JPH0732245A - Sizing device and sizing - Google Patents

Sizing device and sizing

Info

Publication number
JPH0732245A
JPH0732245A JP19904993A JP19904993A JPH0732245A JP H0732245 A JPH0732245 A JP H0732245A JP 19904993 A JP19904993 A JP 19904993A JP 19904993 A JP19904993 A JP 19904993A JP H0732245 A JPH0732245 A JP H0732245A
Authority
JP
Japan
Prior art keywords
workpiece
temperature
master gauge
sizing
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19904993A
Other languages
Japanese (ja)
Inventor
Hajime Nakayama
一 中山
Isao Mitsumachi
勲 三町
Yoshiyuki Fujieda
善行 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komori Corp
Nippei Toyama Corp
Original Assignee
Komori Corp
Nippei Toyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komori Corp, Nippei Toyama Corp filed Critical Komori Corp
Priority to JP19904993A priority Critical patent/JPH0732245A/en
Publication of JPH0732245A publication Critical patent/JPH0732245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To speedily start sizing measurement by measurement by way of quickly finishing machined article temperature measurement providing a temperature detection device furnished with a temperature sensor moving forward and backward on the surface of a machined article on a delivery device. CONSTITUTION:A fluid pressure cylinder 19 of a temperature detection device is energized to move forward, a linear shaft 16, a connection member 18, a sliding piece 21, a temperature sensor support member 24, an offset arm 26 and a temperature sensor 27 move forward, and when the temperature sensor 27 makes contact with a master gauge, detection of temperature of the master gauge is started. As the fluid pressure cylinder 19 is energized to move forward even after this temperature sensor 27 makes contact with the master gauge, the linear shaft 16 and the sliding piece 21 move forward, compress a compression coil spring 22, press the temperature sensor 27 against the master gauge and secure contact of the master gauge and the temperature sensor 27. Thereafter, this temperature sensor 27 is made contact with a work W, and in accordance with temperature difference of this work W and the master gauge 30, a sizing operating point of a numerical value control device is corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は研削盤で研削する加工物
を測定する定寸装置及び定寸方法に関し、特にマスター
合せを行って加工物の直径の測定を行なう定寸装置及び
定寸方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sizing apparatus and a sizing method for measuring a workpiece to be ground by a grinder, and more particularly to a sizing apparatus and a sizing method for measuring a diameter of a workpiece by performing master alignment. Regarding

【0002】[0002]

【従来の技術】円筒研削盤では定寸装置を用い、寸法管
理を行なう。この定寸装置の較正は所望加工物直径と同
直径のマスターゲージを研削盤に備えておいて、該マス
ターゲージを測定装置で測定して零点を合せ、その較正
後の測定装置で加工物の研削部直径を機上計測で行な
い、定寸となると砥石を後退し研削の終了とすることが
行われている。
2. Description of the Related Art In a cylindrical grinding machine, a sizing device is used to control the size. The sizing device is calibrated by equipping the grinding machine with a master gauge having the same diameter as the desired workpiece diameter, measuring the master gauge with a measuring device to align the zero points, and then measuring the workpiece with the calibrated measuring device. The diameter of the grinding portion is measured by on-machine measurement, and when it reaches a certain size, the whetstone is retracted to finish the grinding.

【0003】然し乍ら、加工物は研削熱で加熱膨張して
拡径した状態であり、又、研削中に機上で加工物直径を
測定(インプロセス)すると、測定装置の測定子は比較
的長く加工物に接触するため、研削熱で加熱された加工
物から測定子を先端に備えるフインガーへ伝わるため、
フインガーは熱変形を生じ、実際に使用する状態での正
寸法と比較すると熱変形の分が誤差として表われる。マ
スターゲージは機上の研削に与らず格別には昇温しない
位置に配置されている。そのため、マスター合せをして
測定した加工物をマスターゲージと同径に零合せした測
定装置で測定すると研削後に冷却した加工物の直径は所
望の直径よりも小さくなってしまう。そこで、実際に研
削した上、冷却後の加工物の直径を計測しておいて、研
削熱より拡径する寸法を見込んで寸法管理を行なう。処
が研削代、材質、砥石の切れ味、研削液の温度、量等に
より、研削熱の発生と、該研削熱による加工物の拡径は
一定しないため、寸法がばらつくことになる。このよう
な課題を解消するために定寸装置に温度補正機能を備え
ることが考えられる。例えば特公昭60−28635号
公報には加工物が研削熱により加熱されると直径が拡径
すると共に軸方向にのびることに着目して心押台に加工
物の軸方向へののびによる心押台センタの変位を差動変
圧器で電圧変換し、定寸装置の補正を行なうものがある
(以下心押台側変位測定補正法と称す)。又特開昭59
−209759号公報には研削中の研削動力に基づいて
研削熱から加工物の直径の膨張量を演算し、この膨張量
に相当する寸法を測定演算部に入力して、測定装置を補
正して、加工物の温度のバラツキによる仕上げ寸法のば
らつきをなくすようにしている(以下動力測定補正法と
称す)。
However, the work piece is in a state of being expanded by heating due to the heat of grinding, and when the diameter of the work piece is measured (in-process) on the machine during grinding, the contact point of the measuring device is relatively long. Since it contacts the work piece, it is transmitted from the work piece heated by the grinding heat to the finger equipped with the probe at the tip,
The finger causes thermal deformation, and the amount of thermal deformation appears as an error when compared with the positive dimension in the actual use state. The master gauge is located at a position where it does not heat the machine and does not increase the temperature. Therefore, when the workpiece measured by master alignment is measured by a measuring device in which the diameter is zeroed to the same diameter as the master gauge, the diameter of the workpiece cooled after grinding becomes smaller than the desired diameter. Therefore, after the actual grinding, the diameter of the work after cooling is measured, and the dimension management is performed in consideration of the dimension expanded by the grinding heat. Depending on the grinding allowance, the material, the sharpness of the grindstone, the temperature and the amount of the grinding fluid, the generation of grinding heat and the expansion of the diameter of the workpiece due to the grinding heat are not constant, so the dimensions vary. In order to solve such a problem, it is considered that the sizing device has a temperature correction function. For example, in Japanese Examined Patent Publication No. 60-28635, attention is paid to the fact that when a workpiece is heated by grinding heat, its diameter increases and it extends in the axial direction. There is one that converts the displacement of the platform center with a differential transformer to correct the sizing device (hereinafter referred to as the tailstock side displacement measurement compensation method). In addition, JP-A-59
In JP-A-209759, the expansion amount of the diameter of the workpiece is calculated from the grinding heat based on the grinding power during grinding, and the dimension corresponding to this expansion amount is input to the measurement calculation unit to correct the measuring device. , The variation of the finished dimension due to the temperature variation of the workpiece is eliminated (hereinafter referred to as the power measurement correction method).

