JPH07322283A - Video camera with white balance adjustment device - Google Patents

Video camera with white balance adjustment device

Info

Publication number
JPH07322283A
JPH07322283A JP6116883A JP11688394A JPH07322283A JP H07322283 A JPH07322283 A JP H07322283A JP 6116883 A JP6116883 A JP 6116883A JP 11688394 A JP11688394 A JP 11688394A JP H07322283 A JPH07322283 A JP H07322283A
Authority
JP
Japan
Prior art keywords
indoor
aperture
value
outdoor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6116883A
Other languages
Japanese (ja)
Other versions
JP3005419B2 (en
Inventor
Kazuhiro Tsujino
和廣 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6116883A priority Critical patent/JP3005419B2/en
Publication of JPH07322283A publication Critical patent/JPH07322283A/en
Application granted granted Critical
Publication of JP3005419B2 publication Critical patent/JP3005419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To revise a white balance adjustment operation characteristic by using a green object area detection and follow light/rear light state discrimination means so as to apply correction when a position signal of an aperture device is compared with a threshold level thereby discriminating whether or not an object is resident indoor or outdoor. CONSTITUTION:An image is photoelectric-converted by a CCD 2 and three primary color signals R, G, B are extracted from a separation circuit 3. A matrix circuit 6 generates a luminance signal Y and color difference signals R-Y, B-Y. A selection circuit 21 and an A/D converter 22 sample the signals and convert them into digital signals, which are outputted. An integration device 23 receives a switching signal S2, integrates the digital signal for each area of 64 divisions of a screen area and the result is stored in a memory 26. Each of 64-sets of luminance evaluation values Yij, R-Y luminance evaluation values rij and B-Y luminance evaluation values bij is obtained through sequential selection. When there is a large difference between the Yij in the middle of the screen and the Yij at the circumferential part, it is discriminated to be a rear light state, and the region of rij<ro and bij<bo is discriminated to be green and to get dark, and a correction value decision circuit 42 decides a correction value. An indoor/outdoor discrimination circuit 43 receives an aperture position signal and the correction value from a hole sensor 12 to decide whether or not an object is resident indoor or o outdoor based on the data white balance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像素子から得られる
撮像映像信号を基に、白バランスの制御を行う白バラン
ス調整装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a white balance adjusting device for controlling white balance based on an image pickup video signal obtained from an image pickup device.

【0002】[0002]

【従来の技術】カラービデオカメラにおいて、光源によ
る光の波長分布の違いを補正するために、白バランスの
制御を行う必要がある。この制御は、赤(以下R)、青
(以下B)、緑(以下G)の三原色信号の比が、1:
1:1となるように、各色信号の利得を調整することで
行われる。一般には、例えば特開昭62−35792号
公報(H04N9/73)に示されるように、画面の色
差信号R−Y、B−Yの積分値が零(無彩色撮影時にと
る値)になるように利得を調整する方式が賞用されてい
る。
2. Description of the Related Art In a color video camera, it is necessary to control white balance in order to correct a difference in wavelength distribution of light depending on a light source. In this control, the ratio of the three primary color signals of red (hereinafter R), blue (hereinafter B), and green (hereinafter G) is 1:
It is performed by adjusting the gain of each color signal so that the ratio becomes 1: 1. Generally, for example, as disclosed in Japanese Patent Application Laid-Open No. 62-35792 (H04N9 / 73), the integrated values of the color difference signals RY and BY of the screen become zero (the value taken at the time of achromatic color photographing). The method of adjusting the gain is widely used.

【0003】ところで、光源の波長分布の違いは、一般
に色温度(単位ケルビン:K)で表される。通常、自然
光の色温度は、5000K以上の青っぽい色を持ち、人
工光の色温度は5000K以下の赤っぽい色を持ってい
る。通常、自然光は屋外に存在し、人工光は屋内に存在
することを考えると、屋外での撮影時には、R信号を大
きくしB信号を小さくする方向の利得補正のみを行い、
逆に屋内での撮影時には、B信号を大きくしR信号を小
さくする方向の利得補正だけを行えばよいと考えられ
る。
The difference in the wavelength distribution of the light source is generally represented by the color temperature (unit: Kelvin: K). Usually, the color temperature of natural light has a bluish color of 5000 K or more, and the color temperature of artificial light has a reddish color of 5000 K or less. Normally, considering that natural light exists outdoors and artificial light exists indoors, only the gain correction in the direction of increasing the R signal and decreasing the B signal is performed when shooting outdoors.
On the contrary, it is considered that only the gain correction in the direction of increasing the B signal and decreasing the R signal should be performed when photographing indoors.

【0004】そこで、本願出願人は、撮像映像信号中の
輝度信号レベルか、もしくはこの輝度信号が最適レベル
となるように絞り機構の絞り値を制御する絞り制御信号
から、屋内撮影状態か屋外撮影状態かを判別し、その結
果に応じて白バランス調整動作の特性を変更するように
構成した白バランス調整装置を特開平4−296192
号公報に提案している。
Therefore, the applicant of the present application, from the brightness signal level in the picked-up video signal or the diaphragm control signal for controlling the diaphragm value of the diaphragm mechanism so that this brightness signal becomes the optimum level, the indoor photographing state or the outdoor photographing state. JP-A-4-296192 discloses a white balance adjusting device configured to determine whether the state is a state and change the characteristics of the white balance adjusting operation according to the result.
It is proposed in the Gazette.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術のよう
に、屋内外の判別に絞り制御信号を使用した場合、絞り
が有するヒステリシスの為に、かなり不正確な判別とな
る。
When the diaphragm control signal is used for indoor / outdoor discrimination as in the prior art, the discrimination is quite inaccurate due to the hysteresis of the diaphragm.

【0006】そこで、絞り機構の絞り値をホール素子等
で検出すると、高い精度で絞り値を検出できる為、屋内
外の判別の精度も向上するが、逆光または順光補正を行
うシステムにこの方法を採用すると、逆光補正時は無補
正時に比べて絞りが開くことになり、実際よりも暗いと
判断される。即ち、屋外撮影であるにも関わらず、逆光
補正により絞り値が小さくなり、屋内撮影と誤判別され
る。逆に屋内撮影で順光補正時には、絞り値が大きくな
り、屋外撮影と誤判別される。
Therefore, if the aperture value of the aperture mechanism is detected by a hall element or the like, the aperture value can be detected with high accuracy, and therefore the accuracy of discrimination between indoors and outdoors can be improved, but this method is applied to a system for correcting backlight or forward light. If is adopted, the aperture will be opened more when the backlight is corrected than when it is not corrected, and it is determined that it is darker than it actually is. That is, although the outdoor shooting is performed, the aperture value is reduced by the backlight correction, and the indoor shooting is erroneously determined. On the contrary, in the indoor shooting, when the forward light correction is performed, the aperture value becomes large, and it is erroneously determined as the outdoor shooting.

【0007】また、同一照度下でも、被写体の色の差が
要因で生じる反射率の違いにより、絞りの開き具合が大
きくことなる。例えば、画面の大部分に他の色に比べ反
射率が低い緑色の草木が入った場合、屋外で比較的明る
い場合でも、絞りが開く傾向にあり、屋内撮影と誤判別
される。
Further, even under the same illuminance, the degree of opening of the diaphragm becomes large due to the difference in reflectance caused by the difference in color of the subject. For example, when a large amount of green vegetation having a lower reflectance than other colors enters the screen, even if it is relatively bright outdoors, the aperture tends to open, and it is erroneously determined to be indoor shooting.

【0008】[0008]

【課題を解決するための手段】本発明は、撮像画面を分
割して設定された複数の領域毎のR−Y、B−Yの両色
差信号の量を色評価値として検出し、色評価値を基に赤
及び青の両色信号の利得を調整する白バランス調整動作
を行う利得調整手段と、撮像映像信号の輝度レベルが最
適露出状態を実現する目標値になるように撮像素子への
入射光量を調節する絞り機構と、絞り機構の絞り量に応
じてレベルが変化する絞り位置信号を出力する絞り位置
検出手段と、絞り位置信号と閾値を比較して屋内撮影状
態か屋外撮影状態かを判別する屋内外判別手段、逆光状
態または順光状態の発生を判定する判定手段と、逆光状
態または順光状態に応じて前記絞り位置信号レベルまた
は閾値に補正を加える補正手段を備え、屋内外判別手段
にて補正後の絞り位置信号と閾値の比較を為し、この比
較結果に応じて白バランス調整動作の特性を変更するこ
とを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, the amount of both RY and BY color difference signals for each of a plurality of areas set by dividing an image pickup screen is detected as a color evaluation value to perform color evaluation. Gain adjusting means for performing a white balance adjusting operation for adjusting the gains of both red and blue color signals based on the value, and an image pickup device for adjusting the brightness level of the picked-up image signal to a target value for realizing an optimum exposure state. A diaphragm mechanism that adjusts the amount of incident light, diaphragm position detection means that outputs a diaphragm position signal whose level changes according to the diaphragm amount of the diaphragm mechanism, and a comparison between the diaphragm position signal and a threshold value to determine whether it is an indoor shooting condition or an outdoor shooting condition. An indoor / outdoor discrimination means for discriminating whether or not a backlight condition or a forward light condition occurs, and a correcting means for correcting the aperture position signal level or the threshold value according to the backlight condition or the forward light condition. Aperture after correction by discrimination means It constitutes a comparison of 置信 No. and the threshold, and changes the characteristics of the white balance adjustment operation in accordance with the comparison result.

