTION:The amination catalyst is constituted so that Al and the Ni based metallic component are deposited on the carrier (e.g. silica). The adding quantity of Al is 0.05-40wt.% expressed in terms of Al2O3 per total weight of the catalyst. Also the amination catalyst is constituted so that the Ni based metallic component is constituted of Ni alone or Ni and one or more kind of elements selected among group IV-VI metal element in Period Table (e.g. Y, Cr, Re, Fe, Ru, Co, Rh, Pd, Pt, Cu). Further, the depositing quantity of the Ni based metallic component is defined to 5-70wt.% expressed in terms of metal per total weight of the catalyst. The amination catalyst is improved in the rate and selectivity of the reaction at the time of converting the aliphatic alcohol to the aliphatic amine and is improved in the mechanical strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアミノ化触媒に関する。
また本発明は農薬やキレート剤等の各種有機工業製品の
原料もしくは中間体として重要な脂肪族アミンの選択的
な製造法に関する。
This invention relates to amination catalysts.
The present invention also relates to a method for selectively producing an aliphatic amine, which is important as a raw material or an intermediate for various organic industrial products such as agricultural chemicals and chelating agents.

【0002】[0002]

【従来の技術】脂肪族アルコール及びアンモニアを、水
素及び触媒の存在下に反応させて脂肪族アミンを製造す
る方法としては、例えば、ニッケル単独又はニッケルが
少なくとも50重量%を構成するニッケルと銅又はコバ
ルトを30〜50m2/gの表面積を有するアルミナ、
シリカ、トリア等の微孔質耐火性酸化物に担持した触媒
を使用する方法(特公昭64−9048号公報)や、α
−アルミナ、シリカ、シリカ−アルミナ、多孔質けいそ
う土、けいそう土及びシリカ−チタニア等の担体に担持
したニッケル−レニウム系触媒を用いる方法(特公昭6
0−38380号公報)、アルミナ、シリカ等の担体に
担持したニッケル−コバルト−銅系触媒を用いる方法
(米国特許4014933号公報)等が知られている。
2. Description of the Related Art As a method for producing an aliphatic amine by reacting an aliphatic alcohol and ammonia in the presence of hydrogen and a catalyst, for example, nickel alone or nickel and copper in which nickel constitutes at least 50% by weight or Alumina having a surface area of 30-50 m 2 / g cobalt,
A method of using a catalyst supported on a microporous refractory oxide such as silica or thoria (Japanese Patent Publication No. 64-9048), and α
-A method of using a nickel-rhenium catalyst supported on a carrier such as alumina, silica, silica-alumina, porous diatomaceous earth, diatomaceous earth and silica-titania (JP-B-6).
No. 0-38380), a method using a nickel-cobalt-copper catalyst supported on a carrier such as alumina or silica (US Pat. No. 4,014,933), and the like are known.

【0003】[0003]

【発明が解決しようとする問題点】しかしながらこれら
の方法は、脂肪族アミンの選択率が充分でなく、副生成
物、分解副反応生成物が多く、触媒活性が低い等の問題
があり、工業的見地から満足できるものではなかった。
However, these methods have problems that the selectivity of the aliphatic amine is not sufficient, that there are many by-products and decomposition by-reaction products, and the catalytic activity is low. From the point of view, it was not satisfactory.

【0004】本発明は上記の課題に鑑みてなされたもの
であり、その目的は、従来方法よりも高選択率で高活性
の触媒を提供することであり、この触媒を使用した脂肪
族アミンの選択的な製造法を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide a catalyst having higher selectivity and higher activity than conventional methods. It is to provide a selective manufacturing method.

【0005】[0005]

【問題を解決するための手段】本発明者らはアミノ化触
媒及びそれを用いた脂肪族アミンの製造法について鋭意
検討を重ねた結果、アルミニウムとニッケル系金属成分
を担体に担持した触媒を新たに見出し、この触媒を用い
ると、脂肪族アルコールを脂肪族アミンに転換する反応
の速度及び選択性が著しく高くなり、触媒の機械的強度
も向上するという驚くべき新規な事実を見出し、本発明
を完成するに至った。
[Means for Solving the Problems] The present inventors have conducted extensive studies on an amination catalyst and a method for producing an aliphatic amine using the amination catalyst. As a result, a catalyst having aluminum and nickel metal components supported on a carrier has been newly developed. The present invention finds a surprisingly novel fact that the rate and selectivity of the reaction for converting an aliphatic alcohol into an aliphatic amine are significantly increased by using this catalyst, and the mechanical strength of the catalyst is also improved. It came to completion.

【0006】すなわち本発明は、アルミニウムとニッケ
ル系金属成分を担体に担持して成るアミノ化触媒、及
び、脂肪族アルコール及びアンモニアを、水素及びこの
触媒の存在下に反応させることを特徴とする脂肪族アミ
ンの製造法である。
That is, the present invention is characterized in that an amination catalyst comprising aluminum and a nickel-based metal component supported on a carrier, and an aliphatic alcohol and ammonia are reacted in the presence of hydrogen and this catalyst. It is a method for producing a group amine.

【0007】以下に、本発明を更に詳しく説明する。The present invention will be described in more detail below.

【0008】本発明の触媒は、アルミニウムとニッケル
系金属成分を担体に担持した触媒である。
The catalyst of the present invention is a catalyst in which aluminum and nickel metal components are supported on a carrier.

【0009】本発明の触媒に用いられるアルミニウムの
添加量は特に限定するものではないが、触媒の活性及び
機械的強度の向上のため、触媒総重量に対し酸化アルミ
ニウム(Al23)換算で表し、0.05〜40重量%
の範囲が好ましく、0.3〜20重量%の範囲が更に好
ましい。
The addition amount of aluminum used in the catalyst of the present invention is not particularly limited, but in order to improve the activity and mechanical strength of the catalyst, it is converted into aluminum oxide (Al 2 O 3 ) based on the total weight of the catalyst. Represents 0.05-40% by weight
Is preferable, and a range of 0.3 to 20% by weight is more preferable.

【0010】アルミニウムの原料としては、通常入手で
きるものであれば特に限定するものではないが、触媒を
調製するさい均一溶液に成り得る化合物が好ましい。例
えば、硝酸アルミニウム、硫酸アルミニウム、塩化アル
ミニウム、アルミニウムのアルコキシド等が用いられ
る。
The raw material of aluminum is not particularly limited as long as it is usually available, but a compound capable of forming a homogeneous solution when preparing a catalyst is preferable. For example, aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum alkoxide and the like are used.

【0011】本発明の触媒に用いられるニッケル系金属
成分とは、ニッケルを含む金属成分のことであり特に限
定するものではないが、触媒活性の向上のため、ニッケ
ル単独或いはニッケルと第4、5、6周期の金属元素か
ら選ばれる1種以上の元素から成る金属成分が好まし
い。この場合、通常還元アミノ化触媒として知られる触
媒に使用される金属成分を使用することができ、2成分
系ではNi−Pd、Ni−Co、Ni−Rh、Ni−I
r、Ni−Fe、Ni−Ru、Ni−Re、Ni−C
r、Ni−Mo、Ni−Nb、Ni−Zr、Ni−Y、
Ni−Cu及びNi−Zn等が例示できる。また、3成
分系では、Ni−Co−Pd、Ni−Co−Rh、Ni
−Co−Fe、Ni−Co−Cu、Ni−Fe−Ru、
Ni−Fe−Cu、Ni−Cr−Cu、Ni−Re−M
o、Ni−Y−Re及びNi−Cu−Zn等が例示でき
る。更にまた、4成分系では、Ni−Co−Cu−R
u、Ni−Cr−Cu−Ru、Ni−Co−Fe−Re
等が例示できる。これらニッケルと組み合わせて使用す
る金属のうち、Y、Cr、Re、Fe、Ru、Co、R
h、Pd、Pt、Cuが触媒活性の高いことから好まし
い。特にNi、Co、Cuの3成分から成る触媒が高い
脂肪族アミン収量を与えることから好ましい。
The nickel-based metal component used in the catalyst of the present invention is a metal component containing nickel and is not particularly limited. However, in order to improve the catalytic activity, nickel alone or nickel and fourth and fifth components are used. A metal component composed of one or more elements selected from the 6-period metal elements is preferable. In this case, it is possible to use a metal component used in a catalyst generally known as a reductive amination catalyst, and in a two-component system, Ni-Pd, Ni-Co, Ni-Rh and Ni-I are used.
r, Ni-Fe, Ni-Ru, Ni-Re, Ni-C
r, Ni-Mo, Ni-Nb, Ni-Zr, Ni-Y,
Ni-Cu, Ni-Zn, etc. can be illustrated. Further, in the three-component system, Ni-Co-Pd, Ni-Co-Rh, Ni
-Co-Fe, Ni-Co-Cu, Ni-Fe-Ru,
Ni-Fe-Cu, Ni-Cr-Cu, Ni-Re-M
O, Ni-Y-Re, Ni-Cu-Zn, etc. can be illustrated. Furthermore, in the four-component system, Ni-Co-Cu-R
u, Ni-Cr-Cu-Ru, Ni-Co-Fe-Re
Etc. can be illustrated. Of these metals used in combination with nickel, Y, Cr, Re, Fe, Ru, Co, R
h, Pd, Pt, and Cu are preferable because they have high catalytic activity. In particular, a catalyst composed of three components of Ni, Co and Cu is preferable because it gives a high aliphatic amine yield.