【0004】特公昭51−2676号公報には定寸装置
の温度補正装置が示されている。これは加工物に接触す
る測定子の一方にサーミスタを備えており、このサーミ
スタで検出した加工物温度により、測定子間間隔を変更
する送りねじをパルスモータにより駆動して測定子間間
隔を補正することにより、定寸の補正を行なうものであ
る(以下加工物温度測定法と称す)。
Japanese Patent Publication No. 51-2676 discloses a temperature correction device for a sizing device. This is equipped with a thermistor on one of the contact points that come into contact with the work piece.The work piece temperature detected by this thermistor is used to drive the feed screw that changes the inter-contact point interval with a pulse motor to correct the inter-contact point interval. By doing so, a fixed size correction is performed (hereinafter referred to as a workpiece temperature measuring method).

【0005】[0005]

【発明が解決しようとする課題】心押台側変位測定補正
法によれば、加工物の研削熱による拡径と軸方向の膨張
は一義的ではない。即ち、加工物の直径と長さの比、加
工物の全長に対して加工物を研削する部分の軸方向長さ
の割合等が異なると、加工物の研削熱による拡径量と軸
方向の膨張量の割合は一義的には変化しないので、上記
諸要素が変更されると心押台側変位に基づく、直径測定
の補正値が適当でなくなる。又、研削盤の加工物主軸も
加工物主軸軸受の発生熱による温度上昇により軸方向に
変位するから、始業後定常状態となるまでに時間のかか
る加工物主軸の変位がほぼ安定するまで待機しないとミ
クロンオーダの計測は不可能である。
According to the tailstock side displacement measurement correction method, the diameter expansion and axial expansion of the workpiece due to grinding heat are not unique. That is, if the ratio of the diameter of the workpiece to the length of the workpiece, the ratio of the axial length of the portion to be ground to the workpiece, and the like differ, the amount of diameter expansion due to the grinding heat of the workpiece and the axial direction Since the ratio of the amount of expansion does not change uniquely, if the above-mentioned elements are changed, the correction value for diameter measurement based on the tailstock side displacement becomes inappropriate. Also, the work spindle of the grinding machine is axially displaced due to the temperature rise due to the heat generated by the work spindle bearing, so it takes time to reach a steady state after the start of work. And micron order measurement is impossible.

【0006】動力測定補正法によれば、加工物の研削熱
による拡径の基になる研削熱は研削抵抗の大小によるか
ら、一応は研削動力の変化と加工物直径の大小の変化方
向は同方向である。処が加工物拡径の基となる加工物の
温度上昇は加工物形状、加工物の大小に依存する処もあ
るから、研削動力と加工物の昇温は一義的ではなく、加
工物が変更になれば変更する必要がある。又、仕上研削
になれば砥石台の砥石駆動動力の内、研削抵抗により消
費される動力の全動力に対する割合は小さくなってしま
うため、砥石駆動動力を測定しても加工物の研削熱によ
る温度上昇の差異は計測に必要なようには現われない
(特に砥石駆動電動機の電流値を正確に把握するには装
置が大がかりとなる)。
According to the power measurement correction method, since the grinding heat, which is the basis of the diameter expansion due to the grinding heat of the workpiece, depends on the magnitude of the grinding resistance, the change in the grinding power and the direction in which the workpiece diameter changes are the same. Direction. Since the temperature rise of the workpiece, which is the basis for expanding the diameter of the workpiece, depends on the shape of the workpiece and the size of the workpiece, the grinding power and the temperature rise of the workpiece are not unique, and the workpiece changes. If it becomes, it will need to be changed. Also, in the case of finish grinding, the ratio of the power consumed by grinding resistance to the total power of the wheel drive power of the wheel head becomes small, so even if the wheel drive power is measured, the temperature due to the grinding heat of the workpiece The difference in rise does not appear to be necessary for measurement (especially the device is a large scale to accurately grasp the current value of the grinding wheel drive motor).

【0007】加工物温度測定法によれば、加工物は一方
の測定子に備えるサーミスタが加工物温度を検出するま
で測定子を加工物に当てたままとし、加工物温度の検出
を待って制御回路を介して、測定子間隔を変更するパル
スモータを駆動して補正を行ない、補正後に測定を行な
うため、測定子からサーミスタまで伝熱するのに時間差
が大きく測定に時間がかかり、測定子が寸法測定を行わ
ないで温度測定のために加工物に接触するので測定子の
損耗がはげしくなる。
According to the work piece temperature measuring method, the work piece is kept in contact with the work piece until the thermistor provided on one of the stylus pieces detects the work piece temperature, and control is performed after the work piece temperature is detected. The pulse motor that changes the probe spacing is driven through the circuit to make the correction, and the measurement is performed after the correction.Therefore, there is a large time difference in heat transfer from the probe to the thermistor. Since the workpiece is contacted for temperature measurement without performing dimension measurement, the wear of the probe becomes severe.

【0008】上述した各従来例の加工物の温度上昇によ
る補正は夫々、加工物の温度上昇により拡径する量を計
算した上で行なうものであり、マスターゲージにより寸
法測定装置を較正するものでないので、実用上かなりの
誤差を伴う。即ち、寸法測定装置は加工物の拡径量以外
に測定子のフインガーの熱変形も考慮しなければならな
いが、上記従来例は加工物の温度による加工物の拡径の
みを補正対象としている。従って、上記従来例の定寸方
法では研削した加工物の加工中寸法と冷却後の寸法との
差は充分補正されない。
The above-described corrections due to the temperature rise of the workpieces are performed after calculating the amount of expansion of the diameters due to the temperature rises of the workpieces, and do not calibrate the dimension measuring device by the master gauge. Therefore, there are some practical errors. That is, the dimension measuring device must consider thermal deformation of the finger of the probe in addition to the amount of expansion of the diameter of the workpiece, but the above-described conventional example corrects only the diameter expansion of the workpiece due to the temperature of the workpiece. Therefore, the above-mentioned conventional sizing method does not sufficiently correct the difference between the size of the ground work piece during processing and the size after cooling.

【0009】本発明は加工物の温度を直接測定する温度
検出装置を備えることにより、上記従来の加工物の研削
熱による熱膨張による拡径に対する補正がす早く行える
と共に正確に測定出来る定寸装置及び定寸方法を提供す
ることを目的とする。
The present invention is provided with a temperature detecting device for directly measuring the temperature of a work piece, so that the diameter expansion due to the thermal expansion due to the grinding heat of the conventional work piece can be quickly corrected, and a sizing device capable of accurately measuring the size. And to provide a sizing method.

【0010】[0010]

【課題を解決するための手段】本発明の第1の発明は加
工物及びマスターゲージの直径をわたる両側に測定子を
接触して加工物直径を測定する寸法測定装置と、寸法測
定装置を加工物とマスターゲージ間で移動させる送り装
置と、加工物及びマスターゲージの温度検出手段を備え
た定寸装置において、加工物の表面に進退する温度セン
サを備えた温度検出装置を前記送り装置に担持したこと
を特徴とする定寸装置である。
A first aspect of the present invention is a dimension measuring device for measuring a diameter of a workpiece by contacting a measuring element on both sides of the diameter of a workpiece and a master gauge. In a sizing device equipped with a feeding device for moving between a workpiece and a master gauge, and a temperature detecting means for a workpiece and a master gauge, the feeding device carries a temperature detecting device equipped with a temperature sensor that moves forward and backward on the surface of the workpiece. This is a sizing device characterized by the above.

【0011】本発明の第2の発明は数値制御装置により
切込み動作を行なう研削盤において、マスターゲージに
より寸法測定装置の定寸動作点を補正するのみならず、
マスターゲージ及び加工物の温度を温度検出装置で検出
し又、その温度差による加工物直径の拡径量、又は該拡
径量及び寸法測定装置の変形量に相当する定寸装置の定
寸動作点を補正することを特徴とする定寸方法である。
The second aspect of the present invention is not only to correct the sizing operation point of the dimension measuring device by the master gauge in the grinding machine which performs the cutting operation by the numerical control device,
The temperature of the master gauge and the workpiece is detected by a temperature detecting device, and the sizing operation of the sizing device corresponding to the amount of expansion of the diameter of the workpiece due to the temperature difference or the amount of expansion of the workpiece and the deformation of the dimension measuring device This is a sizing method characterized by correcting points.

【0012】本発明の第3の発明は数値制御装置により
切込み動作を行なう研削盤において、マスターゲージ及
び加工物の温度を温度検出装置で検出して、その温度差
による加工物直径の拡径量、又は該拡径量及び寸法測定
装置の変形量に相当する補正切込み量を定寸装置の定寸
動作点から数値制御装置により加減することを特徴とす
る定寸方法である。
According to a third aspect of the present invention, in a grinding machine which performs a cutting operation by a numerical controller, the temperature of a master gauge and a workpiece are detected by a temperature detecting device, and the diameter of the workpiece is increased by the temperature difference. Alternatively, the sizing method is characterized in that a correction depth of cut corresponding to the expansion amount and the deformation amount of the dimension measuring device is adjusted by a numerical controller from a sizing operation point of the sizing device.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に従って説明す
る。図1,2,3は全体を示す3面図であり、図1は正
面図、図2は側面図、図3は平面図である。本例は円筒
研削盤の心押台側に定寸装置を備えた例であり、図1に
おいて円筒研削盤本体は図略となっている。心押台1上
に立設したコラム2に設けた上下方向の案内2aにサド
ル3が上下方向移動自在に係合している。サドル3には
水平方向に心押台1と図示されない加工物主軸台でもっ
て水平方向に支持されている加工物Wに平行なスライド
ガイド3aが設けられ該スライドガイド3aにクロスス
ライド4に固定したスライドバー4aが係合している。
クロススライド4の加工物主軸台に近い側の一端は垂下
部4bを備える。サドル3に固定したナットにねじ込ま
れた垂直方向の送りねじでもって構成されたY方向ねじ
送り装置5はコラム2に設けた立型電動機6に連結され
ている。クロススライド4に固定したナットに水平方向
の送りねじをねじ込んで構成したZ方向ねじ送り装置7
はサドル3に固定した横型電動機8に連結されている。
図2に示すように前記クロススライド4の垂下部4bに
は寸法測定装置9及び温度検出装置10を備えている。
Embodiments of the present invention will be described below with reference to the drawings. 1, 2, and 3 are three-side views showing the whole, FIG. 1 is a front view, FIG. 2 is a side view, and FIG. 3 is a plan view. This example is an example in which a sizing device is provided on the tailstock side of a cylindrical grinder, and the cylindrical grinder main body is not shown in FIG. A saddle 3 is vertically movably engaged with a vertical guide 2a provided on a column 2 standing on the tailstock 1. The saddle 3 is provided with a slide guide 3a parallel to the work W supported horizontally by the tailstock 1 and the work head stock (not shown) in the horizontal direction. The slide guide 3a is fixed to the cross slide 4. The slide bar 4a is engaged.
One end of the cross slide 4 on the side closer to the workpiece headstock is provided with a hanging portion 4b. A Y-direction screw feed device 5 constituted by a vertical feed screw screwed into a nut fixed to the saddle 3 is connected to a vertical electric motor 6 provided in the column 2. Z-direction screw feed device 7 configured by screwing a horizontal feed screw into a nut fixed to the cross slide 4
Is connected to a horizontal electric motor 8 fixed to the saddle 3.
As shown in FIG. 2, the hanging portion 4b of the cross slide 4 is provided with a dimension measuring device 9 and a temperature detecting device 10.

【0014】寸法測定装置9は周知のものであって、図
4に示すように加工物Wの直径をわたる両側に接触する
測定子11を備えた測定フインガー12が測定装置本体
13に測定子11間隔を例えばD1 〜D2 間で調整可能
に取付けられており、測定装置本体13に浮動支持され
ている。そして一方の測定フインガー12の根本側は図
示されない変位センサ、例えば差動変圧器に連結されて
いる。測定子11が加工物Wの軸方向に直交する図示の
X方向に進退するように測定装置本体13は垂下部4b
に固定されたガイド部材14に案内され、図示されない
駆動装置で出入りするようになっている。
The dimension measuring device 9 is well known, and as shown in FIG. 4, a measuring finger 12 having a measuring element 11 contacting both sides across the diameter of the workpiece W has a measuring element 11 on the measuring device main body 13. It is mounted so that the distance can be adjusted, for example, between D 1 and D 2 , and is supported by the measuring device body 13 in a floating manner. The root side of one measurement finger 12 is connected to a displacement sensor (not shown), such as a differential transformer. The measuring device main body 13 has a hanging portion 4b so that the tracing stylus 11 moves back and forth in the X direction shown in the drawing which is orthogonal to the axial direction of the workpiece W.
It is guided by a guide member 14 fixed to and is moved in and out by a driving device (not shown).

【0015】温度検出装置10は図5,6に示すように
寸法測定装置9に固定されている。温度検出装置10は
ベースプレート17に装着される。加工物Wの軸方向と
直交する方向のスライドガイド15に2本のリニアシャ
フト16が係合し、2本のリニアシャフト16の前進側
端部近くをわたって連結部材18がリニアシャフト16
に剛結されている。リニアシャフト16に滑合した滑り
子21にはベースプレート17に固定された流体圧シリ
ンダ19のピストンロッド19aが固定されている。滑
り子21と連結部材18との間には圧縮コイルばね22
が夫々リニアシャフト16に縮挿されている。リニアシ
ャフト16にはストッパ20が固定されており、圧縮コ
イルばね22の設定圧を定めている。連結部材18がリ
ニアシャフト16から外れないようにリニアシャフト1
6の先端にはナット23がねじ込まれている。連結部材
18にはリニアシャフト16と平行で加工物Wの軸心に
向う温度センサ支持部材24の根本が固定されている。
温度センサ支持部材24の先端部はベースプレート17
に固設した軸封装置25を挿通して、先端にはオフセッ
トアーム26が固定されている。オフセットアーム26
は平面図の図6のように平面でみて測定フインガー12
に向って延出し、その先端にサーミスタのような温度セ
ンサ27を備える。温度センサ27は両測定子11の中
間に配置されている。温度センサ27の先端は加工物W
の軸心に向いており、前進時に接触する先端は銅板、ア
ルミニウム等の薄板でもって蔽われ、機械的摩擦から保
護されると共に加工物Wの熱がサーミスタへよく伝わる
ようになつている。リニアシャフト16後部には位置を
調節可能にドッグ20Aが固定され、ベースプレート1
7には該ドッグ20Aにより動作する近接スイッチ20
a,20bを備える。
The temperature detecting device 10 is fixed to the dimension measuring device 9 as shown in FIGS. The temperature detecting device 10 is attached to the base plate 17. The two linear shafts 16 are engaged with the slide guide 15 in the direction orthogonal to the axial direction of the workpiece W, and the connecting member 18 extends across the vicinity of the forward end portions of the two linear shafts 16.
It is rigidly connected to. A piston rod 19a of a fluid pressure cylinder 19 fixed to a base plate 17 is fixed to a slider 21 that slides on the linear shaft 16. A compression coil spring 22 is provided between the slider 21 and the connecting member 18.
Are respectively inserted into the linear shafts 16 in a contracted manner. A stopper 20 is fixed to the linear shaft 16 and determines the set pressure of the compression coil spring 22. To prevent the connecting member 18 from coming off the linear shaft 16, the linear shaft 1
A nut 23 is screwed into the tip of 6. The base of the temperature sensor support member 24 that is parallel to the linear shaft 16 and faces the axis of the workpiece W is fixed to the connecting member 18.
The tip portion of the temperature sensor support member 24 has a base plate 17
An offset arm 26 is fixed to the tip of the shaft sealing device 25 which is fixed to the. Offset arm 26
Is the measurement finger 12 when viewed in a plane as shown in FIG. 6 of the plan view.
A temperature sensor 27 such as a thermistor is provided at the tip of the temperature sensor 27. The temperature sensor 27 is arranged in the middle of both the measuring elements 11. The tip of the temperature sensor 27 is the workpiece W.
Of the workpiece W is covered with a thin plate such as a copper plate or aluminum so as to be protected from mechanical friction and the heat of the workpiece W is well transmitted to the thermistor. A dog 20A is fixed to the rear portion of the linear shaft 16 so that its position can be adjusted.
7 is a proximity switch 20 operated by the dog 20A.
a, 20b.

【0016】マスターゲージ30は例えば直径D1 〜D
2 まで7種のものを串刺し状に設けて、その軸心を加工
物Wと平行して心押台1上において回転駆動されるよう
に支持されている。図7は図3の背面側からみた縦断面
図であってマスターゲージの部分を示す。マスターゲー
ジ30はマスターゲージスリーブ31に重ねた状態で嵌
合し、ロックナット32で締込まれ、該スリーブ31に
固定されてユニットとなっている。マスターゲージ支持
バー33は心押台1に固定したハウジング36に装架し
た軸受34に嵌入し、該バー33は軸封部35を通じて
両端が軸受部外へ突出し、一端にはマスターゲージスリ
ーブ31が嵌入して、該スリーブ31を締込むボルト3
7がねじ込まれており、他端は軸継手38を介してマス
ターゲージ回転用電動機39に連結されている。電動機
39はハウジング36に固定されている。
The master gauge 30 has, for example, diameters D 1 to D.
Seven types up to 2 are provided in a skewered shape, and are supported so as to be rotationally driven on the tailstock 1 with the axis parallel to the workpiece W. FIG. 7 is a vertical sectional view of the master gauge shown in FIG. 3 viewed from the back side. The master gauge 30 is fitted to the master gauge sleeve 31 in a stacked state, tightened with a lock nut 32, and fixed to the sleeve 31 to form a unit. The master gauge support bar 33 is fitted into a bearing 34 mounted on a housing 36 fixed to the tailstock 1, and both ends of the bar 33 protrude through the shaft sealing portion 35 to the outside of the bearing portion, and the master gauge sleeve 31 is provided at one end. Bolts 3 for fitting and tightening the sleeve 31
7 is screwed in, and the other end is connected to a master gauge rotating electric motor 39 via a shaft coupling 38. The electric motor 39 is fixed to the housing 36.

【0017】図8は制御装置を示す。サーミスタのよう
な温度センサ27の抵抗による電圧変化は温度測定器4
0で計測され、マイクロコンピュータ41に入力され、
加工物Wの温度に見合う後述の補正寸法信号が数値制御
装置42に送られる。又、寸法測定装置9で測定された
寸法は差動変圧器の電圧として増幅器付の制御装置43
に入力され、所望寸法との差が数値制御装置42に入力
される。数値制御装置42で加工物Wの温度に見合う補
正寸法信号により、所望の仕上寸法即ち、定寸動作点が
補正され、砥石台を駆動するサーボモータを駆動して切
込み量を補正するようになっており、寸法測定装置9、
制御装置43で定寸動作が行われる。
FIG. 8 shows the control device. The voltage change due to the resistance of the temperature sensor 27 such as the thermistor is measured by the temperature measuring device 4.
0 is measured and input to the microcomputer 41,
A corrected dimension signal, which will be described later, corresponding to the temperature of the workpiece W is sent to the numerical controller 42. Further, the dimension measured by the dimension measuring device 9 is used as the voltage of the differential transformer and the controller 43 with an amplifier is used.
And the difference from the desired size is input to the numerical controller 42. The numerical control device 42 corrects the desired finishing dimension, that is, the sizing operation point, by the correction dimension signal corresponding to the temperature of the workpiece W, and drives the servomotor that drives the grinding wheel head to correct the depth of cut. The dimension measuring device 9,
The controller 43 performs the sizing operation.

【0018】次に本発明の測定作用を加工物Wについて
例をあげて説明する。
Next, the measuring operation of the present invention will be described with reference to the workpiece W.

【0019】図3に示すように加工物Wの測定点Pとマ
スターゲージ30とはZ軸(加工物Wの軸方向)方向に
Z1離れており、図2に示すように加工物Wの軸心とマ
スターゲージ30の高さの差はY方向(上下方向)にY
1である。又、寸法測定装置9が後退するX方向(加工
物Wに直角な水平方向に測定子11はX1進退するもの
とする。上記においてX方向の測定子の移動は寸法測定
装置9に備える前後方向の駆動装置(図示されない。周
知であるので省略)により行われる。Y方向の寸法測定
装置9の移動は電動機6がねじ送り装置5を回転してサ
ドル3と共にクロススライド4を上下動することにより
行われ、Z方向の移動は電動機8がねじ送り装置7を回
転してクロススライド4を左右に動かすことにより行わ
れる。
As shown in FIG. 3, the measuring point P of the workpiece W and the master gauge 30 are separated from each other by Z1 in the Z-axis (axial direction of the workpiece W) direction, and as shown in FIG. The difference in height between the heart and the master gauge 30 is Y in the Y direction (vertical direction).
It is 1. Further, the dimension measuring device 9 retracts in the X direction (the probe 11 moves forward and backward in the horizontal direction perpendicular to the workpiece W by X1. In the above, the movement of the probe in the X direction is the front-back direction provided in the dimension measuring device 9. The Y-direction dimension measuring device 9 is moved by the electric motor 6 rotating the screw feeding device 5 and moving the cross slide 4 up and down together with the saddle 3 in order to move the dimension measuring device 9 in the Y direction. The movement in the Z direction is performed by rotating the screw feed device 7 by the electric motor 8 and moving the cross slide 4 left and right.

【0020】荒加工時はインプロセスで寸法測定装置9
を用いて加工物Wの直径を測定し乍ら研削し直径D1
研削加工を止める。この場合には寸法測定装置9のマス
ター合せは行わず、又温度検出装置10は用いない。即
ち、図5において流体圧シリンダ19は右行端に有り、
ドッグ20Aは近接スイッチ20bを作動させた位置に
有り、リニアシャフト16、連結部材18、滑り子2
1、温度センサ支持部材24、オフセットアーム26、
温度センサ27は右行限位置にある。
In-process dimension measuring device 9 during rough machining
The diameter of the workpiece W is measured by using, and is ground, and the grinding process is stopped at the diameter D 1 . In this case, the mastering of the dimension measuring device 9 is not performed, and the temperature detecting device 10 is not used. That is, in FIG. 5, the fluid pressure cylinder 19 is at the right end.
The dog 20A is in a position where the proximity switch 20b is activated, and the linear shaft 16, the connecting member 18, and the slider 2 are provided.
1, temperature sensor support member 24, offset arm 26,
The temperature sensor 27 is located at the right end position.

【0021】次に仕上研削に入る前にマスター合せが行
われる。加工物Wから後退位置に測定子11がある状態
で寸法測定装置9はZ方向にZ1心押台1の方向へ移動
し、続いてY方向にY1上昇しマスターゲージ30と対
向位置となる。続いてマスターゲージ30を回転する電
動機39が回転して、軸継手38を介してマスターゲー
ジ支持バー33が回転し、マスターゲージ30はマスタ
ーゲージスリーブ31と共に回転する。尚、マスターゲ
ージを回転せずに測定することもできる。ここで温度検
出装置10の流体圧シリンダ19は前進付勢され、リニ
アシャフト16、連結部材18、滑り子21、温度セン
サ支持部材24、オフセットアーム26、温度センサ2
7は前進し、温度センサ27がマスターゲージ30に接
触するとマスターゲージ30の温度の検出が始まる。温
度センサ27がマスターゲージ30に接触した後も流体
圧シリンダ19は前進付勢するのでリニアシャフト1
6、滑り子21は前進し、圧縮コイルばね22を圧縮
し、温度センサ27をマスターゲージ30に圧してマス
ターゲージ30と温度センサ27との接触を確実なもの
として温度測定の正確さを期すと共に温度センサ27に
過大な圧力が加わらないようにしている。温度センサ2
7の前進よりわずかに遅れて前進を始めた測定子11は
遅れてマスターゲージ30の測定点に達して測定が行わ
れる。今マスターゲージ30の測定温度が20℃とす
る。そして寸法測定装置9は零合せが行われる。ここで
は数値制御装置42の原点補正は行われない。マスター
合せ後に測定子11はマスターゲージ30から後退し、
次に送り装置で加工物Wの測定点Pの手前の後退位置へ
の寸法測定装置9のY及びZ方向へのY1,Z1の移動
により位置を変える。ここで加工物Wの仕上研削状態に
おいて温度センサ27を前進して加工物Wに接触し、加
工物Wの温度により変化したサーミスタの抵抗値の変化
により温度測定器40はサーミスタの抵抗変化による電
圧変化をA/D変換した信号をマイクロコンピュータ4
1に送り、マイクロコンピュータ41は例えば加工物W
の温度が30℃であるとすると仕上げ研削における寸法
測定装置9の設定寸法をマスターゲージ30と加工物W
の温度差による寸法差及び寸法測定装置の熱変形量を補
正したDに設定するように数値制御装置42の原点補正
が行われる。続いて測定子11を前進して加工物Wの直
径をわたる両側に接触しインプロセスゲージ仕上加工が
行われる。温度センサ27は仕上加工が始まる直前に後
退させてよい。即ち、寸法測定装置で測定された電圧変
化は制御装置43によりA/D変換され、数値制御装置
42に送られ定寸動作が行われる。即ち、定寸動作点の
寸法がDに補正されており、制御装置43からの現在加
工物Wの寸法が入力されることにより、現在加工物寸法
と仕上寸法の差を砥石台を前進して砥石を加工物Wへ切
込むべき寸法として演算し、加工物寸法と仕上寸法の差
が零となるまで砥石台を前進して停止し、スパークアウ
ト後に砥石台を後退させる。又寸法測定装置の測定子1
1は同時に後退し、続いて電動機8が付勢されねじ送り
装置7によりクロススライド4は心押台1側へZ1移動
し、寸法測定装置9は心押台1のマスターゲージ30の
位置に移動して待機する。
Next, master alignment is performed before starting finish grinding. The dimension measuring device 9 moves in the Z direction toward the Z1 tailstock 1 with the probe 11 in the retracted position from the workpiece W, and then moves upward in the Y direction by Y1 to face the master gauge 30. Subsequently, the electric motor 39 that rotates the master gauge 30 rotates, the master gauge support bar 33 rotates via the shaft coupling 38, and the master gauge 30 rotates together with the master gauge sleeve 31. In addition, it is also possible to measure without rotating the master gauge. Here, the fluid pressure cylinder 19 of the temperature detecting device 10 is urged forward, and the linear shaft 16, the connecting member 18, the slider 21, the temperature sensor supporting member 24, the offset arm 26, and the temperature sensor 2 are used.
7 moves forward, and when the temperature sensor 27 contacts the master gauge 30, detection of the temperature of the master gauge 30 starts. Since the fluid pressure cylinder 19 is urged forward even after the temperature sensor 27 contacts the master gauge 30, the linear shaft 1
6. The slider 21 moves forward, compresses the compression coil spring 22, presses the temperature sensor 27 against the master gauge 30, and ensures the contact between the master gauge 30 and the temperature sensor 27 to ensure the accuracy of temperature measurement. An excessive pressure is not applied to the temperature sensor 27. Temperature sensor 2
The tracing stylus 11 that has started to move forward slightly after the movement of 7 reaches the measurement point of the master gauge 30 and is measured. Now, let us say that the measurement temperature of the master gauge 30 is 20 ° C. Then, the dimension measuring device 9 performs zeroing. The origin correction of the numerical controller 42 is not performed here. After the master alignment, the probe 11 retracts from the master gauge 30,
Then, the position of the workpiece W is changed by moving Y1 and Z1 in the Y and Z directions of the dimension measuring device 9 to the retracted position before the measuring point P of the workpiece W by the feeding device. Here, in the finish grinding state of the workpiece W, the temperature sensor 27 is moved forward to come into contact with the workpiece W, and the temperature measuring device 40 changes the voltage due to the resistance change of the thermistor due to the change in the resistance value of the thermistor which changes with the temperature of the workpiece W. A signal obtained by A / D converting the change is used by the microcomputer 4
1 to the microcomputer 41, for example, the workpiece W
Assuming that the temperature is 30 ° C., the set dimensions of the dimension measuring device 9 in the finish grinding are set to the master gauge 30 and the workpiece W.
The origin correction of the numerical controller 42 is performed so that the dimensional difference due to the temperature difference and the thermal deformation amount of the dimensional measuring device are set to the corrected D. Then, the tracing stylus 11 is advanced to contact both sides of the workpiece W across the diameter, and in-process gauge finishing is performed. The temperature sensor 27 may be retracted immediately before the finishing process is started. That is, the voltage change measured by the dimension measuring device is A / D converted by the control device 43 and sent to the numerical control device 42 to perform the sizing operation. That is, the dimension of the sizing operation point is corrected to D, and the current dimension of the workpiece W is input from the control device 43 to advance the difference between the current workpiece dimension and the finished dimension through the grinding wheel head. The grindstone is calculated as a dimension to be cut into the workpiece W, the grindstone head is moved forward and stopped until the difference between the workpiece dimension and the finish dimension becomes zero, and the grindstone head is retracted after the spark out. Moreover, the measuring element 1 of the dimension measuring device
1 simultaneously retreats, then the electric motor 8 is energized, the cross slide 4 moves Z1 toward the tailstock 1 side by the screw feed device 7, and the dimension measuring device 9 moves to the position of the master gauge 30 of the tailstock 1. And wait.

【0022】上記においては加工物Wとマスターゲージ
30の温度差に基いて定寸動作点を変更し、即ち、数値
制御装置の原点補正を行った。
In the above, the sizing operation point was changed based on the temperature difference between the workpiece W and the master gauge 30, that is, the origin correction of the numerical controller was performed.

【0023】ここで他の実施例としてはCNC制御装置
を備えている場合に加工物Wとマスターゲージ30の温
度は同一であるとして定寸動作点は補正しないで、加工
物Wとマスターゲージ30の温度差に基づく寸法差をC
NC制御装置により、砥石切込量を補正するようにして
もよい。
In another embodiment, when a CNC controller is provided, the workpiece W and the master gauge 30 are assumed to have the same temperature, and the sizing operating point is not corrected, and the workpiece W and the master gauge 30 are not corrected. Dimensional difference based on the temperature difference of C
The NC control device may correct the grindstone cutting amount.

【0024】実施例は加工物Wとマスターゲージ30の
温度差に基づく補正を加工物Wの拡径量と寸法測定装置
の変形量に従って行っている。ここで寸法測定装置が温
度補償機能を備えている場合は当然寸法測定装置の熱変
形量は考慮外となる。又、一般に寸法測定装置の熱変形
による測定誤差は加工物Wの熱変形による拡径量に比較
して小さく実用上無視してよい場合も多い。従って、上
記実施例における補正は加工物Wとマスターゲージ30
の温度差に基づく補正は加工物Wの拡径量のみに従って
行ってもよい。
In the embodiment, the correction based on the temperature difference between the workpiece W and the master gauge 30 is performed according to the diameter expansion amount of the workpiece W and the deformation amount of the dimension measuring device. If the dimension measuring device has a temperature compensation function, the amount of thermal deformation of the dimension measuring device is not taken into consideration. Further, generally, the measurement error due to the thermal deformation of the dimension measuring device is smaller than the diameter expansion amount due to the thermal deformation of the workpiece W, and in many cases can be ignored in practical use. Therefore, the correction in the above embodiment is performed by the workpiece W and the master gauge 30.
The correction based on the temperature difference may be performed only according to the diameter expansion amount of the workpiece W.

【0025】実施例は温度センサをクロススライドに担
持して設けたが、定寸方法に関しては、温度センサはマ
スターゲージ近傍に固設して、マスターゲージの温度を
検出するようにし、加工物の温度測定を別個の温度セン
サで測定してもよいことは勿論である。
In the embodiment, the temperature sensor is mounted on the cross slide, but regarding the sizing method, the temperature sensor is fixed near the master gauge so that the temperature of the master gauge can be detected. Of course, the temperature measurement may be measured by a separate temperature sensor.

【0026】[0026]

【発明の効果】本発明の定寸装置は上記のように寸法測
定装置の測定子間に温度センサを配し、夫々を加工物に
接触可能としたため、温度センサを加工物の温度が伝導
され易いように構成でき、加工物温度は直ちに温度セン
サに伝わり、加工物温度測定は素早く終了するので測定
による寸法測定開始は早く出来る。温度センサと測定子
は分かれているので夫々の構成は複雑とならず、保守、
点検も容易である。
As described above, in the sizing apparatus of the present invention, the temperature sensor is arranged between the measuring elements of the dimension measuring apparatus, and each of them can contact the workpiece. Therefore, the temperature sensor conducts the temperature of the workpiece. It can be configured easily, the workpiece temperature is immediately transmitted to the temperature sensor, and the workpiece temperature measurement is quickly completed, so that the dimension measurement by measurement can be started quickly. Since the temperature sensor and the measuring element are separated, their respective configurations do not become complicated, and maintenance,
Inspection is also easy.

【0027】本発明の定寸方法によれば加工物とマスタ
ーゲージの温度差に基づいて数値制御装置の定寸動作点
を補正するか、定寸動作点からの上記温度差に見合う切
込量を数値制御装置により補正するため、加工物の温度
の如何にかかわらず加工物は正確に仕上げられる。寸法
測定装置自体を特に補正する必要がないので特別な寸法
測定装置を用いる必要がない。
According to the sizing method of the present invention, the sizing operation point of the numerical control device is corrected on the basis of the temperature difference between the workpiece and the master gauge, or the cutting amount corresponding to the above temperature difference from the sizing operation point. Is corrected by the numerical control device, the work piece can be accurately finished regardless of the temperature of the work piece. Since it is not necessary to correct the dimension measuring device itself, it is not necessary to use a special dimension measuring device.

【0028】実施例はマスターゲージの温度を20℃と
して説明したが、マスターゲージの温度は20℃でなく
てもよい。この場合は、マスターゲージとワークの温度
差による補正に加うるに更にマスターゲージ、ワークが
標準温度と異なる温度を例えば室温25℃と同温度に研
削前マスターゲージとワークがなっているとすると25
℃を基準とする補正が必要であり、このような場合はマ
イクロコンピュータ41の記憶装置にこの補正値をテー
ブルの形として設けておけばよい。又、マスターゲージ
温度を標準温度とするため、研削液を標準温度に調温し
てマスターゲージにそそぐようにしてもよい。
Although the master gauge temperature is 20 ° C. in the embodiment, the master gauge temperature may not be 20 ° C. In this case, in addition to the correction due to the temperature difference between the master gauge and the workpiece, if the master gauge and the workpiece before the grinding have a temperature different from the standard temperature of the workpiece, for example, the room temperature of 25 ° C.
Correction based on ° C is necessary, and in such a case, this correction value may be provided in the form of a table in the storage device of the microcomputer 41. Further, since the master gauge temperature is set to the standard temperature, the grinding fluid may be adjusted to the standard temperature and poured into the master gauge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の正面図である。FIG. 1 is a front view of an embodiment of the present invention.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】図1の平面図である。FIG. 3 is a plan view of FIG.

【図4】寸法測定装置の側面図である。FIG. 4 is a side view of the dimension measuring device.

【図5】温度検出装置の縦断面図である。FIG. 5 is a vertical sectional view of a temperature detection device.

【図6】図5の平面図である。FIG. 6 is a plan view of FIG.

【図7】マスターゲージ部の縦断面図である。FIG. 7 is a vertical sectional view of a master gauge portion.

【図8】実施例の制御ブロック図である。FIG. 8 is a control block diagram of the embodiment.

【符号の説明】[Explanation of symbols]

1 心押台 9 寸法測定装置 10 温度検出装置 11 測定子 12 測定フインガー 27 温度センサ 30 マスターゲージ 40 温度測定器 41 マイクロコンピュータ 42 数値制御装置 43 制御装置 1 Tailstock 9 Dimension Measuring Device 10 Temperature Detection Device 11 Measuring Element 12 Measuring Finger 27 Temperature Sensor 30 Master Gauge 40 Temperature Measuring Device 41 Microcomputer 42 Numerical Control Device 43 Control Device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤枝 善行 神奈川県横浜市金沢区堀口120番地 株式 会社日平トヤマ横浜工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Fujieda 120 Horiguchi, Kanazawa-ku, Yokohama-shi, Kanagawa Hiira Toyama Co., Ltd. Yokohama factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加工物及びマスターゲージの直径をわた
る両側に測定子を接触して加工物直径を測定する寸法測
定装置と、寸法測定装置を加工物とマスターゲージ間で
移動させる送り装置と、加工物及びマスターゲージの温
度検出手段を備えた定寸装置において、加工物の表面に
進退する温度センサを備えた温度検出装置を前記送り装
置に担持したことを特徴とする定寸装置。
1. A dimension measuring device for measuring a workpiece diameter by contacting a measuring element on both sides of the workpiece and the master gauge, and a feeding device for moving the dimension measuring device between the workpiece and the master gauge. A sizing device having a temperature detecting means for a workpiece and a master gauge, wherein the feeding device carries a temperature detecting device having a temperature sensor for advancing and retracting on the surface of the workpiece.
【請求項2】 数値制御装置により切込み動作を行なう
研削盤において、マスターゲージにより寸法測定装置の
定寸動作点を補正するのみならず、マスターゲージ及び
加工物の温度を温度検出装置で検出し又、その温度差に
よる加工物直径の拡径量、又は該拡径量及び寸法測定装
置の変形量に相当する定寸装置の定寸動作点を補正する
ことを特徴とする定寸方法。
2. In a grinding machine which performs a cutting operation by a numerical controller, not only a master gauge corrects a sizing operation point of a dimension measuring device, but also a temperature detecting device detects a temperature of a master gauge and a workpiece. A sizing method comprising correcting a sizing operation point of a sizing device corresponding to a diameter expansion amount of a workpiece due to the temperature difference or a deformation amount of the diameter expansion amount and the dimension measuring device.
【請求項3】 数値制御装置により切込み動作を行なう
研削盤において、マスターゲージ及び加工物の温度を温
度検出装置で検出して、その温度差による加工物直径の
拡径量、又は該拡径量及び寸法測定装置の変形量に相当
する補正切込み量を定寸装置の定寸動作点から数値制御
装置により加減することを特徴とする定寸方法。
3. In a grinding machine which performs a cutting operation by a numerical control device, the temperature of a master gauge and a workpiece is detected by a temperature detection device, and the diameter expansion amount of the workpiece diameter due to the temperature difference, or the diameter expansion amount. And a sizing method characterized in that a correction cutting amount corresponding to the amount of deformation of the dimension measuring device is adjusted by a numerical control device from a sizing operation point of the sizing device.
JP19904993A 1993-07-16 1993-07-16 Sizing device and sizing Pending JPH0732245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19904993A JPH0732245A (en) 1993-07-16 1993-07-16 Sizing device and sizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19904993A JPH0732245A (en) 1993-07-16 1993-07-16 Sizing device and sizing

Publications (1)

Publication Number Publication Date
JPH0732245A true JPH0732245A (en) 1995-02-03

Family

ID=16401266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19904993A Pending JPH0732245A (en) 1993-07-16 1993-07-16 Sizing device and sizing

Country Status (1)

Country Link
JP (1) JPH0732245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773731A (en) * 1995-05-23 1998-06-30 Toyoda Koki Kabushiki Kaisha Method and apparatus for detecting residual grinding amount
WO1999033609A1 (en) * 1997-12-24 1999-07-08 Toyota Jidosha Kabushiki Kaisha Device and method for cool air cooling type machining
US6328636B1 (en) 1997-12-24 2001-12-11 Toyota Jidosha Kabushiki Kaisha Device and method for machining in which cool air cooling is used

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773731A (en) * 1995-05-23 1998-06-30 Toyoda Koki Kabushiki Kaisha Method and apparatus for detecting residual grinding amount
WO1999033609A1 (en) * 1997-12-24 1999-07-08 Toyota Jidosha Kabushiki Kaisha Device and method for cool air cooling type machining
US6328636B1 (en) 1997-12-24 2001-12-11 Toyota Jidosha Kabushiki Kaisha Device and method for machining in which cool air cooling is used
US6669532B1 (en) 1997-12-24 2003-12-30 Toyota Jidosha Kabushiki Kaisha Device and method for cool air cooling type machining

Similar Documents

Publication Publication Date Title
JP4824166B2 (en) Method and grinding machine for process guides in peel grinding of workpieces
US4551950A (en) Truing apparatus for a grinding wheel with rounded corners
JP2942547B2 (en) Method and apparatus for correcting thermal displacement of machine tool
US6511364B2 (en) Method and apparatus for grinding eccentric cylindrical portions of workpiece with diameter measuring device
US20020066197A1 (en) Method for measuring work portion and machining method
US5945595A (en) Online roll profile measuring system and measuring method using the same
JPS61146454A (en) Method of positioning work of nc control machine and nc control machine for executing said method
JP2995258B2 (en) Gear measuring method and gear grinding machine
US5773731A (en) Method and apparatus for detecting residual grinding amount
JP2001030141A (en) Thin pipe machining method and its device
JPH0732245A (en) Sizing device and sizing
JP3700255B2 (en) Screw shaft grinding method and screw shaft expansion and contraction correction grinding apparatus
US5800247A (en) Non-contact gaging apparatus and method
JP3701449B2 (en) Roll measuring method and apparatus
JPH06114702A (en) Automatic taper correcting device
CN211760513U (en) Gantry grinding machine
JPS60238258A (en) Automatic centering device
JP2602965B2 (en) Automatic cylindrical grinding machine
US3475826A (en) In process gauge
CN111347299A (en) Non-contact three-point measuring device of high-speed precision roll grinder
JPS6317641Y2 (en)
JPH0335971A (en) Longitudinal positioning device for work in cylindrical grinding machine
JP2597219B2 (en) NC grinding machine
JP2000052193A (en) Workpiece cutting work method, tool rest device in comb cutter lathe for achieving the method
CN112355815B (en) Grinding device for complex curved blade tips for aero-engine