【0009】また、別の手段として、色評価値を基に撮
像画面上での緑色の被写体の占める面積を検出する緑色
被写体検出手段と、面積に応じて絞り位置信号レベルま
たは閾値に補正を加える補正手段を備え、屋内外判別手
段にて補正後の絞り位置信号と閾値の比較を為し、この
比較結果に応じて前記白バランス調整動作の特性を変更
することを特徴とする。
As another means, a green subject detecting means for detecting the area occupied by a green subject on the image pickup screen based on the color evaluation value and a correction for the diaphragm position signal level or the threshold value depending on the area. The present invention is characterized in that a correction means is provided, the aperture position signal after correction is made by the indoor / outdoor discrimination means, and the threshold value is compared, and the characteristic of the white balance adjustment operation is changed according to the comparison result.

【0010】[0010]

【作用】上述のように構成したので、逆光状態の発生
時、または撮像画面に緑色の被写体が大きな面積を占め
て、絞り機構の絞りが屋外撮影であるにもかかわらず開
いたり、逆に順光状態の発生時、絞り機構の絞りが屋内
撮影であるにもかかわらず閉じることにより、絞り機構
の絞り値だけを参考にしていると屋内外の判別に誤判別
を生じやすい場合にも、補正値の付与により前記誤判別
が阻止される。
With the above-described structure, when a backlit state occurs or a green subject occupies a large area on the image pickup screen, the aperture of the aperture mechanism opens even if it is used for outdoor shooting, and vice versa. When a light condition occurs, the aperture of the aperture mechanism closes even when shooting indoors. The erroneous discrimination is prevented by giving the value.

【0011】[0011]

【実施例】以下、図面に従い本発明の一実施例について
説明する。図1は本実施例によるカラービデオカメラの
自動白バランス調整回路の回路ブロック図である。レン
ズ群1を通過した光は、後述の絞り機構40を介して入
射されてCCD2上に結像されて光電変換された後、色
分離回路3にて、R、G、Bの3原色信号として取り出
される。これら3原色信号の中のR及びB信号は、夫々
R及びB増幅回路4、5を経て、G信号と共にカメラプ
ロセス及びマトリックス回路6に入力され、これらを基
に輝度信号Y及び赤、青夫々の色差信号R−Y、B−Y
が作成されて、ビデオ回路7に供給され周知の処理が施
される。また、Y、R−Y、B−Yの各信号は、同時に
選択回路21にも供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit block diagram of an automatic white balance adjusting circuit of a color video camera according to this embodiment. The light that has passed through the lens group 1 enters through a diaphragm mechanism 40, which will be described later, is imaged on the CCD 2 and is photoelectrically converted, and then is converted into three primary color signals of R, G and B by a color separation circuit 3. Taken out. The R and B signals of these three primary color signals are input to the camera process and matrix circuit 6 together with the G signal through the R and B amplifier circuits 4 and 5, respectively, and based on these, the luminance signal Y and the red and blue signals, respectively. Color difference signals R-Y and B-Y
Is created and supplied to the video circuit 7 to be subjected to known processing. Further, the Y, RY, and BY signals are simultaneously supplied to the selection circuit 21.

【0012】選択回路21はタイミング回路25からの
選択信号S1により輝度信号Y及び色差信号R−Y、B
−Yの3信号のいづれか1つを1フィ−ルド毎に順次選
択するもので、Y→(R−Y)→(B−Y)→Y→(R
−Y)→・・・と1フィ−ルド毎に後段のA/D変換器
22に出力される。尚、選択信号S1は後述の如く同期
分離回路24から得られる垂直同期信号に基づいて作成
される。
The selection circuit 21 receives the luminance signal Y and the color difference signals RY and B according to the selection signal S1 from the timing circuit 25.
One of the three signals of -Y is sequentially selected for each field, and Y → (RY) → (BY) → Y → (R
-Y) → ... is output to the A / D converter 22 in the subsequent stage every one field. The selection signal S1 is created based on the vertical sync signal obtained from the sync separation circuit 24 as described later.

【0013】A/D変換器22は、所定のサンプリング
周期で選択回路21にて選択された輝度信号Y及び色差
信号R−Y、B−Yの1つをサンプリングしてディジタ
ル値に変換し、この値を積分器23に出力する。
The A / D converter 22 samples one of the luminance signal Y and the color difference signals RY and BY selected by the selection circuit 21 at a predetermined sampling period and converts the sampled value into a digital value. This value is output to the integrator 23.

【0014】ところで、タイミング回路25はカメラプ
ロセス及びマトリックス回路6からの垂直、水平同期信
号及びCCD2を駆動する固定の発振器出力に基づい
て、撮像画面を図2に示す8×8の64個の長方形の領
域A11、A12、A13・・A88、即ちAij
(i、j:1〜8)に分割して、各領域毎にこれらの領
域内の選択回路21出力を時分割で取り出すための切換
信号S2を積分器23に出力する。
The timing circuit 25 is based on the camera process and the vertical and horizontal synchronizing signals from the matrix circuit 6 and the fixed oscillator output for driving the CCD 2, and the image pickup screen is shown in FIG. Areas A11, A12, A13 ... A88, that is, Aij
It is divided into (i, j: 1 to 8), and a switching signal S2 for taking out the output of the selection circuit 21 in these areas in time division is output to the integrator 23 for each area.

【0015】積分器23は切換信号S2を受けて、選択
回路21出力のA/D変換値を領域毎に1フィ−ルド期
間にわたって加算し、即ち64個の領域毎にディジタル
積分し、この1フィ−ルド分の積分が完了するとこの積
分値を評価値としてメモリ26に記憶させる。この結
果、ある任意のフィ−ルドで64個の領域内に対応する
輝度信号Yのディジタル積分値が64個の輝度評価値y
ijとして得られることになる。また次のフィールドで
は選択回路21にて色差信号R−Yのディジタル積分値
が選択されているので、積分器23の各領域における積
分の結果、色差信号R−Yのディジタル積分値が64個
の色評価値rijとして得られることになる。更に次の
フィ−ルドでは色差信号B−Yが選択されているので、
色差信号B−Yの領域毎のディジタル積分値が64個の
色評価値bijとして得られる。こうして、輝度信号
Y、色差信号R−Y、B−Yの3フィ−ルドの積算が終
了した時点で、輝度評価値yij及び色評価値rij、
bijの64領域分の値がメモリ26に記憶されること
になる。これ以降、上述と同様の動作が繰り返され、次
のフィ−ルドでは輝度評価値yij、次のフィ−ルドで
は色評価値rij、更に次のフィールドでは色評価値b
ijと順次更新されることになる。
Upon receipt of the switching signal S2, the integrator 23 adds the A / D conversion value of the output of the selection circuit 21 for each field over one field period, that is, digitally integrates for every 64 fields, and the 1 When the integration for the field is completed, this integrated value is stored in the memory 26 as an evaluation value. As a result, the digital integration value of the luminance signal Y corresponding to 64 regions in a certain arbitrary field is 64 luminance evaluation values y.
It will be obtained as ij. Further, in the next field, since the digital integration value of the color difference signal R-Y is selected by the selection circuit 21, as a result of integration in each area of the integrator 23, the digital integration value of the color difference signal R-Y is 64. It is obtained as the color evaluation value rij. Further, since the color difference signal BY is selected in the next field,
The digital integrated value of each area of the color difference signal BY is obtained as 64 color evaluation values bij. Thus, when the integration of the three fields of the luminance signal Y, the color difference signals RY, and BY is completed, the luminance evaluation value yij and the color evaluation value rij,
The values of 64 areas of bij are stored in the memory 26. After that, the same operation as described above is repeated, the luminance evaluation value yij in the next field, the color evaluation value rij in the next field, and the color evaluation value b in the next field.
ij will be sequentially updated.