【0012】ニッケル系金属成分の担持量は特に限定す
るものではないが、触媒活性の向上のため、触媒総重量
に対して金属換算で5〜70重量%の範囲が好ましく、
10〜60重量%の範囲が更に好ましい。
The amount of the nickel-based metal component supported is not particularly limited, but in order to improve the catalytic activity, it is preferably in the range of 5 to 70% by weight in terms of metal based on the total weight of the catalyst.
The range of 10 to 60% by weight is more preferable.

【0013】ニッケル金属の含有量は特に限定するもの
ではないが、触媒活性及び選択率の向上のため、金属成
分の総重量に対してニッケル金属含量は15重量%以上
の範囲が好ましく、30重量%以上の範囲が更に好まし
い。
The content of the nickel metal is not particularly limited, but in order to improve the catalytic activity and the selectivity, the nickel metal content is preferably in the range of 15% by weight or more, and 30% by weight based on the total weight of the metal components. % Or more is more preferable.

【0014】ニッケル系金属成分の構成比は特に限定す
るものではないが、例えばニッケル系金属成分がNi、
Co、Cuの3成分から成る場合には、その組成は触媒
総重量に対する重量%で表し、Ni、Co、Cuのそれ
ぞれが、5〜35重量%、2〜20重量%、及び1〜1
5重量%の範囲が好ましい。
Although the composition ratio of the nickel-based metal component is not particularly limited, for example, the nickel-based metal component is Ni,
When composed of three components of Co and Cu, the composition is represented by weight% with respect to the total weight of the catalyst, and each of Ni, Co and Cu is 5 to 35 weight%, 2 to 20 weight%, and 1-1.
A range of 5% by weight is preferred.

【0015】ニッケル或いは第4、5、6周期の金属元
素の原料は、通常入手できるものであれば特に限定する
ものではないが、硝酸塩、硫酸塩、塩酸塩、ギ酸塩、酢
酸塩、炭酸塩等が使用できる。また、酸化物、水酸化
物、アルコキシド、及び各種錯体の形で使用しても差支
えない。例えば、ニッケルの場合は、硝酸ニッケル、硫
酸ニッケル、塩化ニッケル、ギ酸ニッケル、酢酸ニッケ
ル、炭酸ニッケル、しゅう酸ニッケル、酸化ニッケル、
水酸化ニッケル、ニッケルのエトキシド等を例示でき
る。
The raw material of nickel or the metal element of the 4th, 5th and 6th periods is not particularly limited as long as it is usually available, but nitrates, sulfates, hydrochlorides, formates, acetates, carbonates. Etc. can be used. Further, they may be used in the form of oxides, hydroxides, alkoxides, and various complexes. For example, in the case of nickel, nickel nitrate, nickel sulfate, nickel chloride, nickel formate, nickel acetate, nickel carbonate, nickel oxalate, nickel oxide,
Examples thereof include nickel hydroxide and ethoxide of nickel.

【0016】本発明の触媒に用いられる担体は特に限定
するものではないが、例えば、シリカ、アルミナ、ジル
コニア、チタニア、けいそう土、多孔質けいそう土、シ
リカ−アルミナ、シリカ−チタニア、シリカ−カルシア
から選ばれる1種以上の物質が挙げられ、これらのうち
シリカ担体が特に好ましい。担体は一般に入手可能なも
のを使用しても良く、また市販品を予め熱処理又は水蒸
気処理等の改質によりその表面積、平均細孔径等を変え
て使用しても良い。
The carrier used in the catalyst of the present invention is not particularly limited, but examples thereof include silica, alumina, zirconia, titania, diatomaceous earth, porous diatomaceous earth, silica-alumina, silica-titania and silica-. One or more substances selected from calcia may be mentioned, of which the silica carrier is particularly preferable. As the carrier, a generally available carrier may be used, or a commercially available carrier may be used by changing its surface area, average pore diameter and the like by modification such as heat treatment or steam treatment in advance.

【0017】担体としてシリカを用いる場合、その表面
積は特に限定するものではないが、触媒の活性、選択性
及び機械的強度の向上のため、15〜200m2/gが
好ましく、41〜170m2/gが更に好ましい。
[0017] When silica is used as the carrier, although the surface area is not particularly limited, the activity of the catalyst, for improved selectivity and mechanical strength, preferably 15~200m 2 / g, 41~170m 2 / g is more preferred.

【0018】触媒の調製法は特に限定するものではない
が、例えば、含浸法、混練法、共沈法、沈着法等が挙げ
られ、これらのうち含浸法が好ましい。
The method for preparing the catalyst is not particularly limited, and examples thereof include an impregnation method, a kneading method, a coprecipitation method, and a deposition method. Of these, the impregnation method is preferable.

【0019】本発明において触媒調製時に触媒前駆体の
空気焼成は必ずしも行わなくても良いが、行う場合は触
媒活性の向上のため600℃以下で行うのが良い。
In the present invention, air calcination of the catalyst precursor does not necessarily have to be carried out at the time of preparing the catalyst.

【0020】本発明において触媒の還元条件は特に限定
するものではないが、水素の存在下、触媒活性の向上の
ため、150〜650℃、好ましくは170〜600℃
の温度範囲で、30分乃至数日間行うのが望ましい。
In the present invention, the reducing conditions of the catalyst are not particularly limited, but in the presence of hydrogen, in order to improve the catalytic activity, 150 to 650 ° C., preferably 170 to 600 ° C.
It is desirable to carry out in the temperature range of 30 minutes to several days.

【0021】本発明の触媒の形状に制限はなく、反応形
式に応じて粉末のまま、あるいは成型して用いられる。
例えば懸濁床では、粉末、顆粒状で用いられ、固定床で
は、タブレット状、ビーズ状のものが用いられる。
There is no limitation on the shape of the catalyst of the present invention, and the catalyst may be used in the form of powder as it is or after being molded depending on the reaction mode.
For example, the suspension bed is used in the form of powder or granules, and the fixed bed is used in the form of tablets or beads.

【0022】本発明の触媒は、脂肪族アルコールの水素
添加アミノ化用触媒として特に適している。
The catalysts of the invention are particularly suitable as catalysts for the hydroamination of aliphatic alcohols.

【0023】本発明の方法で用いられる原料は脂肪族ア
ルコール及びアンモニアである。
The raw materials used in the method of the present invention are aliphatic alcohols and ammonia.

【0024】本発明の方法で用いられる脂肪族アルコー
ルは、直鎖状若しくは分枝鎖状の炭素数1以上の飽和又
は不飽和の脂肪族アルコールであり、特に限定するもの
ではない。例えば、メタノール、エタノール、1−プロ
パノール、n−ブタノール、2−メチルプロパノール、
オクチルアルコール、ステアリルアルコール、オレイル
アルコール等の1級アルコール、2−プロパノール、2
−ブタノール、2−メチルブタノール等の2級アルコー
ル、1,3−ブタンジオール、1,4−ブタンジオー
ル、1,6−ヘキサンジオール等やジエチレングリコー
ル、トリエチレングリコール等の多価アルコール、ポリ
オキシエーテルアルコール、ベンジルアルコール、アミ
ノアルコール等の分子内に水酸基以外の官能基を有する
アルコール等が挙げられる。
The aliphatic alcohol used in the method of the present invention is a linear or branched, saturated or unsaturated aliphatic alcohol having 1 or more carbon atoms and is not particularly limited. For example, methanol, ethanol, 1-propanol, n-butanol, 2-methylpropanol,
Primary alcohols such as octyl alcohol, stearyl alcohol, oleyl alcohol, 2-propanol, 2
-Secondary alcohols such as butanol and 2-methylbutanol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and the like, polyhydric alcohols such as diethylene glycol and triethylene glycol, and polyoxyether alcohols. , Benzyl alcohol, amino alcohol, and other alcohols having a functional group other than a hydroxyl group in the molecule.

【0025】本発明の触媒は、アミノアルコールに適用
した場合に、副生成物、分解反応物及び副反応生成物の
生成が抑制されるため、特に優れた成績が得られる。こ
のようなアミノアルコールとしては、モノエタノールア
ミン、ジエタノールアミン、モノプロパノールアミン等
が挙げられる。例えば、モノエタノールアミンを用いて
エチレンジアミンの製造に使用した場合には、2量化
体、環化体及びこれらの付加体等の副生成物、更には分
解反応物及び副反応生成物の生成を抑制しエチレンジア
ミンの収率を高くすることができる。
When applied to amino alcohols, the catalyst of the present invention suppresses the formation of by-products, decomposition reaction products and by-reaction products, so that particularly excellent results are obtained. Examples of such amino alcohols include monoethanolamine, diethanolamine, monopropanolamine and the like. For example, when it is used in the production of ethylenediamine using monoethanolamine, it suppresses the formation of by-products such as dimer, cyclized product and their adducts, as well as decomposition reaction products and side reaction products. The yield of ethylenediamine can be increased.

【0026】本発明の方法で用いられる触媒の使用量
は、反応を工業的に有意な速度で進行させるのに必要な
量であればよく特に限定するものではないが、例えば固
定床では、反応速度の向上のため、LHSV(液空間速
度;単位触媒容積当りの脂肪族アルコールとアンモニア
の全容積)が0.2〜50hr-1の範囲が好ましい。
The amount of the catalyst used in the method of the present invention is not particularly limited as long as it is an amount necessary for the reaction to proceed at an industrially significant rate. In order to improve the speed, LHSV (liquid hourly space velocity; total volume of aliphatic alcohol and ammonia per unit catalyst volume) is preferably in the range of 0.2 to 50 hr -1 .

【0027】本発明の方法において供給される原料のモ
ル比は特に限定するものではないが、副生成物、反応圧
力及び回収するアンモニア量の低減のため、アンモニア
/脂肪族アルコールのモル比が1〜60の範囲が好まし
く、2〜50の範囲が更に好ましい。
Although the molar ratio of the raw materials supplied in the method of the present invention is not particularly limited, the molar ratio of ammonia / aliphatic alcohol is 1 in order to reduce by-products, reaction pressure and the amount of ammonia to be recovered. The range of -60 is preferable, and the range of 2-50 is more preferable.

【0028】本発明の方法で用いられる水素の供給量は
特に限定するものではないが、触媒の活性及び選択性向
上のため、水素/脂肪族アルコールのモル比として0.
02〜20の範囲が好ましく、0.05〜15の範囲が
更に好ましい。
The supply amount of hydrogen used in the method of the present invention is not particularly limited, but a hydrogen / aliphatic alcohol molar ratio of 0.
The range of 02 to 20 is preferable, and the range of 0.05 to 15 is more preferable.

【0029】本発明の方法において反応温度は特に限定
するものではないが、反応速度の向上及び原料、生成物
の分解反応の抑制のため、120〜270℃が好まし
く、150〜250℃が更に好ましい。
In the method of the present invention, the reaction temperature is not particularly limited, but is preferably 120 to 270 ° C., more preferably 150 to 250 ° C. in order to improve the reaction rate and suppress the decomposition reaction of the raw materials and products. .

【0030】本発明の方法において反応圧力は特に限定
するものではないが、通常50〜300kg/cm2
Gである。脂肪族アルコールとしてモノエタノールアミ
ンを使用した場合は、100〜250kg/cm2
が好ましい。
In the method of the present invention, the reaction pressure is not particularly limited, but is usually 50 to 300 kg / cm 2.
G. When monoethanolamine is used as the aliphatic alcohol, 100-250 kg / cm 2 G
Is preferred.

【0031】本発明の方法において、反応の高収率化或
いは反応圧力を下げる等の目的のために反応溶媒を使用
しても良い。反応溶媒としては、脂肪族アルコール及び
/又はアンモニアを溶解して均一となり、目的とする反
応に不活性であれば使用することができ、好ましい例と
して水を挙げることができる。このような目的で水を使
用する場合には、脂肪族アルコールに対して30重量%
まで使用できる。
In the method of the present invention, a reaction solvent may be used for the purpose of increasing the reaction yield or lowering the reaction pressure. The reaction solvent can be used if it dissolves the aliphatic alcohol and / or ammonia and becomes homogeneous and is inert to the intended reaction, and water can be mentioned as a preferred example. When water is used for this purpose, it is 30% by weight with respect to the aliphatic alcohol.
Can be used up to.

【0032】本発明の方法において反応方法は特に限定
するものではないが、例えば固定床流通式、或いは懸濁
床による回分、半回分、連続式で実施される。懸濁床の
場合は触媒は反応液から分離、回収、再使用される。
In the method of the present invention, the reaction method is not particularly limited, but for example, a fixed bed flow system, or a batch, semi-batch or continuous system using a suspension bed is carried out. In the case of a suspension bed, the catalyst is separated from the reaction solution, recovered and reused.

【0033】本発明の方法において、反応液の分離方法
は蒸留によって分離、回収される。分離、回収された原
料は、必要に応じて再び反応帯域に循環される。原料、
生成物の分離は、通常蒸留によって行われるが、蒸留は
連続式で行っても、バッチ式で行っても一向に差支えな
い。
In the method of the present invention, the reaction solution is separated and recovered by distillation. The separated and recovered raw materials are recycled to the reaction zone again if necessary. material,
The product is usually separated by distillation, but the distillation may be carried out continuously or batchwise.

【0034】[0034]

【実施例】以下、本発明を具体的に実施例にて説明する
が、本発明はこれらの実施例にのみ限定されるものでは
ない。なお記述を簡単にするため、原料及び得られた生
成物を以下の様な記号で略述する。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, in order to simplify the description, the raw materials and the obtained products are outlined by the following symbols.

【0035】EDA ;エチレンジアミン MEA ;モノエタノールアミン PIP ;ピペラジン N−AEP;N−(2−アミノエチル)ピペラジン HEP ;N−(2−ヒドロキシエチル)ピペラジン DETA ;ジエチレントリアミン AEEA ;N−(2−アミノエチル)エタノールアミ
ン TETA ;トリエチレンテトラミン MeEDA;N−メチルエチレンジアミン MeMEA;N−メチルモノエタノールアミン EtEDA;N−エチルエチレンジアミン また、以下の実施例の表中の反応生成物の選択率(mo
l%)と分解副反応生成物の生成率(重量%)は、次式
で表される。
EDA; ethylenediamine MEA; monoethanolamine PIP; piperazine N-AEP; N- (2-aminoethyl) piperazine HEP; N- (2-hydroxyethyl) piperazine DETA; diethylenetriamine AEEA; N- (2-aminoethyl) ) Ethanolamine TETA; Triethylenetetramine MeEDA; N-Methylethylenediamine MeMEA; N-Methylmonoethanolamine EtEDA; N-Ethylethylenediamine Also, the selectivity of the reaction products in the tables of the following examples (mo).
1%) and the production rate (% by weight) of the decomposition side reaction product are represented by the following equation.

【0036】[0036]

【数1】 [Equation 1]

【0037】[0037]

【数2】 [Equation 2]

【0038】実施例中、用語「分解副反応生成物」と
は、メチルアミン、エチルアミン、メチルエチレンジア
ミン、メチルモノエタノールアミン、エチルエチレンジ
アミン、ピラジン類等を意味する。
In the examples, the term "decomposition side reaction product" means methylamine, ethylamine, methylethylenediamine, methylmonoethanolamine, ethylethylenediamine, pyrazines and the like.

【0039】実施例中、表面積は、ACCUSORB
2100−01(micromeritics社)の比
表面積測定装置、平均細孔径は、PORESIZER
9310(micromeritics社)の細孔分布
測定装置を用いて測定し、計算したものである。また、
触媒の機械的強度は、木屋式硬度計で測定した。
In the examples, the surface area is ACCUSORB.
2100-01 (micromeritics) specific surface area measuring device, average pore size is PORESIZER
It is measured and calculated using a pore distribution measuring device of 9310 (Micromeritics). Also,
The mechanical strength of the catalyst was measured with a Kiya type hardness meter.

【0040】実施例1 37.16gの硝酸ニッケル(II)・六水和物と2
4.69gの硝酸コバルト(II)・六水和物と7.6
gの硝酸銅(II)・三水和物と18.4gの硝酸アル
ミニウム・九水和物を35gの水に溶解し、これに66
gのシリカ成型担体(商品名 CARiACT−50、
富士シリシア化学製、表面積:77m2/g、平均細孔
径:447A)を1日浸漬した。これを湯浴上の蒸発皿
で蒸発乾固後、120℃で1晩乾燥した。次に2l/m
inの乾燥空気流通下、400℃で1時間焼成した。焼
成後、37.16gの硝酸ニッケル(II)・六水和物
と24.69gの硝酸コバルト(II)・六水和物と
7.6gの硝酸銅(II)・三水和物と18.4gの硝
酸アルミニウム・九水和物を35gの水に溶解した液に
再び浸漬した。これを湯浴上の蒸発皿で蒸発乾固後、1
20℃で1晩乾燥した。次に2l/minの乾燥空気流
通下、400℃で1時間焼成した。焼成後、100cc
/minの水素及び100cc/minの窒素ガスの流
通下、450℃で4時間還元した。還元後、200℃ま
で冷却し、10cc/minの空気と100cc/mi
nの窒素ガスの流通下で安定化処理を2時間実施した。
焼成、還元の際は、昇温速度は10℃/minとした。
得られた触媒を触媒Aとする。金属の担持量はNiが1
5重量%、Coが10重量%、Cuが4重量%、Alが
5重量%であり、触媒のX線回折を測定した結果、ニッ
ケルの回折ピークのみが確認され、Scherrerの
式からニッケルの結晶子径を求めると、8.8nmであ
った。また、触媒AについてBET法による比表面積測
定を行ったところ82m2/gであった。
Example 1 37.16 g of nickel (II) nitrate hexahydrate and 2
4.69 g of cobalt (II) nitrate hexahydrate and 7.6
66 g of copper (II) nitrate trihydrate and 18.4 g of aluminum nitrate nonahydrate were dissolved in 35 g of water.
g silica molded carrier (trade name CARiACT-50,
Fuji Silysia Chemical, surface area: 77 m 2 / g, average pore diameter: 447 A) was immersed for 1 day. This was evaporated to dryness in an evaporation dish on a water bath and then dried at 120 ° C. overnight. 2 l / m
Baking was carried out at 400 ° C. for 1 hour under in dry air circulation. After firing, 37.16 g nickel (II) nitrate hexahydrate, 24.69 g cobalt (II) nitrate hexahydrate and 7.6 g copper (II) nitrate trihydrate and 18. 4 g of aluminum nitrate nonahydrate was dissolved again in 35 g of water. After evaporating this to dryness in an evaporating dish on a hot water bath, 1
Dry overnight at 20 ° C. Then, it was fired at 400 ° C. for 1 hour under a flow of 2 l / min of dry air. 100cc after firing
Reduction was carried out at 450 ° C. for 4 hours under the flow of hydrogen / min and nitrogen gas of 100 cc / min. After reduction, it was cooled to 200 ° C., and 10 cc / min of air and 100 cc / mi were used.
The stabilization treatment was carried out for 2 hours under the flow of n nitrogen gas.
During firing and reduction, the temperature rising rate was 10 ° C./min.
The obtained catalyst is designated as catalyst A. The supported amount of metal is 1 for Ni
5% by weight, 10% by weight of Co, 4% by weight of Cu, and 5% by weight of Al. As a result of measuring the X-ray diffraction of the catalyst, only the diffraction peak of nickel was confirmed, and nickel crystals were obtained from Scherrer's formula. The child diameter was found to be 8.8 nm. The specific surface area of the catalyst A measured by the BET method was 82 m 2 / g.

【0041】内径21mmの管状反応器に触媒Aを60
cc充填し、流通連続反応装置で水素6Nl/hrを供
給しながら反応圧力を200kg/cm2 Gに保っ
た。次にMEAを134g/hr、アンモニア:224
g/hrをポンプで供給しながら、200℃に昇温して
反応を行なった。この時のNH3/MEAモル比は6、
2/MEA比は0.12、LHSVは8.4hr-1
あった。反応開始、約3時間後、反応液をガスクロマト
グラフィにより分析した。また、未反応アンモニアガス
及び分解反応物のメチルアミン、エチルアミンを水トラ
ップに回収してガスクロマトグラフィにより分析した。
反応結果を表1に示す。
60 parts of catalyst A were added to a tubular reactor having an inner diameter of 21 mm.
It was filled with cc and the reaction pressure was kept at 200 kg / cm 2 G while supplying 6 Nl / hr of hydrogen in a continuous flow reactor. Next, MEA: 134 g / hr, Ammonia: 224
While supplying g / hr with a pump, the temperature was raised to 200 ° C. to carry out the reaction. At this time, the NH 3 / MEA molar ratio is 6,
The H 2 / MEA ratio was 0.12 and the LHSV was 8.4 hr −1 . About 3 hours after the start of the reaction, the reaction solution was analyzed by gas chromatography. Further, unreacted ammonia gas and methylamine and ethylamine of the decomposition reaction product were collected in a water trap and analyzed by gas chromatography.
The reaction results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】実施例2 実施例1の18.4gの硝酸アルミニウム・九水和物と
66gのシリカ担体の代りに11.04gの硝酸アルミ
ニウム・九水和物と68gのシリカ担体を使用した以外
は実施例1と同様に触媒Bを調製した。金属の担持量は
Niが15重量%、Coが10重量%、Cuが4重量
%、Alが3重量%である。実施例1と同様に触媒Bを
60cc充填して連続反応を実施した。反応結果を表1
にあわせて示す。
Example 2 Except that 11.04 g of aluminum nitrate nonahydrate and 68 g of silica carrier were used instead of 18.4 g of aluminum nitrate nonahydrate and 66 g of silica carrier of Example 1. A catalyst B was prepared in the same manner as in Example 1. The amount of metal carried is 15% by weight of Ni, 10% by weight of Co, 4% by weight of Cu, and 3% by weight of Al. In the same manner as in Example 1, 60 cc of catalyst B was charged to carry out a continuous reaction. Table 1 shows the reaction results
It is shown together with.

【0044】実施例3 実施例1の18.4gの硝酸アルミニウム・九水和物と
66gのシリカ担体の代りに55.2gの硝酸アルミニ
ウム・九水和物と56gのシリカ担体を使用した以外は
実施例1と同様に触媒Cを調製した。金属の担持量はN
iが15重量%、Coが10重量%、Cuが4重量%、
Alが15重量%であった。実施例1と同様に触媒Cを
60cc充填して連続反応を実施した。反応結果を表1
にあわせて示す。
Example 3 Except that 55.2 g of aluminum nitrate nonahydrate and 56 g of silica carrier were used instead of 18.4 g of aluminum nitrate nonahydrate and 66 g of silica carrier of Example 1. A catalyst C was prepared in the same manner as in Example 1. The amount of metal carried is N
i is 15% by weight, Co is 10% by weight, Cu is 4% by weight,
Al was 15% by weight. In the same manner as in Example 1, 60 cc of catalyst C was charged to carry out a continuous reaction. Table 1 shows the reaction results
It is shown together with.

【0045】比較例1 実施例1の硝酸アルミニウム・九水和物を添加しなかっ
た以外は、実施例1と同様に71gのシリカ担体を使用
して触媒Dを調製した。金属の担持量はNiが15重量
%、Coが10重量%、Cuが4重量%であった。実施
例1と同様に触媒Dを60cc充填して連続反応を実施
した。反応結果を表1にあわせて示す。 実施例4 30.97gの硝酸ニッケル(II)・六水和物と0.
9gの過レニウム酸アンモニウムと11.5gの硝酸ア
ルミニウム・九水和物を37gの水に溶解し、これに実
施例1と同じシリカ成型担体45.6gを1日浸漬し
た。これを湯浴上の蒸発皿で蒸発乾固後、120℃で1
晩乾燥した。次に2l/minの乾燥空気流通下、40
0℃で1時間焼成した。焼成後、30.97gの硝酸ニ
ッケル(II)・六水和物と0.9gの過レニウム酸ア
ンモニウムと11.5gの硝酸アルミニウム・九水和物
を37gの水に溶解した液に再び浸漬した。これを湯浴
上の蒸発皿で蒸発乾固後、120℃で1晩乾燥した。次
に2l/minの乾燥空気流通下、400℃で1時間焼
成した。焼成後、100cc/minの水素及び100
cc/minの窒素ガスの流通下、450℃で4時間還
元した。還元後、200℃まで冷却し、10cc/mi
nの空気と100cc/minの窒素ガスの流通下で安
定化処理を2時間実施した。焼成、還元の際は、昇温速
度は10℃/minとした。得られた触媒を触媒Eとす
る。金属の担持量はNiが20重量%、Reが2重量
%、Alが5重量%であり、触媒のX線回折を測定した
結果、ニッケルの回折ピークのみが確認され、Sche
rrerの式からニッケルの結晶子径を求めると、1
0.7nmであった。また、触媒EについてBET法に
よる比表面積測定を行ったところ97m2/gであっ
た。次に、実施例1と同様に触媒Eを60cc充填して
連続反応を実施した。反応結果を表2に示す。
Comparative Example 1 A catalyst D was prepared in the same manner as in Example 1 except that the aluminum nitrate nonahydrate of Example 1 was not added and 71 g of a silica carrier was used. The amount of metal supported was 15% by weight of Ni, 10% by weight of Co, and 4% by weight of Cu. In the same manner as in Example 1, 60 cc of catalyst D was charged to carry out a continuous reaction. The reaction results are also shown in Table 1. Example 4 30.97 g of nickel (II) nitrate hexahydrate and 0.
9 g of ammonium perrhenate and 11.5 g of aluminum nitrate nonahydrate were dissolved in 37 g of water, and 45.6 g of the same silica molding carrier as in Example 1 was immersed in this for one day. After evaporating this to dryness in an evaporating dish on a hot water bath, 1 at 120 ° C
Dried overnight. Next, under a dry air flow of 2 l / min, 40
Baking at 0 ° C. for 1 hour. After firing, 30.97 g of nickel (II) nitrate hexahydrate, 0.9 g of ammonium perrhenate and 11.5 g of aluminum nitrate nonahydrate were again immersed in 37 g of water. . This was evaporated to dryness in an evaporation dish on a water bath and then dried at 120 ° C. overnight. Then, it was fired at 400 ° C. for 1 hour under a flow of 2 l / min of dry air. After firing, 100 cc / min hydrogen and 100
The mixture was reduced at 450 ° C. for 4 hours under a nitrogen gas flow of cc / min. After reduction, it is cooled to 200 ° C. and 10 cc / mi
Stabilization was carried out for 2 hours under the flow of n air and 100 cc / min of nitrogen gas. During firing and reduction, the temperature rising rate was 10 ° C./min. The obtained catalyst is designated as catalyst E. The amount of metal supported was 20% by weight of Ni, 2% by weight of Re, and 5% by weight of Al. As a result of measuring the X-ray diffraction of the catalyst, only the diffraction peak of nickel was confirmed.
When the nickel crystallite size is calculated from the rrerr formula, it is 1
It was 0.7 nm. The specific surface area of the catalyst E measured by the BET method was 97 m 2 / g. Next, in the same manner as in Example 1, 60 cc of the catalyst E was charged and a continuous reaction was carried out. The reaction results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】比較例2 実施例4の硝酸アルミニウム・九水和物を添加しなかっ
た以外は、実施例4と同様に48.8gのシリカ担体を
使用して触媒Fを調製した。金属の担持量はNiが20
重量%、Reが2重量%であり、実施例4と同様に触媒
Fを60cc充填して連続反応を実施した。反応結果を
表2にあわせて示す。
Comparative Example 2 A catalyst F was prepared in the same manner as in Example 4 except that the aluminum nitrate nonahydrate of Example 4 was not added, using 48.8 g of a silica carrier. The supported amount of metal is Ni = 20
%, Re was 2% by weight, and 60 cc of the catalyst F was charged in the same manner as in Example 4 to carry out a continuous reaction. The reaction results are also shown in Table 2.

【0048】実施例5 43.36gの硝酸ニッケル(II)・六水和物と1
0.64gの硝酸銅(II)・三水和物と2.69gの
硝酸クロム(III)・九水和物と12.88gの硝酸
アルミニウム・九水和物を20gの水に溶解し、これに
実施例1と同じシリカ成型担体42.7gを1日浸漬し
た。これを湯浴上の蒸発皿で蒸発乾固後、120℃で1
晩乾燥した。次に2l/minの乾燥空気流通下、40
0℃で1時間焼成した。焼成後、43.36gの硝酸ニ
ッケル(II)・六水和物と10.64gの硝酸銅(I
I)・三水和物と2.69gの硝酸クロム(III)・
九水和物と12.88gの硝酸アルミニウム・九水和物
を20gの水に溶解した液に再び浸漬した。これを湯浴
上の蒸発皿で蒸発乾固後、120℃で1晩乾燥した。次
に2l/minの乾燥空気流通下、400℃で1時間焼
成した。焼成後、100cc/minの水素及び100
cc/minの窒素ガスの流通下、450℃で4時間還
元した。還元後、200℃まで冷却し、10cc/mi
nの空気と100cc/minの窒素ガスの流通下で安
定化処理を2時間実施した。焼成、還元の際は、昇温速
度は10℃/minとした。得られた触媒を触媒Gとす
る。金属の担持量はNiが25重量%、Cuが8重量
%、Crが1重量%、Alが5重量%であり、触媒のX
線回折を測定した結果、ニッケルの回折ピークのみが確
認され、Scherrerの式からニッケルの結晶子径
を求めると、11.1nmであった。また、触媒Gにつ
いてBET法による比表面積測定を行ったところ95m
2/gであった。次に、実施例1と同様に触媒Gを60
cc充填して連続反応を実施した。反応結果を表2にあ
わせて示す。
Example 5 43.36 g of nickel (II) nitrate hexahydrate and 1
0.64 g of copper (II) nitrate trihydrate, 2.69 g of chromium (III) nitrate nonahydrate and 12.88 g of aluminum nitrate nonahydrate were dissolved in 20 g of water. Then, 42.7 g of the same silica molding carrier as used in Example 1 was immersed for 1 day. After evaporating this to dryness in an evaporating dish on a hot water bath, 1 at 120 ° C
Dried overnight. Next, under a dry air flow of 2 l / min, 40
Baking at 0 ° C. for 1 hour. After firing, 43.36 g nickel (II) nitrate hexahydrate and 10.64 g copper nitrate (I
I) trihydrate and 2.69 g of chromium (III) nitrate.
The nonahydrate and 12.88 g of aluminum nitrate nonahydrate were dissolved again in 20 g of water. This was evaporated to dryness in an evaporation dish on a water bath and then dried at 120 ° C. overnight. Then, it was fired at 400 ° C. for 1 hour under a flow of 2 l / min of dry air. After firing, 100 cc / min hydrogen and 100
The mixture was reduced at 450 ° C. for 4 hours under a nitrogen gas flow of cc / min. After reduction, it is cooled to 200 ° C. and 10 cc / mi
Stabilization was carried out for 2 hours under the flow of n air and 100 cc / min of nitrogen gas. During firing and reduction, the temperature rising rate was 10 ° C./min. The obtained catalyst is referred to as catalyst G. The amount of metal supported was 25 wt% for Ni, 8 wt% for Cu, 1 wt% for Cr, and 5 wt% for Al.
As a result of measuring the line diffraction, only the diffraction peak of nickel was confirmed, and the crystallite diameter of nickel was calculated from Scherrer's formula to be 11.1 nm. The specific surface area of the catalyst G measured by the BET method was 95 m.
It was 2 / g. Then, as in Example 1, the catalyst G was added to 60
A continuous reaction was carried out with cc filling. The reaction results are also shown in Table 2.

【0049】比較例3 実施例5の硝酸アルミニウム・九水和物を添加しなかっ
た以外は、実施例6と同様に46.2gのシリカ担体を
使用して触媒Hを調製した。金属の担持量はNiが25
重量%、Cuが8重量%、Crが1重量%であり、実施
例5と同様に触媒Hを60cc充填して連続反応を実施
した。その反応結果を表2にあわせて示す。
Comparative Example 3 Catalyst H was prepared in the same manner as in Example 6 except that the aluminum nitrate nonahydrate of Example 5 was not added, using 46.2 g of the silica carrier. The amount of metal supported is 25 for Ni
% By weight, 8% by weight of Cu and 1% by weight of Cr, and 60 cc of the catalyst H was charged in the same manner as in Example 5 to carry out a continuous reaction. The reaction results are also shown in Table 2.

【0050】実施例6 19.82gの硝酸ニッケル(II)・六水和物と1
9.75gの硝酸コバルト(II)・六水和物と28.
93gの硝酸鉄(III)・九水和物と1.2gの三塩
化ルテニウム及び36.79gの硝酸アルミニウム・九
水和物を33gの水に溶解し、これに実施例1と同じシ
リカ成型担体82.5gを1日浸漬した。これを湯浴上
の蒸発皿で蒸発乾固後、120℃で1晩乾燥した。次に
2l/minの乾燥空気流通下、400℃で1時間焼成
した。焼成後、100cc/minの水素及び100c
c/minの窒素ガスの流通下、450℃で4時間還元
した。還元後、200℃まで冷却し、10cc/min
の空気と100cc/minの窒素ガスの流通下で安定
化処理を2時間実施した。焼成、還元の際は、昇温速度
は10℃/minとした。得られた触媒を触媒Iとす
る。金属の担持量はNiが4重量%、Coが4重量%、
Feが4重量%、Ruが0.5重量%、Alが5重量%
であり、触媒のX線回折を測定した結果、ニッケルの回
折ピークのみが確認され、Scherrerの式からニ
ッケルの結晶子径を求めると、11.1nmであった。
また、この触媒IについてBET法による比表面積測定
を行ったところ68m2/gであった。次に、実施例1
と同様に触媒Iを90cc充填して、LHSV;8.4
hr-1で連続反応を実施した。反応結果を表2にあわせ
て示す。
Example 6 19.82 g of nickel (II) nitrate hexahydrate and 1
9.75 g of cobalt (II) nitrate hexahydrate and 28.
93 g of iron (III) nitrate nonahydrate, 1.2 g of ruthenium trichloride and 36.79 g of aluminum nitrate nonahydrate were dissolved in 33 g of water, and the same silica molded carrier as in Example 1 was dissolved therein. 82.5 g was immersed for 1 day. This was evaporated to dryness in an evaporation dish on a water bath and then dried at 120 ° C. overnight. Then, it was fired at 400 ° C. for 1 hour under a flow of 2 l / min of dry air. After firing, 100 cc / min hydrogen and 100 c
Reduction was carried out at 450 ° C. for 4 hours under a nitrogen gas flow of c / min. After reduction, cool down to 200 ° C, 10cc / min
The stabilizing treatment was carried out for 2 hours under the flow of air and nitrogen gas of 100 cc / min. During firing and reduction, the temperature rising rate was 10 ° C./min. The obtained catalyst is designated as catalyst I. The supported amount of metal is 4% by weight of Ni, 4% by weight of Co,
Fe 4% by weight, Ru 0.5% by weight, Al 5% by weight
As a result of measuring the X-ray diffraction of the catalyst, only the diffraction peak of nickel was confirmed, and the crystallite diameter of nickel was found to be 11.1 nm from the Scherrer equation.
The specific surface area of this catalyst I was measured by the BET method and found to be 68 m 2 / g. Next, Example 1
90 cc of catalyst I as described above, LHSV; 8.4
A continuous reaction was carried out at hr -1 . The reaction results are also shown in Table 2.

【0051】比較例4 実施例6の硝酸アルミニウム・九水和物を添加しなかっ
た以外は、実施例6と同様に87.5gのシリカ担体を
使用して触媒Jを調製した。金属の担持量はNiが4重
量%、Coが4重量%、Feが4重量%、Ruが0.5
重量%であり、実施例6と同様に触媒Jを90cc充填
して連続反応を実施した。その反応結果を表2にあわせ
て示す。
Comparative Example 4 A catalyst J was prepared in the same manner as in Example 6 except that the aluminum nitrate nonahydrate of Example 6 was not added, using 87.5 g of a silica carrier. The amount of supported metal is 4% by weight for Ni, 4% by weight for Co, 4% by weight for Fe, and 0.5 for Ru.
% By weight, and 90 cc of catalyst J was charged in the same manner as in Example 6 to carry out a continuous reaction. The reaction results are also shown in Table 2.

【0052】実施例7 37.16gの硝酸ニッケル(II)・六水和物と1
8.4gの硝酸アルミニウム・九水和物を73gの水に
溶解し、これに実施例1と同じシリカ成型担体80gを
1日浸漬した。これを湯浴上の蒸発皿で蒸発乾固後、1
20℃で1晩乾燥した。次に2l/minの乾燥空気流
通下、400℃で1時間焼成した。焼成後、37.16
gの硝酸ニッケル(II)・六水和物と18.4gの硝
酸アルミニウム・九水和物を73gの水に溶解した液に
再び浸漬した。これを湯浴上の蒸発皿で蒸発乾固後、1
20℃で1晩乾燥した。次に2l/minの乾燥空気流
通下、400℃で1時間焼成した。焼成後、100cc
/minの水素及び100cc/minの窒素ガスの流
通下、450℃で4時間還元した。還元後、200℃ま
で冷却し、10cc/minの空気と100cc/mi
nの窒素ガスの流通下で安定化処理を2時間実施した。
焼成、還元の際は、昇温速度は10℃/minとした。
得られた触媒を触媒Kとする。金属の担持量はNiが1
5重量%、Alが5重量%であり、触媒のX線回折を測
定した結果、ニッケルの回折ピークのみが確認され、S
cherrerの式からニッケルの結晶子径を求める
と、11.2nmであった。また、触媒KについてBE
T法による比表面積測定を行ったところ81m2/gで
あった。次に、実施例1と同様に触媒Kを60cc充填
して連続反応を実施した。反応結果を表2にあわせて示
す。
Example 7 37.16 g of nickel (II) nitrate hexahydrate and 1
8.4 g of aluminum nitrate nonahydrate was dissolved in 73 g of water, and 80 g of the same silica molded carrier as in Example 1 was immersed in this for one day. After evaporating this to dryness in an evaporating dish on a hot water bath, 1
Dry overnight at 20 ° C. Then, it was fired at 400 ° C. for 1 hour under a flow of 2 l / min of dry air. After firing 37.16
g of nickel (II) nitrate hexahydrate and 18.4 g of aluminum nitrate nonahydrate were immersed again in a solution of 73 g of water. After evaporating this to dryness in an evaporating dish on a hot water bath, 1
Dry overnight at 20 ° C. Then, it was fired at 400 ° C. for 1 hour under a flow of 2 l / min of dry air. 100cc after firing
Reduction was carried out at 450 ° C. for 4 hours under the flow of hydrogen / min and nitrogen gas of 100 cc / min. After reduction, it was cooled to 200 ° C., and 10 cc / min of air and 100 cc / mi were used.
The stabilization treatment was carried out for 2 hours under the flow of n nitrogen gas.
During firing and reduction, the temperature rising rate was 10 ° C./min.
The obtained catalyst is designated as catalyst K. The supported amount of metal is 1 for Ni
5% by weight and 5% by weight of Al. As a result of measuring the X-ray diffraction of the catalyst, only the diffraction peak of nickel was confirmed, and S
The crystallite diameter of nickel was 11.2 nm when calculated from the Cherrer equation. Also, regarding catalyst K, BE
The specific surface area measured by the T method was 81 m 2 / g. Next, in the same manner as in Example 1, 60 cc of the catalyst K was charged and a continuous reaction was carried out. The reaction results are also shown in Table 2.

【0053】比較例5 実施例7の硝酸アルミニウム・九水和物を添加しなかっ
た以外は、実施例7と同様に85gのシリカ担体を使用
して触媒Lを調製した。金属の担持量はNiが15重量
%であり、実施例7と同様に触媒Lを60cc充填して
連続反応を実施した。反応結果を表2にあわせて示す。
Comparative Example 5 A catalyst L was prepared in the same manner as in Example 7 except that the aluminum nitrate nonahydrate of Example 7 was not added and 85 g of the silica carrier was used. The amount of metal supported was 15% by weight of Ni, and 60 cc of the catalyst L was charged in the same manner as in Example 7 to carry out a continuous reaction. The reaction results are also shown in Table 2.

【0054】実施例8〜12 実施例1で使用したシリカ成型担体の代りに表3に示す
成型担体を使用した以外は、実施例1と同様に触媒M、
触媒N、触媒O、触媒P、触媒Qを調製した。金属の担
持量はNiが15重量%、Coが10重量%、Cuが4
重量%、Alが5重量%であった。実施例1と同様に各
触媒を60cc充填して連続反応を実施した。反応結果
を表4に示す。
Examples 8 to 12 Catalyst M was prepared in the same manner as in Example 1 except that the silica molded carrier used in Example 1 was replaced by the molded carrier shown in Table 3.
Catalyst N, catalyst O, catalyst P, and catalyst Q were prepared. The loading amount of metal is 15 wt% for Ni, 10 wt% for Co, and 4 for Cu.
% By weight and 5% by weight of Al. In the same manner as in Example 1, 60 cc of each catalyst was charged to carry out a continuous reaction. The reaction results are shown in Table 4.

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】比較例6〜10 比較例1で使用したシリカ成型担体の代りに表3に示す
成型担体を使用した以外は、比較例1と同様に触媒R、
触媒S、触媒T、触媒U、触媒Vを調製した。金属の担
持量はNiが15重量%、Coが10重量%、Cuが4
重量%であった。比較例1と同様に各触媒を60cc充
填して連続反応を実施した。反応結果を表4にあわせて
示す。
Comparative Examples 6 to 10 Catalyst R, the same as in Comparative Example 1, except that the silica molded carrier used in Comparative Example 1 was replaced by the molded carrier shown in Table 3.
Catalyst S, catalyst T, catalyst U, and catalyst V were prepared. The loading amount of metal is 15 wt% for Ni, 10 wt% for Co, and 4 for Cu.
% By weight. In the same manner as in Comparative Example 1, 60 cc of each catalyst was charged to carry out a continuous reaction. The reaction results are also shown in Table 4.

【0058】実施例13〜16 実施例1と同じシリカ成型担体を用い、表5に示す金属
成分と担体の組成で、実施例1と同様に触媒W、触媒
X、触媒Y、触媒Zを調製した。次に、実施例1と同様
に各触媒を60cc充填して連続反応を実施した。反応
結果を表6に示す。
Examples 13 to 16 Catalyst W, catalyst X, catalyst Y, and catalyst Z were prepared in the same manner as in Example 1, except that the same silica molded carrier as in Example 1 was used and the composition of the metal component and carrier shown in Table 5. did. Next, in the same manner as in Example 1, 60 cc of each catalyst was filled and a continuous reaction was carried out. The reaction results are shown in Table 6.

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】実施例17〜19 実施例1で使用したシリカ成型担体の代りに表面積の異
なる富士シリシア化学社製のシリカ担体(商品名 CA
RiACT−15、表面積;168m2/g、平均細孔
径;160A、商品名 CARiACT−30、表面
積;109m2/g、平均細孔径;279A、商品名
CARiACT−80、表面積;44m2/g、平均細
孔径;639A)を使用した以外は、実施例1と同様に
触媒A2、触媒B2、触媒C2を調製した。金属の担持
量はNiが15重量%、Coが10重量%、Cuが4重
量%、Alが5重量%であった。実施例1と同様に各触
媒を60cc充填して連続反応を実施した。反応結果を
表6にあわせて示す。
Examples 17 to 19 Instead of the silica molded carrier used in Example 1, silica carriers manufactured by Fuji Silysia Chemical Ltd. having different surface areas (trade name: CA) are used.
RiACT-15, surface area; 168 m 2 / g, average pore size; 160 A, trade name CARiACT-30, surface area; 109 m 2 / g, average pore size; 279 A, trade name
Catalyst A2, catalyst B2, and catalyst C2 were prepared in the same manner as in Example 1 except that CARiACT-80, surface area; 44 m 2 / g, average pore size; 639A) were used. The amount of metal supported was 15% by weight of Ni, 10% by weight of Co, 4% by weight of Cu, and 5% by weight of Al. In the same manner as in Example 1, 60 cc of each catalyst was charged to carry out a continuous reaction. The reaction results are also shown in Table 6.

【0062】実施例20 1lオートクレーブ内の上部に取り付けた籠に実施例1
と同じシリカ成型担体を100g充填し、オートクレー
ブの底に350ccの水を入れて210℃で24時間、
水蒸気処理して表面積の小さいシリカ成型担体(表面
積;30m2/g、平均細孔径;965A)を調製し
た。次に、実施例1で使用したシリカ成型担体の代りに
前記の水蒸気処理シリカ成型担体を使用した以外は、実
施例1と同様に触媒D2を調製した。金属の担持量はN
iが15重量%、Coが10重量%、Cuが4重量%、
Alが5重量%であった。実施例1と同様に触媒D2を
60cc充填して連続反応を実施した。反応結果を表6
にあわせて示す。
Example 20 Example 1 was applied to a basket attached to the upper part of the 1 l autoclave.
100 g of the same silica molded carrier as above was charged, 350 cc of water was added to the bottom of the autoclave, and the temperature was set to 210 ° C. for 24 hours.
A silica molded carrier having a small surface area (surface area: 30 m 2 / g, average pore diameter: 965A) was prepared by steaming. Next, a catalyst D2 was prepared in the same manner as in Example 1 except that the above steam-treated silica molded carrier was used in place of the silica molded carrier used in Example 1. The amount of metal carried is N
i is 15% by weight, Co is 10% by weight, Cu is 4% by weight,
Al was 5% by weight. In the same manner as in Example 1, 60 cc of the catalyst D2 was charged to carry out a continuous reaction. Table 6 shows the reaction results
It is shown together with.

【0063】[0063]

【発明の効果】以上詳細に説明したように、本発明によ
れば、アミノ化触媒は、脂肪族アルコールから脂肪族ア
ミンへ転化する活性及び選択性が向上するばかりではな
く、工業触媒として重要な機械的強度が向上するので、
工業的に極めて有用である。
INDUSTRIAL APPLICABILITY As described in detail above, according to the present invention, the amination catalyst is not only improved in the activity of converting an aliphatic alcohol to an aliphatic amine and the selectivity, but is also important as an industrial catalyst. Since the mechanical strength is improved,
It is extremely useful industrially.

【0064】また、脂肪族アルコールとしてモノエタノ
ールアミンを用いた場合には、モノエタノールアミンを
エチレンジアミンに転換する反応の速度が向上し、副反
応生成物及び原料、生成物の分解反応生成物の生成が抑
制されるので、エチレンジアミンが高選択的かつ高収率
で得られる。
When monoethanolamine is used as the aliphatic alcohol, the reaction rate for converting monoethanolamine into ethylenediamine is improved, and side reaction products and raw materials and decomposition products of the products are formed. Therefore, ethylenediamine can be obtained with high selectivity and high yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/86 Z 23/89 Z C07C 209/16 211/03 8517−4H 211/10 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/86 Z 23/89 Z C07C 209/16 211/03 8517-4H 211/10 // C07B 61/00 300

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムとニッケル系金属成分を担
体に担持して成るアミノ化触媒。
1. An amination catalyst comprising an aluminum and nickel metal component supported on a carrier.
【請求項2】 アルミニウムの添加量が触媒総重量に対
し酸化アルミニウム(Al23)換算で表し、0.05
〜40重量%である請求項第1項記載のアミノ化触媒。
2. The amount of aluminum added is expressed in terms of aluminum oxide (Al 2 O 3 ) based on the total weight of the catalyst, and is 0.05.
The amination catalyst according to claim 1, which is about 40% by weight.
【請求項3】 ニッケル系金属成分が、ニッケル単独或
いはニッケルと第4、5、6周期の金属元素から選ばれ
る1種以上の元素から成る請求項第1項又は第2項記載
のアミノ化触媒。
3. The amination catalyst according to claim 1 or 2, wherein the nickel-based metal component comprises nickel alone or nickel and one or more elements selected from metal elements of the fourth, fifth and sixth periods. .
【請求項4】 第4、5、6周期の金属元素が、Y、C
r、Re、Fe、Ru、Co、Rh、Pd、Pt、Cu
から成る請求項第3項記載のアミノ化触媒。
4. The metal element of the fourth, fifth and sixth periods is Y, C
r, Re, Fe, Ru, Co, Rh, Pd, Pt, Cu
An amination catalyst according to claim 3 comprising
【請求項5】 ニッケル系金属成分の担持量が触媒総重
量に対して、金属換算で5〜70重量%である請求項第
1項乃至第4項記載のアミノ化触媒。
5. The amination catalyst according to claim 1, wherein the amount of the nickel-based metal component supported is 5 to 70% by weight in terms of metal based on the total weight of the catalyst.
【請求項6】 ニッケル金属の含有量がニッケルを含む
金属成分の総重量に対して、15重量%以上である請求
項第1項乃至第4項記載のアミノ化触媒。
6. The amination catalyst according to claim 1, wherein the content of nickel metal is 15% by weight or more based on the total weight of the metal component containing nickel.
【請求項7】 担体が、シリカ、アルミナ、ジルコニ
ア、チタニア、けいそう土、多孔質けいそう土、シリカ
−アルミナ、シリカ−チタニア、シリカ−カルシアから
選ばれる1種以上の物質である請求項第1項乃至第4項
記載のアミノ化触媒。
7. The carrier is one or more substances selected from silica, alumina, zirconia, titania, diatomaceous earth, porous diatomaceous earth, silica-alumina, silica-titania and silica-calcia. The amination catalyst according to any one of items 1 to 4.
【請求項8】 担体がシリカである請求項第7項記載の
アミノ化触媒。
8. The amination catalyst according to claim 7, wherein the carrier is silica.
【請求項9】 ニッケル系金属成分がNi、Co、Cu
の3成分から成る請求項第8項記載のアミノ化触媒。
9. The nickel-based metal component is Ni, Co, Cu.
9. The amination catalyst according to claim 8, which comprises the following three components:
【請求項10】 脂肪族アルコールとアンモニアを、水
素及び請求項第1項乃至第9項記載のアミノ化触媒の存
在下に反応させることを特徴とする脂肪族アミンの製造
法。
10. A method for producing an aliphatic amine, which comprises reacting an aliphatic alcohol with ammonia in the presence of hydrogen and the amination catalyst according to any one of claims 1 to 9.
【請求項11】 アンモニア、水素、脂肪族アルコール
のモル比が1〜60:0.02〜20:1である請求項
第10項記載の脂肪族アミンの製造法。
11. The method for producing an aliphatic amine according to claim 10, wherein the molar ratio of ammonia, hydrogen and aliphatic alcohol is 1 to 60: 0.02 to 20: 1.
【請求項12】 反応温度が120〜270℃、圧力が
50〜300kg/cm2 Gである請求項第10又は
第11項記載の脂肪族アミンの製造法。
12. The method for producing an aliphatic amine according to claim 10, wherein the reaction temperature is 120 to 270 ° C. and the pressure is 50 to 300 kg / cm 2 G.
【請求項13】 脂肪族アルコールがモノエタノールア
ミンである請求項第10項乃至第12項記載のエチレン
ジアミンの製造法。
13. The method for producing ethylenediamine according to claim 10, wherein the aliphatic alcohol is monoethanolamine.
JP11805294A 1994-05-31 1994-05-31 Amination catalyst and process for producing aliphatic amines using the same Expired - Fee Related JP3800632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11805294A JP3800632B2 (en) 1994-05-31 1994-05-31 Amination catalyst and process for producing aliphatic amines using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11805294A JP3800632B2 (en) 1994-05-31 1994-05-31 Amination catalyst and process for producing aliphatic amines using the same

Publications (2)

Publication Number Publication Date
JPH07323226A true JPH07323226A (en) 1995-12-12
JP3800632B2 JP3800632B2 (en) 2006-07-26

Family

ID=14726834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11805294A Expired - Fee Related JP3800632B2 (en) 1994-05-31 1994-05-31 Amination catalyst and process for producing aliphatic amines using the same

Country Status (1)

Country Link
JP (1) JP3800632B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187957B1 (en) 1998-12-23 2001-02-13 Basf Aktiengesellschaft Preparation of amines
JP2003513790A (en) * 1999-11-19 2003-04-15 エンゲルハード コーポレーション Nickel-iron-silica-alumina
JP2009510019A (en) * 2005-09-30 2009-03-12 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing ethyleneamine
JP2011508753A (en) * 2008-01-03 2011-03-17 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for preparing ethyleneamine
CN106669731A (en) * 2015-11-09 2017-05-17 万华化学集团股份有限公司 Catalyst applied to amination of polyether polyol, preparation method thereof and method for preparing polyether amine by using catalyst
CN108698975A (en) * 2016-02-04 2018-10-23 罗地亚经营管理公司 It is used to prepare the macroporous catalyst of fatty amine
JP2022506489A (en) * 2018-12-28 2022-01-17 ハンファ ソルーションズ コーポレーション Hydrogenation reaction catalyst and its manufacturing method
CN114425337A (en) * 2020-10-10 2022-05-03 中国石油化工股份有限公司 Methanol amination catalyst and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614894B (en) * 2012-03-04 2013-11-13 浙江建业化工股份有限公司 Supported catalyst used for synthesis of diisopropylamine from isopropylamine and preparation method as well as application of supported catalyst
CN104525274A (en) * 2014-11-05 2015-04-22 朱忠良 Preparation method of modified carbon-covered titania-diatomite carrier

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187957B1 (en) 1998-12-23 2001-02-13 Basf Aktiengesellschaft Preparation of amines
JP2003513790A (en) * 1999-11-19 2003-04-15 エンゲルハード コーポレーション Nickel-iron-silica-alumina
US7196034B1 (en) * 1999-11-19 2007-03-27 Engelhard Corporation Nickel-iron-silica-alumina
JP4959083B2 (en) * 1999-11-19 2012-06-20 ビーエーエスエフ コーポレーション Nickel-iron-silica-alumina
JP2009510019A (en) * 2005-09-30 2009-03-12 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing ethyleneamine
JP2011508753A (en) * 2008-01-03 2011-03-17 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for preparing ethyleneamine
US8563778B2 (en) 2008-01-03 2013-10-22 Akzo Nobel N.V. Process to prepare ethylene amines
CN106669731A (en) * 2015-11-09 2017-05-17 万华化学集团股份有限公司 Catalyst applied to amination of polyether polyol, preparation method thereof and method for preparing polyether amine by using catalyst
CN108698975A (en) * 2016-02-04 2018-10-23 罗地亚经营管理公司 It is used to prepare the macroporous catalyst of fatty amine
JP2022506489A (en) * 2018-12-28 2022-01-17 ハンファ ソルーションズ コーポレーション Hydrogenation reaction catalyst and its manufacturing method
CN114425337A (en) * 2020-10-10 2022-05-03 中国石油化工股份有限公司 Methanol amination catalyst and application thereof
CN114425337B (en) * 2020-10-10 2024-01-30 中国石油化工股份有限公司 Methanol amination catalyst and application thereof

Also Published As

Publication number Publication date
JP3800632B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US5530127A (en) Preparation of amines
US7700806B2 (en) Method for producing ethylene amines ethanol amines from monoethylene glycol (MEG)
US4123462A (en) Amination process using nickel-rhenium catalysts
US7635790B2 (en) Method for producing ethylene amines and ethanol amines by the hydrogenating amination of monoethylene glycol and ammonia in the presence of a catalyst
US20080227632A1 (en) Advances in amination catalysis
EP1262232B1 (en) Catalysts and process for producing aromatic amines
US5321160A (en) Process for producing an ethylenamine
IE57631B1 (en) Promoted nickel and/or cobalt catalyst,its use,and process performed in its presence
US20040122259A1 (en) Preparation of an amine
JP2000038381A (en) Production of amine and catalyst, and use of the catalyst
JPH07323226A (en) Amination catalyst and production of aliphatic amine by using the same
JPH034534B2 (en)
US5248827A (en) Process for producing an ethylenamine
JPS6049178B2 (en) How to make amines
JP3092230B2 (en) Method for producing ethyleneamine
JP3265508B2 (en) Method for producing nickel alloy catalyst and method for producing ethyleneamine
JPH08143520A (en) Amination of alcohol
JPH0470303B2 (en)
JP3066429B2 (en) Method for producing ethyleneamine
JP3092245B2 (en) Method for producing ethyleneamine
JPH02202855A (en) Production of secondary amine
JP3074847B2 (en) Ethyleneamine production
JP3074848B2 (en) Method for producing ethyleneamine
JPH06182207A (en) Production of nickel-containing catalyst
JP2913072B2 (en) Method for producing ethylenediamine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees