JPH07321584A - Manufacture of piezoelectric element and electronic circuit - Google Patents

Manufacture of piezoelectric element and electronic circuit

Info

Publication number
JPH07321584A
JPH07321584A JP6109631A JP10963194A JPH07321584A JP H07321584 A JPH07321584 A JP H07321584A JP 6109631 A JP6109631 A JP 6109631A JP 10963194 A JP10963194 A JP 10963194A JP H07321584 A JPH07321584 A JP H07321584A
Authority
JP
Japan
Prior art keywords
film
solute
piezoelectric element
frequency
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6109631A
Other languages
Japanese (ja)
Other versions
JP3289486B2 (en
Inventor
Keizaburo Kuramasu
敬三郎 倉増
Toshio Sugawa
俊夫 須川
Muneko Takahashi
宗子 高橋
Sanemori Soga
真守 曽我
Shigeo Ikuta
茂雄 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10963194A priority Critical patent/JP3289486B2/en
Publication of JPH07321584A publication Critical patent/JPH07321584A/en
Application granted granted Critical
Publication of JP3289486B2 publication Critical patent/JP3289486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To highly accurately provide the film of required film thickness and density and to adjust a frequency with improved reproducibility by using a chemical absorption film provided with a monomolecular structure. CONSTITUTION:The frequency of a surface acoustic wave element is controlled so as to be a specified value by utilizing the characteristics of the chemical absorption film that further film growth stops when a monomolecular layer 3 is formed. That is, since the chemical absorption film is provided with a property that further film formation is not performed when a monomolecular film provided with a certain molecular structure is generated, by preparing and selectively using the chemical absorption materials of the various kinds of molecular chain lengths, the thickness and density of the film to be formed are freely and accurately changed. Because of the property that the intrinsic frequency of the surface acoustic wave element is shifted by the size of the mass of the material on the surface of the surface acoustic wave element, by forming the monomolecular layer film of the various kinds of the thickness and the density by the chemical absorption film, the frequency is accurately adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動体電話や各種の通信
機器分野でフィルターや発振器として用いられる表面弾
性波素子等の圧電素子を高精度に周波数調整する為の圧
電素子の製造方法、および圧電素子を使用した電子回路
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a piezoelectric element for precisely adjusting the frequency of a piezoelectric element such as a surface acoustic wave element used as a filter or an oscillator in the field of mobile phones and various communication devices, and The present invention relates to a method for manufacturing an electronic circuit using a piezoelectric element.

【0002】[0002]

【従来の技術】移動体電話や各種の通信分野でフィルタ
ーや発振器として用いられる表面弾性波素子は圧電体基
板の音速と表面に形成される櫛形電極のパターン形状、
膜厚により周波数が一義的に決まる。櫛形電極のパター
ン作成は半導体技術を用いて作成でき、小型化が可能で
あることから多く使用されてきている。しかしながら、
表面弾性波素子の高周波化にともない、電極の膜厚やパ
ターン幅のばらつきによる周波数ばらつきにより歩留ま
り低下が問題となってきている。このために、従来は電
極の膜厚が厚すぎた場合、電極材料をエッチングする液
に浸漬して表面の電極を一定量ウェットエッチング除去
することで周波数調整を行っている。また、プラズマを
用いて圧電体結晶表面を一定量ドライエッチングして周
波数を調整する方法も行われている。
2. Description of the Related Art A surface acoustic wave device used as a filter or an oscillator in a mobile phone or various communication fields has a sonic velocity of a piezoelectric substrate and a pattern shape of a comb-shaped electrode formed on the surface.
The frequency is uniquely determined by the film thickness. The comb-shaped electrode pattern can be formed by using a semiconductor technique and has been widely used because it can be downsized. However,
Along with the increase in the frequency of surface acoustic wave devices, a decrease in yield has become a problem due to frequency variations due to variations in electrode film thickness and pattern width. For this reason, conventionally, when the film thickness of the electrode is too thick, the frequency is adjusted by immersing the electrode material in a solution for etching to remove a certain amount of the electrode on the surface by wet etching. In addition, a method of adjusting the frequency by dry etching a certain amount of the surface of the piezoelectric crystal using plasma is also used.

【0003】[0003]

【発明が解決しようとする課題】電極の表面を一定量ウ
ェットエッチング除去する方法では、エッチング除去す
る量の制御は時間による管理しかできず、液の濃度の変
動や時間制御のばらつきなどにより、逆にばらつきを大
きくするなどの問題があった。また、電極表面のエッチ
ングによる表面の荒れにより大きな電力を印加した場合
壊れやすくなることも問題としてあった。
In the method of removing a certain amount of the surface of the electrode by wet etching, the amount of the removed etching can be controlled only by time. There was a problem such as increasing the variation. Another problem is that the surface of the electrode becomes rough due to etching and becomes fragile when a large amount of power is applied.

【0004】プラズマを用いて基板である圧電体結晶表
面をドライエッチングする方法は装置が高価である点
や、エッチング量の正確な制御が困難である等の課題が
あり、本格的な実用にはなっていない。
The method of dry-etching the surface of a piezoelectric crystal which is a substrate using plasma has problems that the apparatus is expensive and it is difficult to accurately control the etching amount. is not.

【0005】本発明は上記従来の問題点を解決し、高精
度に周波数調整する為の圧電素子の製造方法、およびそ
れを使用した電子回路の製造方法を提供することを目的
とする。
It is an object of the present invention to solve the above conventional problems and provide a method of manufacturing a piezoelectric element for frequency adjustment with high accuracy, and a method of manufacturing an electronic circuit using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、単分子層を形
成するとそれ以上の膜成長が止まるという化学吸着膜の
特性を利用して、表面弾性波素子の周波数を所定の値に
制御するものである。
According to the present invention, the frequency of a surface acoustic wave device is controlled to a predetermined value by utilizing the characteristic of a chemisorption film that the film growth further stops when a monomolecular layer is formed. It is a thing.

【0007】より具体的には、調整する周波数に応じて
分子鎖長の異なるクロロシラン化合物よりなる化学吸着
液を用意して表面弾性波素子の少なくとも表面波が励起
される領域上に化学吸着膜を形成することで所定の周波
数を得ることを可能とするものである。
More specifically, a chemical adsorbing liquid composed of a chlorosilane compound having a different molecular chain length depending on the frequency to be adjusted is prepared, and the chemical adsorbing film is formed on at least the area of the surface acoustic wave device where the surface wave is excited. By forming it, it is possible to obtain a predetermined frequency.

【0008】また、分子の両端にクロロシリル基を有す
るビストリクロロシラン系誘導体よりなる化学吸着膜を
用いて、調整する周波数に応じてこの化学吸着膜を繰り
返し積層形成することで所定の周波数を得ることを可能
とするものである。また、ビストリクロロシラン系誘導
体よりなる化学吸着膜を少なくとも1層以上形成した
後、クロロシラン系化合物よりなる化学吸着膜を形成し
て所定の周波数を得ることを可能とするものである。
Further, it is possible to obtain a predetermined frequency by repeatedly stacking the chemisorptive film made of a bistrichlorosilane-based derivative having chlorosilyl groups at both ends of the molecule and adjusting the frequency to be adjusted. It is possible. Further, it is possible to obtain a predetermined frequency by forming at least one or more chemical adsorption film made of a bistrichlorosilane derivative and then forming a chemical adsorption film made of a chlorosilane compound.

【0009】[0009]

【作用】化学吸着膜は一定の分子構造を有する単分子膜
が生成するとそれ以上は膜形成が行われなくなる性質が
あるので、その溶液に浸けると、浸漬時間にかかわらず
ある一定の膜厚即ち一分子層の厚みが自然に生成され
る。分子鎖長の異なる化学吸着膜を用いるとそれぞれの
分子鎖長に応じて、長いものは厚く、短いものは薄く、
一定の膜厚の絶縁膜が形成される。従って、種々の分子
鎖長の化学吸着物質を用意し、選択的に使用することに
より、形成される膜の厚さと密度を自由に、且つ精度良
く変えることができる。表面弾性波素子の表面上の物質
の質量の大小により、その表面弾性波素子の固有周波数
がシフトする性質があるので、上記のように化学吸着膜
により、種々の厚みと密度の単分子層膜を形成すること
により、周波数の調整が精度良く可能となる。
[Function] Since a chemically adsorbed film has the property that once a monomolecular film having a certain molecular structure is formed, film formation will not take place. A monolayer thickness is naturally created. When chemisorption membranes with different molecular chain lengths are used, long ones are thick and short ones are thin, depending on the molecular chain length.
An insulating film having a constant film thickness is formed. Therefore, the thickness and density of the film to be formed can be freely and accurately changed by preparing and selectively using the chemical adsorbents having various molecular chain lengths. Since the natural frequency of the surface acoustic wave element shifts depending on the mass of the substance on the surface of the surface acoustic wave element, the chemical adsorption film as described above can be used to form a monolayer film of various thicknesses and densities. By forming, the frequency can be adjusted with high accuracy.

【0010】さらに、ビストリクロロシラン系誘導体よ
りなる化学吸着膜は水処理により膜表面にOH基が形成
されるため積層形成が可能であり、この化学吸着膜では
一定の膜厚の整数倍で形成し、周波数を調整可能であ
る。
Further, the chemical adsorption film made of the bistrichlorosilane derivative can be laminated because the OH group is formed on the surface of the film by the water treatment, and this chemical adsorption film is formed with an integral multiple of a certain thickness. , The frequency is adjustable.

【0011】[0011]

【実施例】【Example】

(実施例1)第1の実施例では分子鎖長の異なる4種の
化学吸着膜を用いて周波数の調整を行った。図2は本実
施例で使用した表面弾性波素子の斜視図であり、図3は
図2のA−A′断面の表面近傍を示す図である。図に於
いて、1は圧電体基板、2はアルミニウムよりなる櫛形
電極である。図4,図5は分子量の異なる化学吸着膜3
および4を形成した断面形状を示す図である。化学吸着
膜の形成は以下の手順で行った。まず、櫛形電極を形成
したウエハ状態(多数個集合状態)の基板について周波
数を測定して目標とする周波数とのずれを求める。この
値により使用する化学吸着膜の材料を選定する。選定に
あたっては、目標とする周波数(設定周波数)とのずれ
が小さいものに対しては、分子鎖長の短い溶質を含む溶
液を選び、逆に設定周波数とのずれが大きいものに対し
ては分子鎖長の長い溶質を含む溶液を選ぶ。具体的には
クロロシランに鎖式炭化水素が結合した溶質の、分子量
の異なるものを種々溶かしたような化学吸着溶液の中か
ら適切なものを選定する。
(Example 1) In the first example, the frequency was adjusted using four types of chemisorption films having different molecular chain lengths. 2 is a perspective view of the surface acoustic wave device used in this example, and FIG. 3 is a view showing the vicinity of the surface of the AA ′ cross section of FIG. In the figure, 1 is a piezoelectric substrate, and 2 is a comb-shaped electrode made of aluminum. 4 and 5 show chemisorption film 3 with different molecular weights.
It is a figure which shows the cross-sectional shape which formed 4 and. The chemisorption film was formed by the following procedure. First, the frequency is measured with respect to a substrate in a wafer state (a state in which a plurality of electrodes are formed) on which comb-shaped electrodes are formed, and a deviation from a target frequency is obtained. The material of the chemical adsorption film to be used is selected according to this value. When selecting a solution with a small deviation from the target frequency (set frequency), select a solution containing a solute with a short molecular chain length, and conversely with a molecule with a large deviation from the set frequency. Select a solution containing a solute with a long chain length. Specifically, an appropriate one is selected from the chemisorption solutions obtained by dissolving various chlorosilane solutes having chain hydrocarbons having different molecular weights.

【0012】窒素雰囲気中でクロロシラン系化合物の溶
質を含んだ化学吸着溶液に基板を浸漬すると、電極であ
るアルミニウムの酸化物上のOH基、基板表面上のOH
基とクロロシラン系化合物が脱塩酸反応を起こし基板と
強固な結合を生じる。化学吸着膜は所定の単分子膜が形
成されるとそれ以上は反応が生じなく一定の膜厚が自動
的に作成される。その後、クロロホルム洗浄、流水洗浄
することで余分な分子や隣同士の分子間での脱塩酸反応
による結合を生じさせて分子間の強固な結合を作る。
When a substrate is immersed in a chemical adsorption solution containing a solute of a chlorosilane compound in a nitrogen atmosphere, OH groups on the aluminum oxide, which is an electrode, and OH on the substrate surface.
The group and the chlorosilane compound cause a dehydrochlorination reaction to form a strong bond with the substrate. When a predetermined monomolecular film is formed in the chemisorption film, no further reaction occurs and a constant film thickness is automatically created. After that, by washing with chloroform and washing with running water, extra molecules and a bond due to a dehydrochlorination reaction between adjacent molecules are generated to form a strong bond between the molecules.

【0013】この結果、電極のアルミニウム表面の酸化
膜と圧電体基板の両面に化学吸着膜が形成される。これ
を図4と図5に示した。図において、それぞれの膜厚は
正確な縮尺倍率のものではなく電極の膜厚は約500n
mに対して化学吸着膜の膜厚は約1.5nm〜3nmで
ある。図1は図4で使用した化学吸着膜の分子構造と櫛
形電極との結合状態を示す図であり、図6は図5で使用
した化学吸着膜の基板及び電極との結合状態を示す図で
ある。これらの図に於いて、1は圧電体基板、2はアル
ミニウムよりなる櫛形電極、3はクロロシラン化合物よ
りなる単分子層の電気絶縁性化学吸着膜A、4は同様に
クロロシラン化合物よりなる単分子層の電気絶縁性化学
吸着膜Bを示す。さらに、図示していないが分子量の異
なる化学吸着膜C,Dも同様にして形成した。
As a result, a chemisorption film is formed on both the oxide film on the aluminum surface of the electrode and both surfaces of the piezoelectric substrate. This is shown in FIGS. 4 and 5. In the figure, each film thickness is not an accurate scale factor, and the electrode film thickness is about 500 n.
The thickness of the chemisorption film is about 1.5 nm to 3 nm for m. FIG. 1 is a diagram showing a molecular structure of the chemical adsorption film used in FIG. 4 and a bonding state with a comb-shaped electrode, and FIG. 6 is a diagram showing a bonding state of the chemical adsorption film used in FIG. 5 with a substrate and an electrode. is there. In these figures, 1 is a piezoelectric substrate, 2 is a comb-shaped electrode made of aluminum, 3 is a monomolecular electrically insulating chemisorption film A made of a chlorosilane compound, and 4 is also a monomolecular layer made of a chlorosilane compound. 3 shows the electrically insulating chemisorption film B of FIG. Further, although not shown, chemical adsorption films C and D having different molecular weights were also formed in the same manner.

【0014】A,B,C,Dのもととなる溶質の分子鎖
長はA<B<C<Dの関係になっている。
The molecular chain length of the solute which is the source of A, B, C and D has a relationship of A <B <C <D.

【0015】図7はこのようにして形成した4種類の化
学吸着膜による周波数変化を求めた結果である。
FIG. 7 shows the results of the frequency changes obtained by the four types of chemisorption films thus formed.

【0016】各組成の溶液について3回ずつ絶縁膜の全
くない基板に成膜し、成膜の前の周波数f0と成膜後の
周波数fとの差(周波数変化)を表わしたものである。
各結果は白丸で表している。分子鎖長の長いものほど、
周波数変化も大きくなっているのがわかる。材料により
分子量が異なるために直線的な関係は得られないが、同
一材料を用いれば周波数変化は非常に再現性が良く、化
学吸着膜の効果が確認された。
The solution of each composition is formed three times on a substrate having no insulating film, and the difference (frequency change) between the frequency f 0 before film formation and the frequency f after film formation is shown. .
Each result is represented by a white circle. The longer the molecular chain length,
It can be seen that the frequency change is also large. Although a linear relationship cannot be obtained because the molecular weight differs depending on the material, the frequency change was very reproducible using the same material, and the effect of the chemisorption film was confirmed.

【0017】また、図1および図6の分子構造図では各
単分子の隣合わせのSi同士が酸素によって結合されて
いるが、このような結合の存在は本発明の必要条件では
ない。Si同士の酸素による結合の具体的方法について
は実施例2にて更に詳細に述べることにする。
Further, in the molecular structure diagrams of FIGS. 1 and 6, adjacent Si molecules of each single molecule are bonded by oxygen, but the existence of such a bond is not a necessary condition of the present invention. A specific method of bonding Si with oxygen by oxygen will be described in more detail in Example 2.

【0018】なお、上記第1の実施例において溶液とし
てクロロシラン系化合物の溶質を含んだ化学吸着溶液を
用いたが、この代りに溶質としてアルコキシシラン系化
合物を含むもの、またはクロロシラン系化合物とアルコ
キシシラン系化合物の両方を含むものを用いても同様の
効果が得られる。
Although a chemisorption solution containing a solute of a chlorosilane-based compound was used as the solution in the first embodiment, instead of this, a solution containing an alkoxysilane-based compound as the solute, or a chlorosilane-based compound and an alkoxysilane are used. The same effect can be obtained by using a compound containing both of the system compounds.

【0019】(実施例2)第2の実施例では、ビストリ
クロロシラン系誘導体を用いて周波数の調整を行った。
ビストリクロロシラン系誘導体は分子構造として両端に
クロロシリル基(SiCl3−)を有しているので積層
化が可能である。本実施例では以下のようにして形成し
た。
(Example 2) In the second example, the frequency was adjusted using a bistrichlorosilane derivative.
Since the bistrichlorosilane-based derivative has chlorosilyl groups (SiCl 3 −) at both ends as a molecular structure, it can be laminated. In this embodiment, it is formed as follows.

【0020】櫛形電極が形成されたウエハ状態の圧電体
基板の表面弾性波素子の周波数を測定して目標とする値
との差異を求める。この値に基づいて積層する回数を決
める。化学吸着膜の形成は実施例1と基本的に同じであ
るが、1回形成後にさらに同一の液に浸漬して同じ膜を
積層する点が異なる。
The frequency of the surface acoustic wave element of the piezoelectric substrate in the wafer state on which the comb-shaped electrodes are formed is measured to find the difference from the target value. The number of times of lamination is determined based on this value. The formation of the chemisorption film is basically the same as in Example 1, except that the same film is laminated by further dipping it in the same liquid after forming it once.

【0021】具体的な成膜方法としては以下の手順で行
った。最初にビストリクロロシラン誘導体よりなる溶質
を含む溶液中に基板を浸漬して、基板表面のOH基とビ
ストリクロロシラン誘導体に脱塩酸反応を生じさせて単
分子膜を形成させる。この後、クロロホルム洗浄により
余分な分子を除去し、さらに流水洗浄することで隣同士
の分子間でも脱塩酸反応による結合を生じさせるととも
に、単分子膜の表面のクロル基を脱塩酸反応によりOH
基に置換させる。このようにして1層の成膜が完了す
る。さらに積層する場合には単分子膜表面に前記流水洗
浄により形成されたOH基が存在するため上記と同一の
手順を繰り返すことにより、2層目以降の各単分子層を
形成する。
As a specific film forming method, the following procedure was performed. First, the substrate is immersed in a solution containing a solute composed of a bistrichlorosilane derivative to cause a dehydrochlorination reaction between the OH group on the substrate surface and the bistrichlorosilane derivative to form a monomolecular film. After that, extraneous molecules are removed by washing with chloroform, and further washing with running water causes binding between adjacent molecules by dehydrochlorination reaction, and chloric groups on the surface of the monolayer are dehydrochlorinated by OH.
Substitute with a group. In this way, the film formation of one layer is completed. In the case of further stacking, since the OH groups formed by the washing with running water are present on the surface of the monomolecular film, the same procedure as above is repeated to form the second monolayer and subsequent monolayers.

【0022】図8から図10は、表面弾性波素子の形成
前後の断面形状を示す。図8は形成前の状態であり、図
9は1層形成したもので、図10は2層形成したものを
示す。図11は1層形成した膜の分子構造状態を示す。
これらの図に於いて、1は圧電体基板、2はアルミニウ
ムよりなる櫛形電極、6はビスクロロシラン系誘導体よ
りなる化学吸着膜を1層形成したものであり、7は同様
に積層した2層目の化学吸着膜である。
8 to 10 show sectional shapes before and after the formation of the surface acoustic wave element. FIG. 8 shows a state before formation, FIG. 9 shows one layer formed, and FIG. 10 shows two layers formed. FIG. 11 shows a molecular structure state of a film formed by one layer.
In these figures, 1 is a piezoelectric substrate, 2 is a comb-shaped electrode made of aluminum, 6 is one layer of a chemical adsorption film made of a bischlorosilane derivative, and 7 is a second layer similarly laminated. It is a chemisorption film of.

【0023】本実施例では、2種類のビストリクロロシ
ラン系誘導体を用いて周波数調整の効果を確認した。
In this example, the effect of frequency adjustment was confirmed using two kinds of bistrichlorosilane-based derivatives.

【0024】図12にこの結果を示す。図の縦軸は図7
と同様に周波数変化であり、黒丸で表わされるのは一つ
の種類のビストリクロロシラン系誘導体で各積層回数に
つき3回ずつ試作をしたデータ、白丸で表わされるのは
他の種類のものでのデータである。白丸のものと黒丸の
ものとでは分子量が異なるために周波数変化割合は異な
るが、両者ともに再現性があり、且つ試験した範囲では
(特に2回目以降)積層回数に対して直線的な周波数変
化が得られた。
The results are shown in FIG. The vertical axis of the figure is FIG.
Similar to the above, it is the frequency change. The black circles are the data of one type of bistrichlorosilane-based derivative produced three times for each stacking number, and the white circles are the data of other types. is there. The white circles and the black circles have different molecular weights and thus different frequency change rates, but both have reproducibility, and within the tested range (especially after the second time), there is a linear frequency change with respect to the number of laminations. Was obtained.

【0025】なお、上記第2の実施例においてビストリ
クロロシラン誘導体よりなる溶質を含む溶液を用いた
が、溶質としてこのビストリクロロシラン誘導体の代り
に、両端にアルコキシシリル基を有するビストリアルコ
キシシラン誘導体を、またはビストリクロロシラン誘導
体とビストリアルコキシシラン誘導体の両化合物を含む
溶液を用いても同様の効果が得られる。
Although the solution containing the solute of the bistrichlorosilane derivative was used in the second embodiment, a bistrialkoxysilane derivative having alkoxysilyl groups at both ends was used instead of the bistrichlorosilane derivative as the solute. The same effect can be obtained by using a solution containing both the bistrichlorosilane derivative and the bistrialkoxysilane derivative.

【0026】(実施例3)第3の実施例ではビストリク
ロロシラン系誘導体とクロロシラン系化合物の両方を積
層して周波数調整を行った。具体的な方法としては以下
の通りである。図11に示す分子構造図はビストリクロ
ロシラン系誘導体を用いて1層の単分子層6を櫛形電極
2上に形成したものである。これは実施例2で述べたも
のと同じである。この形成工程を4回繰り返すことによ
り、4層までの積層を実施例2と同一の方法で行い、そ
の後さらにクロロシラン系化合物を用いて最終層の積層
を行った。この場合の化学吸着膜の形成は実施例1に示
す図6の単分子層4と同様な方法で行った。このように
して作成した表面弾性波素子は化学吸着膜の単分子層6
を1層形成してその上に化学吸着膜の単分子層4を積層
したときの周波数変化110KHzから、化学吸着膜の
単分子層6を4層積層して化学吸着膜の単分子層4を1
層積層した場合の周波数変化185KHzまでが得られ
た。本実施例では、単分子層6をビストリクロロシラン
系誘導体を用いて1層から4層まで積層しさらにクロロ
シラン系化合物により単分子層4を積層したが、この組
み合わせは特に限定されるものではなく、ビストリアル
コキシシラン系誘導体よりなる化学吸着膜に対してクロ
ロシラン系化合物よりなる化学吸着膜とする等、本実施
例の材料のみでなく各種材料を組み合わせても積層可能
である。このような各種の材料の組み合わせを用いれば
目標とする周波数を得ることが自由に行える。
(Example 3) In the third example, the frequency was adjusted by laminating both the bistrichlorosilane-based derivative and the chlorosilane-based compound. The specific method is as follows. In the molecular structure diagram shown in FIG. 11, one monomolecular layer 6 is formed on the comb-shaped electrode 2 using a bistrichlorosilane-based derivative. This is the same as that described in the second embodiment. By repeating this forming step four times, lamination up to 4 layers was performed in the same manner as in Example 2, and then the final layer was further laminated using a chlorosilane compound. The formation of the chemisorption film in this case was performed by the same method as the monolayer 4 of FIG. 6 shown in Example 1. The surface acoustic wave device produced in this way is a monomolecular layer 6 of a chemisorption film.
From the frequency change of 110 KHz when one layer of the chemical adsorption film is formed and the monomolecular layer 4 of the chemical adsorption film is laminated thereon, four monomolecular layers 6 of the chemical adsorption film are laminated to form the monomolecular layer 4 of the chemical adsorption film. 1
A frequency change up to 185 KHz was obtained when the layers were laminated. In this example, the monomolecular layer 6 was laminated from 1 to 4 layers using the bistrichlorosilane derivative and further the monomolecular layer 4 was laminated with the chlorosilane compound, but this combination is not particularly limited. The chemical adsorption film made of a bistrialkoxysilane-based derivative may be replaced with the chemical adsorption film made of a chlorosilane-based compound. The target frequency can be freely obtained by using such a combination of various materials.

【0027】また、表面層にフッ素を結合した分子鎖を
多くもってくる分子構造にすることにより、化学吸着膜
表面を撥水性とする事ができ櫛形電極のアルミニウムの
腐食を防止することも可能となり、信頼性の高い表面弾
性波が得られる。
Further, by making the surface layer have a molecular structure in which a large number of fluorine-bonded molecular chains are provided, the surface of the chemisorption film can be made water repellent and corrosion of the aluminum of the comb-shaped electrode can be prevented. A highly reliable surface acoustic wave can be obtained.

【0028】(実施例4)第4の実施例では、櫛形電極
を形成した表面弾性波素子の櫛形電極部付近を水溶性の
樹脂で覆い、その後化学吸着膜を形成した。化学吸着膜
としてはクロロシラン系化合物を用いた。化学吸着膜の
形成は実施例1と同様に行い、最後に水洗を行い水溶性
樹脂を溶かすことで樹脂上に形成された化学吸着膜をリ
フトオフにより除去した。図13はリフトオフ後の表面
弾性波素子の断面形状を示す図である。本実施例では化
学吸着膜8は櫛形電極2の間の部分のみに作成されてい
る。この場合には周波数変化は全面に形成したときより
も小さい結果となったが、リップルや挿入損失は改善さ
れた。
(Embodiment 4) In the fourth embodiment, the vicinity of the comb-shaped electrode portion of the surface acoustic wave device having the comb-shaped electrode is covered with a water-soluble resin, and then a chemisorption film is formed. A chlorosilane compound was used as the chemical adsorption film. The formation of the chemisorption film was performed in the same manner as in Example 1, and finally, washing was performed with water to dissolve the water-soluble resin, and the chemisorption film formed on the resin was removed by lift-off. FIG. 13 is a diagram showing a cross-sectional shape of the surface acoustic wave device after lift-off. In this embodiment, the chemical adsorption film 8 is formed only in the portion between the comb electrodes 2. In this case, the frequency change was smaller than that when formed on the entire surface, but the ripple and insertion loss were improved.

【0029】(実施例5)第5の実施例では、櫛形電極
2を形成した表面弾性波素子10をチップ状態に切断し
た後、図14に示すように金属ケース14にダイボンド
し、アルミニウム線11を用いてワイヤボンド接続を行
った後に周波数を測定して目標とする周波数とのずれを
求めた。この値に基づいて化学吸着液を選定して、全体
を化学吸着液に浸漬して化学吸着膜を形成した。この場
合、金属ケースやアルミ線、接着剤等も化学吸着液に浸
されることになり、アルミ線は表面に酸化皮膜を有する
ために化学吸着膜が形成される。
(Embodiment 5) In the fifth embodiment, after the surface acoustic wave device 10 having the comb-shaped electrode 2 formed thereon is cut into chips, it is die-bonded to the metal case 14 as shown in FIG. After the wire bond connection was performed using, the frequency was measured to obtain the deviation from the target frequency. The chemical adsorption liquid was selected based on this value, and the whole was immersed in the chemical adsorption liquid to form a chemical adsorption film. In this case, the metal case, the aluminum wire, the adhesive, etc. are also immersed in the chemical adsorption liquid, and since the aluminum wire has an oxide film on the surface, a chemical adsorption film is formed.

【0030】このようにして周波数を調整した後に、図
15に示すように蓋をシーム溶接して表面弾性波素子を
作成した。図14,図15において、1は圧電体基板、
2はアルミニウムよりなる櫛形電極で、10はこれらを
含む表面弾性波素子、11はアルミニウムワイヤ、12
は表面弾性波素子を接着する接着剤、13は外部端子、
14は金属ケース、15は蓋、16はシーム溶接部であ
る。なお、化学吸着膜は表面弾性波素子上だけでなくケ
ースやアルミニウムワイヤ上にも形成されるが図示して
いない。化学吸着膜は金属ケースにも形成されるが、シ
ーム溶接等でも特に問題は発生しなかった。これは化学
吸着膜が数nm以下と非常に薄いことによるものであ
る。本実施例では、ワイヤボンド方式による実装後に行
ったが、セラミック基板やガラス基板上にフリップチッ
プ実装を行ったものでも同様に形成できる。
After the frequency was adjusted in this way, the lid was seam-welded to produce a surface acoustic wave device as shown in FIG. 14 and 15, 1 is a piezoelectric substrate,
2 is a comb-shaped electrode made of aluminum, 10 is a surface acoustic wave device including these, 11 is an aluminum wire, 12
Is an adhesive for bonding the surface acoustic wave element, 13 is an external terminal,
14 is a metal case, 15 is a lid, and 16 is a seam weld. Although the chemical adsorption film is formed not only on the surface acoustic wave device but also on the case and the aluminum wire, it is not shown. The chemisorption film is formed on the metal case as well, but no particular problem occurs in seam welding or the like. This is because the chemisorption film is very thin, a few nm or less. In this embodiment, it is carried out after the mounting by the wire bond method, but it can be similarly formed by the flip-chip mounting on the ceramic substrate or the glass substrate.

【0031】このように、実装基板に実装後でも、設定
周波数とのずれに応じて調整が出来るので、単なる表面
弾性波素子のみの製造ばらつきを調整出来るのみに止ど
まらず、実装した他の部品を含めての電子回路全体とし
ての製造ばらつきに対しても精度良く調整出来るという
利点がある。
As described above, since the adjustment can be made according to the deviation from the set frequency even after the mounting on the mounting board, the manufacturing variation of only the surface acoustic wave device can be adjusted, and the mounting is not limited. There is an advantage that it is possible to accurately adjust the manufacturing variation of the entire electronic circuit including the parts.

【0032】また、実装後の絶縁膜の形成時に、同時に
アルミニウムワイヤ上にもパッシベーション効果のある
膜が形成されるので、電子回路全体としても耐腐食性の
高いものとなる。
Further, at the time of forming the insulating film after mounting, a film having a passivation effect is simultaneously formed on the aluminum wire, so that the entire electronic circuit has high corrosion resistance.

【0033】[0033]

【発明の効果】以上のように本発明は単分子構造を有す
る化学吸着膜を用いることにより必要とする膜厚や密度
の膜を高精度に得ることができ周波数の調整が非常に再
現性良くできる。しかも、膜形成のための装置も安価で
あり、大量生産が可能なことから表面弾性波素子の高精
度化、低コスト化に大きな効果がある。また、電極膜の
アルミニウムの腐食防止にも大きな効果があり、表面弾
性波素子の低コスト化、高信頼性化に大きな効果があ
る。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, by using a chemisorption film having a monomolecular structure, a film having a required film thickness and density can be obtained with high accuracy, and frequency adjustment is very reproducible. it can. In addition, the film forming apparatus is inexpensive and can be mass-produced, so that it has a great effect on high accuracy and cost reduction of the surface acoustic wave device. Further, it has a great effect in preventing the corrosion of aluminum of the electrode film, and has a great effect in reducing the cost and increasing the reliability of the surface acoustic wave element.

【0034】化学吸着膜は電極材料であるアルミニウム
の表面の酸化膜や基板材料であり酸化物である水晶、リ
チウムタンタレート、リチウムナイオベートと共有結合
をするので強固な密着性を有し、ディップ法で簡単に膜
形成できるために非常に低コストで作成できる。
The chemisorption film has a strong adhesiveness because it forms a covalent bond with an oxide film on the surface of aluminum which is an electrode material and quartz, lithium tantalate, and lithium niobate which are oxides which are substrate materials, and therefore has a strong adhesiveness. The film can be formed at a very low cost because it can be easily formed by the method.

【0035】弗素原子との結合手をもつ弗化炭素鎖(C
2nの分子鎖は、撥水性を有しているために、電極材
料であるアルミニウムの腐食を防止できる効果を有して
いる。
Fluorinated carbon chain having a bond with a fluorine atom (C
Since the molecular chain of F 2 ) n has water repellency, it has an effect of preventing corrosion of aluminum as an electrode material.

【0036】そして、各実施例においては、その周波数
を非常に高精度で調整する必要のあるSAWフィルター
用の表面弾性波素子を中心に説明したが、これに限るも
のではなく、水晶発振子等の圧電素子の表面に電極が形
成されている周波数発振器または共振器一般に本発明は
適用出来るものである。
In each of the embodiments, the surface acoustic wave device for the SAW filter, the frequency of which needs to be adjusted with extremely high accuracy, has been mainly described, but the present invention is not limited to this, and a crystal oscillator or the like is not limited thereto. The present invention is generally applicable to frequency oscillators or resonators in which electrodes are formed on the surface of the piezoelectric element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における絶縁膜の分子構
造図
FIG. 1 is a molecular structure diagram of an insulating film in a first embodiment of the present invention.

【図2】本発明の第1の実施例に使用した表面弾性波素
子の斜視図
FIG. 2 is a perspective view of a surface acoustic wave device used in the first embodiment of the present invention.

【図3】図2のA−A′断面の表面近傍を示す図3 is a diagram showing the vicinity of the surface of the AA ′ cross section of FIG. 2;

【図4】絶縁膜を形成した断面形状を示す図FIG. 4 is a diagram showing a sectional shape in which an insulating film is formed.

【図5】絶縁膜を形成した断面形状を示す図FIG. 5 is a diagram showing a sectional shape in which an insulating film is formed.

【図6】本発明の第1の実施例における絶縁膜の分子構
造図
FIG. 6 is a molecular structure diagram of an insulating film in the first embodiment of the present invention.

【図7】本発明の第1の実施例の4種類の絶縁膜による
周波数変化のグラフ
FIG. 7 is a graph of frequency changes due to four types of insulating films according to the first embodiment of the present invention.

【図8】本発明の第2の実施例における絶縁膜形成前の
断面形状を示す図
FIG. 8 is a diagram showing a cross-sectional shape before forming an insulating film according to a second embodiment of the present invention.

【図9】本発明の第2の実施例における絶縁膜を1層形
成した断面形状を示す図
FIG. 9 is a diagram showing a cross-sectional shape in which one insulating film is formed in a second embodiment of the present invention.

【図10】本発明の第2の実施例における絶縁膜を2層
形成した断面形状を示す図
FIG. 10 is a diagram showing a sectional shape in which two layers of insulating films are formed in the second embodiment of the present invention.

【図11】本発明の第3の実施例における絶縁膜の分子
構造図
FIG. 11 is a molecular structure diagram of an insulating film in the third embodiment of the present invention.

【図12】本発明の第2の実施例の絶縁膜積層回数と周
波数変化の関係を示すグラフ
FIG. 12 is a graph showing the relationship between the number of insulating film laminations and the frequency change in the second embodiment of the present invention.

【図13】本発明の第4の実施例における絶縁膜を形成
した断面形状を示す図
FIG. 13 is a view showing a sectional shape in which an insulating film is formed in the fourth embodiment of the present invention.

【図14】本発明の第5の実施例における電子回路パッ
ケージの断面図
FIG. 14 is a sectional view of an electronic circuit package according to a fifth embodiment of the present invention.

【図15】本発明の第5の実施例における電子回路パッ
ケージに蓋をした断面図
FIG. 15 is a sectional view of the electronic circuit package according to the fifth embodiment of the present invention with a lid.

【符号の説明】[Explanation of symbols]

1 圧電体基板 2 櫛形電極 3,4,6,7,8 単分子層よりなる絶縁膜 1 Piezoelectric substrate 2 Comb-shaped electrodes 3, 4, 6, 7, 8 Insulating film consisting of monolayer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我 真守 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 生田 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Mamoru Soga 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Shigeo Ikuta 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 圧電性を有する基板とこの基板上に設け
た電極とを備えた圧電素子を、設定周波数とのずれに応
じた長さの分子鎖長の溶質を含む溶液に浸し、その表面
の少なくとも一部に前記溶質の誘導体の単分子層よりな
る絶縁膜を形成して設定周波数に調整することを特徴と
する圧電素子の製造方法。
1. A piezoelectric element comprising a substrate having piezoelectricity and electrodes provided on the substrate is dipped in a solution containing a solute having a molecular chain length corresponding to a deviation from a set frequency, and the surface thereof is immersed. A method of manufacturing a piezoelectric element, comprising forming an insulating film made of a monomolecular layer of the solute derivative on at least a part of the substrate and adjusting the frequency to a preset frequency.
【請求項2】 溶液はクロロシラン誘導体および/また
はアルコキシシラン誘導体の溶質を含むことを特徴とす
る請求項1記載の圧電素子の製造方法。
2. The method for manufacturing a piezoelectric element according to claim 1, wherein the solution contains a solute of a chlorosilane derivative and / or an alkoxysilane derivative.
【請求項3】 分子鎖長の異なる複数のクロロシラン誘
導体および/またはアルコキシシラン誘導体の溶質を各
々含む複数の溶液を用意し、設定周波数とのずれに応じ
て個々の圧電素子に用いることを特徴とする請求項2記
載の圧電素子の製造方法。
3. A plurality of solutions each containing a solute of a plurality of chlorosilane derivatives and / or alkoxysilane derivatives having different molecular chain lengths are prepared and used for each piezoelectric element according to the deviation from the set frequency. The method for manufacturing a piezoelectric element according to claim 2.
【請求項4】 圧電性を有する基板とこの基板上に設け
た電極とを備えた圧電素子を、一定の長さの分子鎖長の
溶質を含む溶液に浸し前記圧電素子の表面の少なくとも
一部に前記溶質の誘導体の絶縁膜を形成する工程を含
み、設定周波数とのずれに応じて前記工程の繰り返しを
行うことにより設定周波数に調整することを特徴とする
圧電素子の製造方法。
4. A piezoelectric element comprising a substrate having piezoelectricity and electrodes provided on the substrate is dipped in a solution containing a solute having a molecular chain length of a certain length, and at least a part of the surface of the piezoelectric element is immersed. And a step of forming an insulating film of the solute derivative, and adjusting to a set frequency by repeating the steps according to the deviation from the set frequency.
【請求項5】 溶液は分子の両端にクロロシリル基およ
び/またはアルコキシシリル基を持つ溶質を含むことを
特徴とする請求項4記載の圧電素子の製造方法。
5. The method for manufacturing a piezoelectric element according to claim 4, wherein the solution contains a solute having a chlorosilyl group and / or an alkoxysilyl group at both ends of the molecule.
【請求項6】 圧電素子は表面弾性波素子である請求項
1記載または請求項2記載または請求項3記載または請
求項4記載または請求項5記載の圧電素子の製造方法。
6. The method for manufacturing a piezoelectric element according to claim 1, claim 2, claim 3, claim 4, or claim 5, wherein the piezoelectric element is a surface acoustic wave element.
【請求項7】 圧電性を有する基板とこの基板上に設け
た電極とを備えた圧電素子を実装基板に実装後、設定周
波数とのずれに応じた長さの分子鎖長の溶質を含む溶液
に浸し、前記圧電素子の表面の少なくとも一部に前記溶
質の誘導体の単分子層よりなる絶縁膜を形成して設定周
波数に調整することを特徴とする電子回路の製造方法。
7. A solution containing a solute having a molecular chain length of a length corresponding to a deviation from a set frequency after mounting a piezoelectric element having a piezoelectric substrate and electrodes provided on the substrate on a mounting substrate. A method for manufacturing an electronic circuit, which comprises: immersing in an insulating film made of a monomolecular layer of the solute derivative on at least a part of the surface of the piezoelectric element to adjust to a set frequency.
【請求項8】 溶液はクロロシラン誘導体および/また
はアルコキシシラン誘導体の溶質を含むことを特徴とす
る請求項7記載の電子回路の製造方法。
8. The method of manufacturing an electronic circuit according to claim 7, wherein the solution contains a solute of a chlorosilane derivative and / or an alkoxysilane derivative.
【請求項9】 分子鎖長の異なる複数のクロロシラン誘
導体および/またはアルコキシシラン誘導体の溶質を各
々含む複数の溶液を用意し、設定周波数とのずれに応じ
て個々の電子回路に用いることを特徴とする請求項8記
載の電子回路の製造方法。
9. A plurality of solutions, each containing a solute of a plurality of chlorosilane derivatives and / or alkoxysilane derivatives having different molecular chain lengths, are prepared and used for each electronic circuit according to the deviation from the set frequency. The method for manufacturing an electronic circuit according to claim 8.
【請求項10】 圧電性を有する基板とこの基板上に設
けた電極とを備えた圧電素子を実装基板に実装後、一定
の長さの分子鎖長の溶質を含む溶液に浸し前記圧電素子
の表面の少なくとも一部に前記溶質の誘導体の絶縁膜を
形成する工程を含み、設定周波数とのずれに応じて前記
工程の繰り返しを行うことにより設定周波数に調整する
ことを特徴とする電子回路の製造方法。
10. A piezoelectric element provided with a substrate having piezoelectricity and electrodes provided on the substrate is mounted on a mounting substrate, and then dipped in a solution containing a solute having a molecular chain length of a certain length to dip the piezoelectric element. Manufacture of an electronic circuit including a step of forming an insulating film of the solute derivative on at least a part of the surface, and adjusting the set frequency by repeating the steps according to the deviation from the set frequency. Method.
【請求項11】 溶液は分子の両端にクロロシリル基お
よび/またはアルコキシシリル基を持つ溶質を含むこと
を特徴とする請求項10記載の電子回路の製造方法。
11. The method for manufacturing an electronic circuit according to claim 10, wherein the solution contains a solute having a chlorosilyl group and / or an alkoxysilyl group at both ends of the molecule.
JP10963194A 1994-05-24 1994-05-24 Surface acoustic wave device and method of manufacturing electronic circuit Expired - Lifetime JP3289486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10963194A JP3289486B2 (en) 1994-05-24 1994-05-24 Surface acoustic wave device and method of manufacturing electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10963194A JP3289486B2 (en) 1994-05-24 1994-05-24 Surface acoustic wave device and method of manufacturing electronic circuit

Publications (2)

Publication Number Publication Date
JPH07321584A true JPH07321584A (en) 1995-12-08
JP3289486B2 JP3289486B2 (en) 2002-06-04

Family

ID=14515180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10963194A Expired - Lifetime JP3289486B2 (en) 1994-05-24 1994-05-24 Surface acoustic wave device and method of manufacturing electronic circuit

Country Status (1)

Country Link
JP (1) JP3289486B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217253A (en) * 2005-02-03 2006-08-17 Epson Toyocom Corp Piezoelectric vibrating element, piezoelectric vibrator, piezoelectric oscillator, frequency stabilizing method, and method of manufacturing piezoelectric vibrator
JP2007292626A (en) * 2006-04-26 2007-11-08 Epson Toyocom Corp Liquid level detector
JP2010104039A (en) * 2010-01-29 2010-05-06 Epson Toyocom Corp Method of manufacturing piezoelectric vibrator, and frequency stabilization method for the piezoelectric vibrating element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217253A (en) * 2005-02-03 2006-08-17 Epson Toyocom Corp Piezoelectric vibrating element, piezoelectric vibrator, piezoelectric oscillator, frequency stabilizing method, and method of manufacturing piezoelectric vibrator
US8166621B2 (en) 2005-02-03 2012-05-01 Seiko Epson Corporation Method of stabilizing a frequency of a piezoelectric vibration element
US8281467B2 (en) 2005-02-03 2012-10-09 Seiko Epson Corporation Method of manufacturing a piezoelectric vibrator
US8732924B2 (en) 2005-02-03 2014-05-27 Seiko Epson Corporation Method of manufacturing a piezoelectric vibrator
JP2007292626A (en) * 2006-04-26 2007-11-08 Epson Toyocom Corp Liquid level detector
JP2010104039A (en) * 2010-01-29 2010-05-06 Epson Toyocom Corp Method of manufacturing piezoelectric vibrator, and frequency stabilization method for the piezoelectric vibrating element

Also Published As

Publication number Publication date
JP3289486B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US7368861B2 (en) Piezoelectric resonator element and piezoelectric device
JP4885206B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
US8120234B2 (en) Piezoelectric frames and piezoelectric devices comprising same
KR100770826B1 (en) Piezoelectric oscillator piece and piezoelectric device
KR101022123B1 (en) Piezoelectric resonator element and piezoelectric device
KR100617329B1 (en) Piezoelectric resonator element, piezoelectric device, method for manufacturing the same, cellular phone device utilizing piezoelectric device, and electronic equipment utilizing piezoelectric device
US20080211350A1 (en) Piezoelectric resonator element and piezoelectric device
JP5216288B2 (en) Method for manufacturing piezoelectric vibrating piece, method for manufacturing piezoelectric device
EP0631384A1 (en) Piezoelectric acoustic wave device and method of manufacturing the same
US5341550A (en) Method of manufacturing a piezoelectric tuning fork resonator
KR20020087430A (en) Saw device and method for manufacture thereof
JP3289486B2 (en) Surface acoustic wave device and method of manufacturing electronic circuit
JP4241022B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP4424009B2 (en) Method for manufacturing piezoelectric resonant component
US6483224B1 (en) Surface acoustic wave device and method of producing the same
JP5042597B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
JP7259940B2 (en) Piezoelectric vibrator and its manufacturing method
JP2995550B2 (en) Manufacturing method of crystal resonator element
EP1353441B1 (en) Saw device and production method therefor
JP3603571B2 (en) Piezoelectric element and method of manufacturing the same
WO2004025274A1 (en) Micro mass sensor and oscillator-holding mechanism thereof
JP2000022487A (en) Piezoelectric element and its manufacture
JPH07226638A (en) Composite piezoelectric substrate and its production
JPH06291588A (en) Piezoelectric vibrator
JP3554358B2 (en) Manufacturing method of SAW device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11