【0016】上述の様にして得られる最新の色評価値r
ij、bijは、画面評価回路27に送られ次式の数1
及び数2に基づいて各色差信号の画面全体の画面色評価
値Vr、Vbとして算出される。
The latest color evaluation value r obtained as described above
ij and bij are sent to the screen evaluation circuit 27 and the following equation 1
And the screen color evaluation values Vr and Vb of the entire screen of each color difference signal are calculated based on Equation 2 and Equation 2.

【0017】[0017]

【数1】 [Equation 1]

【0018】[0018]

【数2】 [Equation 2]

【0019】この数1、2は、64個の各領域の色評価
値rij、bijの全ての総和を領域数で割算して、1
個の領域についての平均値を画面色評価値として算出す
る。この画面色評価値Vr、Vbは夫々、利得制御回路
29、30に供給される。
The numbers 1 and 2 are obtained by dividing the total sum of all 64 color evaluation values rij and bij of each region by the number of regions and
The average value for each area is calculated as the screen color evaluation value. The screen color evaluation values Vr and Vb are supplied to the gain control circuits 29 and 30, respectively.

【0020】利得制御回路29は、画面色評価値Vrが
零になるようにR増幅回路4の利得を制御し、同様に利
得制御回路30は画面色評価値Vbが零になるようにB
増幅回路5の利得を制御する。更に両利得制御回路2
9、30での利得制御特性は後述の屋内外判別回路43
からの判別結果に応じて変更される。
The gain control circuit 29 controls the gain of the R amplifier circuit 4 so that the screen color evaluation value Vr becomes zero. Similarly, the gain control circuit 30 controls the gain B so that the screen color evaluation value Vb becomes zero.
The gain of the amplifier circuit 5 is controlled. Furthermore, both gain control circuits 2
The gain control characteristics in 9 and 30 are the indoor / outdoor discrimination circuit 43 described later.
It is changed according to the discrimination result from.

【0021】尚、積分回路23に入力される両色差信号
の基準レベル、即ち零レベルは、完全な無彩色面を撮影
した時に得られるレベルに予め設定されており、従っ
て、各色差信号は正の値だけでなく、負の値もとり得る
ことはいうまでもない。
The reference level of the color difference signals input to the integrating circuit 23, that is, the zero level is preset to the level obtained when a perfect achromatic surface is photographed, and therefore each color difference signal is positive. It goes without saying that not only the value of but also a negative value can be taken.

【0022】また、メモリ26に記憶されている最新の
色評価値rij、bijは色分布判定回路41に入力さ
れて、撮像画面内の特定の色の分布状況を判定する。こ
こで特定の色とは、図3の両色評価値を縦軸、横軸とし
た座標軸上の斜線部分の色温度分布範囲、即ち色評価値
rijが判別基準値r0より小さく、色評価値bijが
判別基準値b0より小さい範囲に該当し、両色評価値が
この範囲内にある場合には対応する部分は画面上では略
緑色に映出される。
The latest color evaluation values rij and bij stored in the memory 26 are input to the color distribution determination circuit 41 to determine the distribution status of a specific color in the image pickup screen. Here, the specific color means the color temperature distribution range of the shaded portion on the coordinate axis with the two color evaluation values in FIG. 3 as the vertical and horizontal axes, that is, the color evaluation value rij is smaller than the discrimination reference value r0, and the color evaluation value is When bij falls within a range smaller than the discrimination reference value b0 and both color evaluation values are within this range, the corresponding portions are displayed in a substantially green color on the screen.

【0023】色分布判定回路41では、各領域毎に両色
評価値を図3の座標軸上にプロットして斜線部分の範囲
内に存在するか否かを判定すると共に範囲内に存在する
領域数をカウントする機能を有し、具体的には図4に示
すように色評価値rijと判別基準値r0を比較器51
にて比較して、rij<r0の時にのみ1個のパルス状
の比較出力を発せしめ、同様に色評価値bijと判別基
準値b0を比較器52にて比較して、bij<b0の時
にのみ1個のパルス状の比較出力を発せしめ、両比較出
力をANDゲート53に入力して論理和をとり、このA
NDゲート53出力をカウンタ54にてカウントする。
これらの比較及びカウント動作は64領域分全てに対し
て実行され、全領域の判定が終了するとカウンタ54の
カウント値Nは、後段の補正値決定回路42に入力され
た後にカウンタ54はリセットされ、再び同一の動作を
繰り返す。
The color distribution judgment circuit 41 plots the evaluation values of both colors for each area on the coordinate axes of FIG. 3 to judge whether or not they exist within the range of the shaded area, and the number of areas within the range. And has a function of counting the color evaluation value rij and the discrimination reference value r0 as shown in FIG.
, A single pulse-shaped comparison output is generated only when rij <r0. Similarly, the color evaluation value bij and the discrimination reference value b0 are compared by the comparator 52, and when bij <b0. Only one pulse-shaped comparison output is issued, and both comparison outputs are input to the AND gate 53 to take the logical sum and this A
The output of the ND gate 53 is counted by the counter 54.
These comparison and counting operations are executed for all 64 areas, and when the determination of all areas is completed, the count value N of the counter 54 is input to the correction value determination circuit 42 in the subsequent stage, and then the counter 54 is reset. The same operation is repeated again.

【0024】一方、輝度評価値yijは露出制御回路4
3に供給される。この露出制御回路43は図5のような
構成を成す。輝度評価値yijはスイッチ70を介して
積算器71、72に択一的に入力され、1フィールド期
間にわたって積算される。ここで、露出制御は逆光、順
光補正用に画面を中央の中央領域ACと周辺の周辺領域
ASの2領域での輝度レベルを比較して、逆光あるいは
順光状態にあればこれを補正する働きを為す。中央領域
ACは、図2に示すように前述した64領域の中の中央
の16領域から構成され、周辺領域ASは周辺の48領
域から構成される。尚、中央領域ACは面積S1、周辺
領域ASは面積S2とすると、3S1=S2となる。
On the other hand, the brightness evaluation value yij is the exposure control circuit 4
3 is supplied. The exposure control circuit 43 has a structure as shown in FIG. The brightness evaluation value yij is alternatively input to the integrators 71 and 72 via the switch 70 and integrated over one field period. In the exposure control, the brightness levels in the central area AC in the center and the peripheral area AS in the periphery are compared for the backlight and forward light correction, and if there is backlight or forward light correction, the brightness levels are corrected. Do a job. As shown in FIG. 2, the central area AC is composed of the central 16 areas among the above-mentioned 64 areas, and the peripheral area AS is composed of the peripheral 48 areas. If the central area AC has an area S1 and the peripheral area AS has an area S2, then 3S1 = S2.

【0025】切換信号S3はタイミング回路25より発
せられ、入力される輝度評価値yijが中央領域ACを
構成する16領域内での値であれば輝度評価値を積算器
71に入力し、逆に周辺領域ASを構成する48領域内
での値であれば輝度評価値を積算器72に入力する様に
スイッチ70の切換を実行する。
The switching signal S3 is issued from the timing circuit 25, and if the input brightness evaluation value yij is a value within the 16 areas forming the central area AC, the brightness evaluation value is input to the integrator 71 and vice versa. If the value is within the 48 areas forming the peripheral area AS, the switch 70 is switched so that the brightness evaluation value is input to the integrator 72.

【0026】積算器71、72は夫々、1フィールド期
間にわたって入力される輝度評価値を全て加算して、こ
の加算出力を輝度レベルY1、Y2として出力する。即
ち、輝度レベルY1は中央領域AC内の輝度評価値の総
和、輝度レベルY2は周辺領域AS内の輝度評価値の総
和に相当する。
Each of the integrators 71 and 72 adds all the brightness evaluation values input over one field period, and outputs the added output as the brightness levels Y1 and Y2. That is, the brightness level Y1 corresponds to the sum of the brightness evaluation values in the central area AC, and the brightness level Y2 corresponds to the sum of the brightness evaluation values in the peripheral area AS.

【0027】輝度レベルY1は、単純平均回路79、正
規化回路73及び重み付け回路75に入力され、同様に
輝度レベルY2は、単純平均回路79、正規化回路74
及び重み付け回路76に入力される。
The luminance level Y1 is input to the simple averaging circuit 79, the normalizing circuit 73 and the weighting circuit 75. Similarly, the luminance level Y2 is the simple averaging circuit 79 and the normalizing circuit 74.
And the weighting circuit 76.

【0028】正規化回路73では、輝度レベルY1を中
央領域ACの面積S1で割り算して、中央領域ACでの
単位面積当りの輝度レベルを算出し、同様に正規化回路
74では、輝度レベルY2を周辺領域ASの面積S2で
割り算して、周辺領域ASでの単位面積当りの輝度レベ
ルを算出する。
In the normalization circuit 73, the brightness level Y1 is divided by the area S1 of the central region AC to calculate the brightness level per unit area in the central region AC. Similarly, in the normalization circuit 74, the brightness level Y2 is calculated. Is divided by the area S2 of the peripheral region AS to calculate the luminance level per unit area in the peripheral region AS.

【0029】重み付け回路75では、輝度レベルY1に
後述の優先度決定回路77にて決定される中央領域AC
の重み付け量m1を掛け算し、同様に重み付け回路76
では、輝度レベルY2に重み付け量m2を掛け算し、夫
々の算出結果は重み付け平均回路78に入力される。
In the weighting circuit 75, the central area AC determined by the priority determining circuit 77, which will be described later, is assigned to the brightness level Y1.
By multiplying the weighting amount m1 of
Then, the brightness level Y2 is multiplied by the weighting amount m2, and the respective calculation results are input to the weighting averaging circuit 78.

【0030】優先度決定回路77では、中央領域ACで
の単位面積当りの輝度レベルに対する周辺領域ASでの
単位面積当りの輝度レベルの比が、基準値Rより大か小
かを判断し、この判断結果に応じて両領域の重み付け量
m1、m2を決定するもので、具体的には{(Y2/S
2)/(Y1/S1)}>Rを満足する、即ち単位面積
当りの輝度レベルを比較すると周辺領域ASが中央領域
ACよりかなり高い場合には、周辺に光源等が侵入して
中央に位置する主要被写体が逆光状態にあると判定し
て、この逆光状態を補正するために、中央の重み付け量
のみを大きくして、m1=3、m2=1となる。
The priority determining circuit 77 determines whether the ratio of the brightness level per unit area in the central area AC to the brightness level per unit area in the peripheral area AS is larger or smaller than the reference value R. The weighting amounts m1 and m2 of both areas are determined according to the determination result. Specifically, {(Y2 / S
2) / (Y1 / S1)}> R is satisfied, that is, when comparing the brightness levels per unit area, when the peripheral area AS is considerably higher than the central area AC, a light source or the like intrudes into the periphery and is positioned at the center. It is determined that the main subject is in the backlit state, and in order to correct the backlit state, only the weighting amount at the center is increased to m1 = 3 and m2 = 1.

【0031】一方、{(Y2/S2)/(Y1/S
1)}≦Rを満足する、即ち単位面積当りの輝度レベル
を比較すると周辺領域ASが中央領域ACと余り変わら
ない場合には、逆光状態にはないと判定して、前述の場
合に比べて中央の重み付け量を小さくして、m1=1、
m2=1となる。
On the other hand, {(Y2 / S2) / (Y1 / S
1)} ≦ R is satisfied, that is, when the peripheral area AS is not much different from the central area AC when comparing the brightness levels per unit area, it is determined that the backlight state is not present, and compared with the above case. By reducing the weighting amount in the center, m1 = 1,
m2 = 1.

【0032】単純平均回路79は、重み付けを考慮せず
に、画面全体の単位面積当りの輝度レベルを単純平均値
Z1として算出するもので、Z1=(Y1+Y2)/
(S1+S2)が成り立つ。
The simple averaging circuit 79 calculates the brightness level per unit area of the entire screen as a simple average value Z1 without considering weighting, and Z1 = (Y1 + Y2) /
(S1 + S2) is established.

【0033】重み付け平均回路78は、両重み付け回路
75、76出力の加算値を、各重み付け量と両領域の面
積の積の和で数3のように割り算して重み付け平均値Z
2として算出するものである。
The weighted average circuit 78 divides the added value of the outputs of both weighted circuits 75 and 76 by the sum of the products of the respective weighted amounts and the areas of both regions as shown in Formula 3, and weighted average value Z.
It is calculated as 2.

【0034】[0034]

【数3】 [Equation 3]

【0035】上述のように算出された単純平均値Z1及
び重み付け平均値Z2は、割算回路80に入力され、Z
1/Z2の演算が実行され、この演算結果は目標レベル
制御回路81に入力される。
The simple average value Z1 and the weighted average value Z2 calculated as described above are input to the division circuit 80, where Z
The calculation of 1 / Z2 is executed, and the calculation result is input to the target level control circuit 81.

【0036】目標レベル制御回路81は、露出調整時の
目標レベルを可変制御するもので、非逆光時、即ち重み
付け量m1、m2が共に1で画面全体が重み付け量が均
一である場合に、最適な画面が得られる最適目標レベル
をP0とし、逆光補正時の目標レベルPをP=P0×Z
1/Z2で算出する。こうして設定された目標レベルP
は後段の比較回路82の+側入力端子に印加される。
The target level control circuit 81 variably controls the target level at the time of exposure adjustment, and is optimal when there is no backlight, that is, when the weighting amounts m1 and m2 are both 1 and the entire screen has a uniform weighting amount. Let P0 be the optimum target level that obtains such a screen, and the target level P at the time of backlight compensation is P = P0 × Z
Calculate with 1 / Z2. The target level P set in this way
Is applied to the + side input terminal of the comparison circuit 82 in the subsequent stage.

【0037】比較回路82は、輝度信号YをLPF83
に入力して検波した輝度信号レベルが−側入力端子に入
力され、+側入力端子に入力された目標レベルとレベル
比較し、輝度信号レベルが目標レベルPに一致するよう
にアイリスモータ50に駆動制御信号を発する。
The comparison circuit 82 outputs the luminance signal Y to the LPF 83.
The detected luminance signal level is input to the-side input terminal and compared with the target level input to the + side input terminal, and the iris motor 50 is driven so that the luminance signal level matches the target level P. Issue a control signal.

【0038】この目標レベルPは減算回路84にも入力
され、M=P−P0の減算が為され、この減算値が目標
レベルの変動量Mとなって、補正値決定回路42に出力
される。
This target level P is also input to the subtraction circuit 84, and M = P-P0 is subtracted, and this subtraction value becomes the variation amount M of the target level and is output to the correction value determination circuit 42. .

【0039】ここで、例えば、周辺領域ASの輝度レベ
ルY2が中央領域ACの輝度レベルY1の10倍となる
ような逆光状態を想定して前述の算出を為すと、P=
(66/52)×P0となり目標レベルが上昇すること
になる。従って、変動量Mも正の値となる。
Here, for example, assuming that the backlight level is such that the brightness level Y2 of the peripheral area AS is 10 times the brightness level Y1 of the central area AC, the above calculation is performed.
(66/52) × P0, and the target level rises. Therefore, the variation amount M also has a positive value.

【0040】アイリスモータ50はCCD2の前方に配
された絞り機構40を駆動して、CCD2に入射される
光量を調節するもので、LPF83からの輝度信号レベ
ルが目標レベルPより小さい場合には、絞り機構40の
絞り量を小さくして、逆に目標レベルPよりも大きい場
合には、絞り量を大きくする様に動作する。
The iris motor 50 drives the diaphragm mechanism 40 arranged in front of the CCD 2 to adjust the amount of light incident on the CCD 2. When the brightness signal level from the LPF 83 is smaller than the target level P, When the diaphragm amount of the diaphragm mechanism 40 is reduced, and conversely is larger than the target level P, the diaphragm amount is increased.

【0041】絞り機構40は、図6に示すように、下側
にV字状の切欠き部124aを有する可動羽根124と
上側にV字状の切欠き部125aを有する可動羽根12
5が、夫々の腕部124b、125bを支軸126、1
27にて回転子129に枢支し、更にこの回転子129
を支軸140にてカメラ本体に枢支することにより、カ
メラの鏡筒内に配されることになり、両切欠き部124
a、125aにて四角形の絞り開口部128が形成さ
れ、この開口部128を光軸上に位置させることによ
り、この絞り開口部128を通して入射光がCCD2に
到達可能になる。
As shown in FIG. 6, the diaphragm mechanism 40 includes a movable blade 124 having a V-shaped notch 124a on the lower side and a movable blade 12 having a V-shaped notch 125a on the upper side.
5 supports the respective arm portions 124b and 125b with the support shafts 126 and 1
The rotor 129 is pivotally supported at 27, and the rotor 129
Is pivotally supported by the camera body with a support shaft 140, so that it is arranged inside the lens barrel of the camera.
A rectangular aperture opening 128 is formed by a and 125a. By locating this aperture 128 on the optical axis, incident light can reach the CCD 2 through this aperture opening 128.

【0042】ここで、回転子129を反時計方向に回転
させると、可動羽根125は下方に移動し、逆に可動羽
根124は上方に移動し、絞り開口部128の面積が大
きくなり、絞り量が小さくなって、絞りが開かれて入射
光量が増加することになる。また、回転子129を時計
方向に回転させると、可動羽根125は上方に、可動羽
根124は下方に移動して絞り開口部128の面積が小
さくなり、絞り量が大きくなって、絞りは閉じて入射光
量が抑制されて減少することになる。
When the rotor 129 is rotated counterclockwise, the movable blade 125 moves downward, and conversely the movable blade 124 moves upward, increasing the area of the aperture opening 128 and increasing the aperture amount. Becomes smaller, the diaphragm is opened, and the amount of incident light increases. When the rotor 129 is rotated in the clockwise direction, the movable blade 125 moves upward and the movable blade 124 moves downward to reduce the area of the aperture opening 128, increase the aperture amount, and close the aperture. The amount of incident light is suppressed and reduced.

【0043】この図6において、122は光学撮像系内
に配された機械的な絞り機構40の絞り位置を検出する
ホールセンサであり、絞り機構40の可動羽根125の
腕部125bに固着された磁石141の近傍位置にてカ
メラシャーシに固着されており、回転子129が回転し
て絞り量が変化するとホ−ルセンサ122と磁石141
間の距離が変化し、これによりホ−ルセンサ122の出
力レベルが変化する。即ち、ホ−ルセンサ122出力レ
ベルは磁石141が接近して磁石141からの磁力が強
まるにつれて上昇する。即ち、基準位置にホ−ルセンサ
122が配置されていると、この基準位置からの距離X
が短くなると、センサ出力レベルEは上昇することにな
る。
In FIG. 6, 122 is a Hall sensor for detecting the diaphragm position of the mechanical diaphragm mechanism 40 arranged in the optical image pickup system, and is fixed to the arm portion 125b of the movable blade 125 of the diaphragm mechanism 40. It is fixed to the camera chassis in the vicinity of the magnet 141, and when the rotor 129 rotates and the diaphragm amount changes, the hall sensor 122 and the magnet 141.
The distance between them changes, which changes the output level of the hall sensor 122. That is, the output level of the hall sensor 122 rises as the magnet 141 approaches and the magnetic force from the magnet 141 increases. That is, when the hall sensor 122 is arranged at the reference position, the distance X from the reference position is increased.
When becomes short, the sensor output level E increases.

【0044】このホールセンサ122の出力が絞り位置
信号となり、絞り量が小さい時にこの絞り位置信号レベ
ルも小さくなり、逆に絞り量が大きい時に信号レベルも
大きくなる。
The output of the Hall sensor 122 becomes a diaphragm position signal. When the diaphragm amount is small, the diaphragm position signal level becomes small, and conversely, when the diaphragm amount is large, the signal level becomes large.

【0045】補正値決定回路42には、色分布判定回路
41からの領域数Nと露出制御回路43からの変動量M
が共に入力され、補正値Q=a×N+b×Mの算出式に
基づいて補正値が算出され、後段の屋内外判別回路43
に入力される。この補正値は、後述するように屋内外の
判定に際して、絞り機構40の絞り量を示す絞り位置信
号で屋内外の判定を行う場合に、撮像画面内に緑色の被
写体の面積が大きくなることや、逆光補正に伴って、誤
判定が発生するのを防止する為の値である。
The correction value determination circuit 42 includes the number N of areas from the color distribution determination circuit 41 and the variation amount M from the exposure control circuit 43.
Are input together, the correction value is calculated based on the calculation formula of the correction value Q = a × N + b × M, and the indoor / outdoor discrimination circuit 43 in the subsequent stage is calculated.
Entered in. As will be described later, this correction value increases the area of the green subject in the image pickup screen when the indoor / outdoor determination is performed using the aperture position signal indicating the aperture amount of the aperture mechanism 40 in the indoor / outdoor determination. Is a value for preventing an erroneous determination from occurring due to backlight correction.

【0046】屋内外判別回路43は、ホ−ルセンサ12
2からの絞り位置信号及び補正値Qが入力され、これら
のデータを基に撮影が屋内、屋外のいずれで行われてい
るかを判別する。次に、この判別方法について詳述す
る。
The indoor / outdoor discrimination circuit 43 includes a hall sensor 12
The aperture position signal and the correction value Q from 2 are input, and it is determined based on these data whether the shooting is performed indoors or outdoors. Next, this determination method will be described in detail.

【0047】通常の状態、即ち緑色の被写体が撮像画面
上に存在せず、且つ逆光状態にもない場合の判別に際し
ては、補正値Qは零になり、絞り位置信号レベルと判別
閾値Vrefを比較して、絞り位置信号レベルが閾値V
refより高くて絞り閉側にある場合には屋外撮影と判
別し、逆に絞り位置信号レベルが閾値Vrefより低く
絞り開側にある場合には屋内撮影と判別される。
In the normal state, that is, when the green subject is not present on the image pickup screen and is not in the backlit state, the correction value Q becomes zero, and the diaphragm position signal level is compared with the discrimination threshold Vref. Then, the diaphragm position signal level becomes the threshold value V
If it is higher than ref and is on the aperture close side, it is determined to be outdoor photography, and conversely, if the aperture position signal level is lower than the threshold value Vref and is on the aperture open side, it is determined to be indoor photography.

【0048】ところで、閾値Vrefを固定値とする
と、屋外撮影時に緑色の被写体が撮像画面上で大きな面
積を占める場合、緑色の光に対する反射率が低いことか
ら、同一照度下でも他の色に比べて暗いと露出制御回路
43にて判断されて、絞り機構40は絞りを開く方向に
駆動し、同一照度下で緑色の被写体が存在しない場合の
絞り位置から移動することになる。即ち、ある照度下で
緑色の被写体が画面の上で大きな面積を占めなければ、
図7の絞り位置信号レベルがL1となるが、緑色の被写
体が大きな面積を占めれば絞り位置信号レベルはL2ま
で下降して閾値Vrefを下回ってしまい、屋外撮影で
あるにもかかわらず、屋内撮影と誤判別されることにな
る。
By the way, when the threshold value Vref is set to a fixed value, when a green subject occupies a large area on the image pickup screen during outdoor shooting, the reflectance for green light is low, so that it is compared with other colors even under the same illuminance. When the exposure control circuit 43 determines that it is dark, the diaphragm mechanism 40 drives the diaphragm in the opening direction, and moves from the diaphragm position when there is no green subject under the same illuminance. That is, unless a green subject occupies a large area on the screen under certain illuminance,
The aperture position signal level in FIG. 7 is L1, but if the green subject occupies a large area, the aperture position signal level will drop to L2 and fall below the threshold value Vref. It will be mistaken for shooting.

【0049】そこで、補正値決定回路42からの補正値
Qにより絞り位置信号レベルに補正を加えることにより
対処している。即ち、緑色の被写体の撮像画面上での占
める面積を領域数Nとし、これに係数aを乗算した値a
×Nを補正値Qとして屋内外判別回路43に入力し、絞
り位置信号レベルにこの補正値Qを加算して図7の矢印
90のようにL2からL1に補正値Q分だけ上昇させる
ことにより閾値Vrefより絞り閉側に位置することに
なり、誤判別が回避される。
Therefore, a correction value Q from the correction value determination circuit 42 is used to correct the diaphragm position signal level. That is, the area occupied by the green subject on the image pickup screen is defined as the number of areas N, and this is multiplied by a coefficient a to obtain a value a.
By inputting × N as the correction value Q to the indoor / outdoor discrimination circuit 43, adding this correction value Q to the diaphragm position signal level, and increasing the correction value Q from L2 to L1 by the correction value Q as indicated by arrow 90 in FIG. The position is closer to the diaphragm closing side than the threshold value Vref, and misjudgment is avoided.

【0050】また、同様に屋外撮影時に逆光状態になる
と、露出制御回路43にて前述の逆光補正動作が実行さ
れ、周辺領域ASでの高輝度部分の重み付けを小さくす
ることにより、同一条件で逆光補正を実行しない図8の
絞り位置信号レベルのL3からレベルL4に絞り位置は
絞り開方向に移動し、閾値がVrefで固定されていれ
ば、この閾値を越えて屋内撮影と誤判別されることにな
る。そこで、この場合にも、補正値決定回路42にて変
動量Mに係数bを乗算した値b×Mを補正値Qとして屋
内外判別回路43に入力し、絞り位置信号レベルにこの
補正値Qを加算して、図8の矢印91のようにL4から
L3に上昇させることにより閾値に対して絞り閉側に位
置することになり、誤判別が回避される。
Similarly, when a backlit state occurs during outdoor photography, the above-described backlight correction operation is executed by the exposure control circuit 43, and the weighting of the high-brightness portion in the peripheral area AS is reduced, so that the backlit is performed under the same conditions. If the aperture position signal level in FIG. 8 without correction is moved from the aperture level L3 to the level L4 in the aperture opening direction and the threshold value is fixed at Vref, it may be erroneously determined to be indoor photography because the threshold value is exceeded. become. Therefore, also in this case, a value b × M obtained by multiplying the variation amount M by the coefficient b in the correction value determination circuit 42 is input as the correction value Q to the indoor / outdoor discrimination circuit 43, and the correction value Q is set as the aperture position signal level. Is added and is increased from L4 to L3 as indicated by an arrow 91 in FIG. 8, the position is closer to the diaphragm than the threshold value, and erroneous determination is avoided.

【0051】尚、係数a、bは最適な屋内外判別が実行
可能な値となるように、予め実験により設定されてい
る。また、補正値決定回路42での補正値決定に際して
は、領域数Nと変動量Mは同時に補正値決定に寄与でき
る。言い換えると、上述の2通りの状況、即ち緑色の被
写体が撮像画面上で大きな面積を占め、しかも逆光状態
である場合には、更に補正量は大きくなる。
The coefficients a and b are set in advance by experiments so that the optimum indoor / outdoor discrimination can be executed. When the correction value determination circuit 42 determines the correction value, the number of regions N and the variation amount M can simultaneously contribute to the correction value determination. In other words, in the above two situations, that is, in the case where the green subject occupies a large area on the image pickup screen and is in the backlit state, the correction amount is further increased.

【0052】こうして屋内外判別回路43にて得られた
判別結果は利得制御回路29、30に入力される。ここ
で通常、利得制御回路29は入力された画面色評価値V
rが零以上のときにはこの評価値が大きくなる程にR増
幅回路4の利得Grを小さくし、零以下のときには評価
値が小さくなる程に利得Grを大きくする方向に変化さ
せ、同様に利得制御回路30も画面色評価値Vbが零以
上のときにこの評価値が大きくなる程にB増幅回路5の
利得Gbを小さくし、零以下のときには評価値が小さく
なる程に利得Gbを大きくする方向に変化させ、両画面
色評価値が常に零レベルになるような調整を行う。
The discrimination result obtained by the indoor / outdoor discrimination circuit 43 is input to the gain control circuits 29 and 30. Here, normally, the gain control circuit 29 receives the input screen color evaluation value V
When r is equal to or greater than zero, the gain Gr of the R amplifier circuit 4 is decreased as the evaluation value increases, and when equal to or less than zero, the gain Gr is increased as the evaluation value decreases, and the gain control is similarly performed. In the circuit 30, the gain Gb of the B amplifier circuit 5 is reduced as the evaluation value increases when the screen color evaluation value Vb is zero or more, and the gain Gb increases as the evaluation value decreases when the screen color evaluation value Vb is zero or less. And adjust so that both screen color evaluation values are always at zero level.

【0053】ところで、前述したように、自然光が存在
する屋外撮影では、自然光の色温度が5000K以上の
青っぽい色を有することから、屋外撮影時にはR信号に
比べてB信号を抑えるように利得補正を行うのが好まし
い。
By the way, as described above, in outdoor shooting in which natural light is present, since the natural light has a bluish color with a color temperature of 5000 K or more, the gain correction is performed to suppress the B signal compared to the R signal in outdoor shooting. It is preferable to carry out.

【0054】そこで、屋外撮影状態と判断されたときに
は、図9及び図10の実線のように、画面色評価値Vr
が正、画面色評価値Vbが負の部分での利得を1で固定
する。即ち、実質的に利得調整を行わないように動作さ
せる。これにより屋外撮影時には、画面色評価値Vrが
大きくなっても、利得Grが小さくなるのは抑えられ
る。
Therefore, when the outdoor photographing condition is determined, the screen color evaluation value Vr is indicated by the solid lines in FIGS. 9 and 10.
Is fixed and the screen color evaluation value Vb is negative, the gain is fixed at 1. That is, the operation is performed so that the gain adjustment is not substantially performed. This prevents the gain Gr from decreasing even when the screen color evaluation value Vr increases during outdoor shooting.

【0055】また、人工光が存在する屋内撮影では、人
工光の色温度が5000K以下の赤っぽい色を有するこ
とから、屋内撮影時にはB信号に比べてR信号を抑える
様に利得補正を行うのが好ましい。そこで、屋内撮影状
態と判断されたときには、図11及び図12の実線のよ
うに、色評価値Vrが負、色評価値Vbが正の部分での
利得を1に固定する。これにより屋内撮影時には、画面
色評価値Vbが大きくなっても、利得Gbが小さくなる
のは抑えられる。
Further, in indoor photography in which artificial light is present, since the artificial light has a reddish color with a color temperature of 5000 K or less, gain correction is performed so as to suppress the R signal compared to the B signal during indoor photography. Is preferred. Therefore, when it is determined to be the indoor shooting state, the gain is fixed to 1 in the portion where the color evaluation value Vr is negative and the color evaluation value Vb is positive, as indicated by the solid lines in FIGS. 11 and 12. This makes it possible to prevent the gain Gb from decreasing even when the screen color evaluation value Vb increases during indoor shooting.

【0056】このように、屋内外の判断に基づいて、白
バランス調整の動作を切り換えることにより、安定した
白バランス調整が可能になる。
As described above, by switching the white balance adjustment operation based on the indoor / outdoor judgment, stable white balance adjustment becomes possible.

【0057】前記実施例では補正値Qにより絞り位置信
号レベルを変更して対応したが、他の方法として、絞り
位置信号レベルを補正せず、閾値Vrefを図7あるい
は図8の矢印92、93の様に閾値Vrefから補正量
Qを減じる補正を為しても同様の効果を得ることができ
る。即ち、絞り位置信号レベルがL2やL4をとって
も、閾値Vrefを補正値Qだけ減少させることにより
L2、L4のばあいに共に屋外撮影と認識可能になる。
Although the diaphragm position signal level is changed by the correction value Q in the above embodiment, as another method, the diaphragm position signal level is not corrected and the threshold value Vref is set to the arrow 92, 93 in FIG. 7 or 8. The same effect can be obtained by performing the correction in which the correction amount Q is subtracted from the threshold value Vref as described above. That is, even if the diaphragm position signal level is L2 or L4, it is possible to recognize both outdoor shooting when L2 and L4 by reducing the threshold value Vref by the correction value Q.

【0058】また、前記実施例では、逆光補正時の対策
を示したが、光源等の著しく高輝度の被写体を主要被写
体として画面中央において撮影する、所謂順光時には、
通常の露出調整動作では、重み付け量が画面全体にわた
って等しく中央の重み付けが大きくないことにより、敢
えて高輝度のままで撮影したい高輝度被写体の輝度を抑
えるように露出調整が為されてしまう。そこで、この順
光時にも中央領域ACの重み付け量を大きくする処理が
施すことが好ましい。具体的には、優先度決定回路77
にて、{(Y2/S2)/(Y1/S1)}<U(Uは
順光状態の発生の境界となる基準値で、U<Rの関係を
維持する値)が成り立つ場合には、重み付け量をm1=
2、m2=1とする。
Further, in the above-mentioned embodiment, the countermeasure against the backlight compensation is shown. However, when a so-called illuminant such as a light source is photographed at the center of the screen as a main subject, the so-called forward lighting is performed.
In a normal exposure adjustment operation, since the weighting amounts are equal over the entire screen and the weighting at the center is not large, the exposure adjustment is performed so as to suppress the luminance of the high-luminance subject that is desired to be photographed with the high luminance. Therefore, it is preferable to perform a process of increasing the weighting amount of the central area AC even in the normal light. Specifically, the priority determination circuit 77
In the case where {(Y2 / S2) / (Y1 / S1)} <U (U is a reference value that is the boundary of occurrence of the forward light state, a value that maintains the relationship of U <R), The weighting amount is m1 =
2, m2 = 1.

【0059】この順光時の重み付け量の変更により、例
えば、中央領域ACの輝度レベルY1が周辺領域の輝度
レベルY2の10倍として、逆光補正時の算出式に基づ
いて目標値Pを算出すると、P=(55/84)×P0
となり、目標値P0よりも小さくなり、変動量M=P−
P0は負の値になる。この変動量Mにより補正値Qも負
の値になる。
By changing the weighting amount at the time of forward light, for example, if the brightness level Y1 of the central area AC is 10 times the brightness level Y2 of the peripheral area, the target value P is calculated based on the calculation formula at the time of backlight correction. , P = (55/84) × P0
And becomes smaller than the target value P0, and the fluctuation amount M = P−
P0 becomes a negative value. The correction value Q also becomes a negative value due to this variation M.

【0060】ここで、例えば、屋内撮影時に高輝度の被
写体を撮影した場合、図13に示すように中央の重み付
け量が小さい場合には、絞り位置信号レベルがL5とな
り、閾値Vrefを下回ることにより屋内と判定される
が、上述のように順光対策として中央の重み付け量を大
きくすると、絞り機構40は絞りを閉じる方向に動作
し、絞り位置信号レベルはL6と大きくなり、閾値Vr
efを越えて、屋外撮影と誤判別される。
Here, for example, when a high-brightness subject is photographed during indoor photographing, and when the weighting amount at the center is small as shown in FIG. 13, the diaphragm position signal level becomes L5, which is below the threshold value Vref. Although it is determined to be indoors, when the weighting amount at the center is increased as a measure against forward light as described above, the diaphragm mechanism 40 operates in the direction to close the diaphragm, the diaphragm position signal level becomes large at L6, and the threshold Vr.
Beyond ef, the image is misidentified as outdoor photography.

【0061】そこで、逆光補正時と同様に、絞り位置信
号レベルに補正値Qによる補正を行うのであるが、この
場合、補正値Qは負の値となるために、絞り位置信号レ
ベルに負の補正値Qを加算すれば、図13の矢印94の
ように結果的にL6からL5まで減少させることになり
屋内撮影と判定できることになる。尚、この順光対策時
にも、絞り位置信号への補正に代えて、閾値Vrefに
補正を加えてもよく、閾値Vrefから負の補正値Qを
減じることで、図13の矢印95のように実質的に閾値
は増加することになり、レベルL6でも屋内との判別が
可能になる。
Therefore, as in the case of the backlight correction, the aperture position signal level is corrected by the correction value Q. In this case, since the correction value Q is a negative value, the aperture position signal level is negative. If the correction value Q is added, as a result, as shown by the arrow 94 in FIG. 13, the value is reduced from L6 to L5, and it can be determined that the indoor shooting is performed. Incidentally, also in the case of this measure against the forward light, the threshold value Vref may be corrected instead of the correction to the diaphragm position signal, and by subtracting the negative correction value Q from the threshold value Vref, as shown by an arrow 95 in FIG. The threshold value is substantially increased, and it is possible to discriminate indoors even at level L6.

【0062】また、利得制御回路29、30での利得制
御特性として、前記実施例とは別に図14〜図17のよ
うに変更も可能である。即ち、屋外撮影状態と判断され
たときには、図14及び図15のように、画面色評価値
Vrが正、画面色評価値Vbが負の部分での利得変化直
線を緩やかにして実質的に利得調整を利きにくくする。
これにより屋外撮影時には、画面色評価値Vrが大きく
なっても、利得Grが小さくなるのは抑えられる。
Further, the gain control characteristics in the gain control circuits 29 and 30 can be changed as shown in FIGS. 14 to 17 apart from the above embodiment. That is, when it is determined to be in the outdoor shooting state, as shown in FIG. 14 and FIG. 15, the gain change straight line in the portion where the screen color evaluation value Vr is positive and the screen color evaluation value Vb is negative is gradually made to substantially reduce the gain. Make adjustment difficult.
This prevents the gain Gr from decreasing even when the screen color evaluation value Vr increases during outdoor shooting.

【0063】また、屋内撮影状態と判断されたときに
は、図16及び図17のように、画面色評価値Vrが
負、色評価値Vbが正の部分での利得変化直線を緩やか
にして利得調整を利きにくくする。これにより屋内撮影
時には、画面色評価値Vbが大きくなっても、利得Gb
が小さくなるのは抑えられる。
Further, when it is judged that the indoor photographing state is set, as shown in FIG. 16 and FIG. 17, the gain adjustment line is made gentle in the portion where the screen color evaluation value Vr is negative and the color evaluation value Vb is positive. To make it hard to work. As a result, at the time of indoor shooting, even if the screen color evaluation value Vb becomes large, the gain Gb
Can be suppressed.

【0064】尚、前記実施例では、A/D変換器22及
び積分器23を、輝度信号Y、色差信号R−Y、B−Y
の3信号のレベルを領域毎にディジタル積分して取り出
すために共用しており、各信号の積分値は3フィ−ルド
周期での更新しかできなかったが、A/D変換器及び積
分器を夫々の信号用に専用に設ければ各信号レベルはい
ずれも1フィ−ルド毎に更新可能となることは言うまで
もない。また、図1の画面評価回路27、色分布判定回
路41から補正値増減回路43までの一連の回路ブロッ
クの動作をマイクロコンピュータを用いてソフトウェア
的に処理可能であることは言うまでもない。
In the above embodiment, the A / D converter 22 and the integrator 23 are connected to the luminance signal Y, the color difference signals RY and BY.
It is shared in order to extract the level of 3 signals of each region by digital integration, and the integrated value of each signal could only be updated in 3 field cycles, but the A / D converter and the integrator were It goes without saying that each signal level can be updated for each field if it is provided exclusively for each signal. It goes without saying that the operation of a series of circuit blocks from the screen evaluation circuit 27, the color distribution determination circuit 41 to the correction value increasing / decreasing circuit 43 in FIG. 1 can be processed by software using a microcomputer.

【0065】[0065]

【発明の効果】上述の如く本発明によれば、緑色の被写
体が撮像画面上で大きな面積を占めるような状況、ある
いは逆光状態または順光状態が生じている状況下におい
ても、屋内撮影か屋外撮影かを高精度に検知することが
でき、この検知結果に基づいて白バランス調整動作の特
性を変更する場合、屋内、屋外撮影に好適な白バランス
調整が実現可能になる。
As described above, according to the present invention, even in a situation where a green subject occupies a large area on the image pickup screen, or in a situation where a backlit state or a frontlit state occurs, indoor shooting or outdoor shooting is possible. Whether or not shooting is possible can be detected with high accuracy, and when the characteristics of the white balance adjustment operation are changed based on the detection result, white balance adjustment suitable for indoor and outdoor shooting can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】画面の分割を説明する図である。FIG. 2 is a diagram illustrating division of a screen.

【図3】緑色の被写体の色評価値の分布を説明する図で
ある。
FIG. 3 is a diagram illustrating a distribution of color evaluation values of a green subject.

【図4】本発明の一実施例の要部ブロック図である。FIG. 4 is a block diagram of an essential part of an embodiment of the present invention.

【図5】本発明の一実施例の要部ブロック図である。FIG. 5 is a block diagram of an essential part of an embodiment of the present invention.

【図6】本発明の一実施例の絞り機構の説明図である。FIG. 6 is an explanatory diagram of a diaphragm mechanism according to an embodiment of the present invention.

【図7】本発明の一実施例の屋内外判別回路43での判
別方法を説明する図である。
FIG. 7 is a diagram illustrating a discrimination method in an indoor / outdoor discrimination circuit 43 according to an embodiment of the present invention.

【図8】本発明の一実施例の屋内外判別回路43での判
別方法を説明する図である。
FIG. 8 is a diagram illustrating a discrimination method in an indoor / outdoor discrimination circuit 43 according to an embodiment of the present invention.

【図9】本発明の一実施例の屋内撮影時のR信号の利得
制御特性を示す図である。
FIG. 9 is a diagram showing a gain control characteristic of an R signal during indoor shooting according to an embodiment of the present invention.

【図10】本発明の一実施例の屋内撮影時のB信号の利
得制御特性を示す図である。
FIG. 10 is a diagram showing a gain control characteristic of a B signal during indoor shooting according to an embodiment of the present invention.

【図11】本発明の一実施例の屋外撮影時のR信号の利
得制御特性を示す図である。
FIG. 11 is a diagram showing a gain control characteristic of an R signal during outdoor shooting according to an embodiment of the present invention.

【図12】本発明の一実施例の屋外撮影時のB信号の利
得制御特性を示す図である。
FIG. 12 is a diagram showing a gain control characteristic of a B signal during outdoor shooting according to an embodiment of the present invention.

【図13】本発明の一実施例の屋内外判別回路43での
順光時の判別方法を説明する図である。
FIG. 13 is a diagram illustrating a discrimination method at the time of forward light in the indoor / outdoor discrimination circuit 43 according to the embodiment of the present invention.

【図14】本発明の他の実施例の屋外撮影時のR信号の
利得制御特性を示す図である。
FIG. 14 is a diagram showing a gain control characteristic of an R signal during outdoor shooting according to another embodiment of the present invention.

【図15】本発明の他の実施例の屋外撮影時のB信号の
利得制御特性を示す図である。
FIG. 15 is a diagram showing a gain control characteristic of a B signal during outdoor shooting according to another embodiment of the present invention.

【図16】本発明の他の実施例の屋内撮影時のR信号の
利得制御特性を示す図である。
FIG. 16 is a diagram showing a gain control characteristic of an R signal during indoor shooting according to another embodiment of the present invention.

【図17】本発明の他の実施例の屋内撮影時のB信号の
利得制御特性を示す図である。
FIG. 17 is a diagram showing a gain control characteristic of a B signal during indoor shooting according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

23 積分器 4 R増幅回路 5 B増幅回路 40 絞り機構 122 ホ−ルセンサ 43 屋内外判別回路 41 色分布判定回路 42 補正値決定回路 44 露出制御回路 29 利得制御回路 30 利得制御回路 23 integrator 4 R amplifier circuit 5 B amplifier circuit 40 aperture mechanism 122 hole sensor 43 indoor / outdoor discrimination circuit 41 color distribution determination circuit 42 correction value determination circuit 44 exposure control circuit 29 gain control circuit 30 gain control circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 撮像画面を分割して設定された複数の領
域毎のR−Y、B−Yの両色差信号の量を色評価値とし
て得る色評価値検出手段と、 前記色評価値を基に赤及び青の両色信号の利得を調整す
る白バランス調整動作を行う利得調整手段と、 撮像映像信号の輝度レベルが最適露出状態を実現する目
標値になるように撮像素子への入射光量を調節する絞り
機構と、 該絞り機構の絞り量に応じてレベルが変化する絞り位置
信号を出力する絞り位置検出手段と、 絞り位置信号と閾値を比較して屋内撮影状態か屋外撮影
状態かを判別する屋内外判別手段を有し、 該屋内外判別手段出力に応じて前記白バランス調整動作
の特性を変更する白バランス調整装置付きのビデオカメ
ラにおいて、 逆光状態または順光状態の発生を判定する判定手段と、 逆光状態または順光状態に応じて前記絞り位置信号レベ
ルまたは前記閾値に補正を加える補正手段を備え、前記
屋内外判別手段にて補正後の絞り位置信号と閾値の比較
を為すことを特徴とする白バランス調整装置付きビデオ
カメラ。
1. A color evaluation value detecting means for obtaining, as a color evaluation value, an amount of both RY and BY color difference signals for each of a plurality of areas set by dividing an imaging screen, and the color evaluation value. Based on the gain adjustment means that performs white balance adjustment operation to adjust the gain of both red and blue color signals, and the amount of light incident on the image sensor so that the brightness level of the imaged video signal reaches the target value to achieve the optimum exposure state. The aperture mechanism that adjusts the aperture position, the aperture position detection means that outputs the aperture position signal whose level changes according to the aperture amount of the aperture mechanism, and the aperture position signal and the threshold value are compared to determine whether the indoor shooting state or the outdoor shooting state. In a video camera with a white balance adjusting device, which has an indoor / outdoor discrimination means for discriminating, and which changes the characteristics of the white balance adjusting operation according to the output of the indoor / outdoor discrimination means, the occurrence of a backlight condition or a forward lighting condition is judged. Judgment means and reverse It is characterized by comprising a correction means for correcting the aperture position signal level or the threshold value according to the state or the illuminating state, and comparing the aperture position signal after the correction with the threshold value by the indoor / outdoor discrimination means. Video camera with balance adjustment device.
【請求項2】 撮像画面を分割して設定された複数の領
域毎のR−Y、B−Yの両色差信号の量を色評価値とし
て得る色評価値検出手段と、 前記色評価値を基に赤及び青の両色信号の利得を調整す
る白バランス調整動作を行う利得調整手段と、 撮像映像信号の輝度レベルが最適露出状態を実現する目
標値になるように撮像素子への入射光量を調節する絞り
機構と、 該絞り機構の絞り量に応じてレベルが変化する絞り位置
信号を出力する絞り位置検出手段と、 絞り位置信号と閾値を比較して屋内撮影状態か屋外撮影
状態かを判別する屋内外判別手段を有し、 該屋内外判別手段出力に応じて前記白バランス調整動作
の特性を変更する白バランス調整装置付きのビデオカメ
ラにおいて、 前記色評価値を基に撮像画面上での緑色の被写体の占め
る面積を検出する緑色被写体検出手段と、 前記面積に応じて前記絞り位置信号レベルまたは閾値に
補正を加える補正手段を備え、前記屋内外判別手段にて
補正後の絞り位置信号と閾値の比較を為すことを特徴と
する白バランス調整装置付きビデオカメラ。
2. A color evaluation value detecting means for obtaining, as a color evaluation value, amounts of both RY and BY color difference signals for each of a plurality of areas set by dividing an image pickup screen, and the color evaluation value. Based on the gain adjustment means that performs white balance adjustment operation to adjust the gain of both red and blue color signals, and the amount of light incident on the image sensor so that the brightness level of the imaged video signal reaches the target value to achieve the optimum exposure state. The aperture mechanism that adjusts the aperture position, the aperture position detection means that outputs the aperture position signal whose level changes according to the aperture amount of the aperture mechanism, and the aperture position signal and the threshold value are compared to determine whether the indoor shooting state or the outdoor shooting state. In a video camera with a white balance adjusting device, which has an indoor / outdoor discrimination means for discriminating, and which changes the characteristics of the white balance adjusting operation according to the output of the indoor / outdoor discrimination means, in an image pickup screen based on the color evaluation value. The surface occupied by the green subject A green subject detecting means for detecting a product and a correcting means for correcting the diaphragm position signal level or the threshold value according to the area are provided, and the indoor / outdoor discrimination means compares the corrected diaphragm position signal with the threshold value. A video camera with a white balance adjustment device.
JP6116883A 1994-05-30 1994-05-30 Video camera with white balance adjustment device Expired - Fee Related JP3005419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6116883A JP3005419B2 (en) 1994-05-30 1994-05-30 Video camera with white balance adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116883A JP3005419B2 (en) 1994-05-30 1994-05-30 Video camera with white balance adjustment device

Publications (2)

Publication Number Publication Date
JPH07322283A true JPH07322283A (en) 1995-12-08
JP3005419B2 JP3005419B2 (en) 2000-01-31

Family

ID=14698004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116883A Expired - Fee Related JP3005419B2 (en) 1994-05-30 1994-05-30 Video camera with white balance adjustment device

Country Status (1)

Country Link
JP (1) JP3005419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554601B2 (en) 2004-07-08 2009-06-30 Samsung Electronics Co., Ltd. Digital video camera with automatic white balance and a method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563420B1 (en) * 2016-12-26 2023-08-03 이용철 Snap button apparatus
KR102299895B1 (en) * 2019-05-10 2021-09-08 김정범 Button unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554601B2 (en) 2004-07-08 2009-06-30 Samsung Electronics Co., Ltd. Digital video camera with automatic white balance and a method thereof

Also Published As

Publication number Publication date
JP3005419B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
US5194960A (en) Optical image signal control device
US20070159537A1 (en) Imaging apparatus and method
US6950141B2 (en) Camera that controls image sensor exposure
US6215961B1 (en) Camera
GB2219461A (en) Exposure control device
US7148921B2 (en) White balance adjustment method, image sensing apparatus, program, and storage medium
JP2899031B2 (en) Automatic exposure control device
EP1615451A2 (en) Digital video camera with automatic white balance and a method thereof
US20070211165A1 (en) Imaging device, method for controlling imaging device, program of method for controlling imaging device, recording medium in which program of method for controlling imaging device is recorded
JP3005419B2 (en) Video camera with white balance adjustment device
JP4622196B2 (en) Imaging device
JPH11308634A (en) White balance controller
JPH05344530A (en) White balance control device
JP2002058039A (en) Imaging apparatus
JP3138152B2 (en) White balance adjustment device
JPH0974516A (en) Image input device
JP2002185977A (en) Video signal processor and recording medium with video signal processing program recorded thereon
JP5473582B2 (en) Image processing apparatus, method, and program
JPH0332175A (en) Automatic exposure adjustment device
JP3100815B2 (en) Camera white balance control method
JP4458114B2 (en) Imaging device
JP4161412B2 (en) Flare correction apparatus and flare correction method for video camera
JPH11355785A (en) Photometric exposure controller and photometric exposure control method
JP3184573B2 (en) Imaging device
JPH04170889A (en) Digital white balance device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees