JPH0732104A - Method for supplying powder for continuous casting - Google Patents

Method for supplying powder for continuous casting

Info

Publication number
JPH0732104A
JPH0732104A JP19688093A JP19688093A JPH0732104A JP H0732104 A JPH0732104 A JP H0732104A JP 19688093 A JP19688093 A JP 19688093A JP 19688093 A JP19688093 A JP 19688093A JP H0732104 A JPH0732104 A JP H0732104A
Authority
JP
Japan
Prior art keywords
powder
mold
supplying
continuous casting
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19688093A
Other languages
Japanese (ja)
Inventor
Masaya Asano
正也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19688093A priority Critical patent/JPH0732104A/en
Publication of JPH0732104A publication Critical patent/JPH0732104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To drastically improve the surface quality of a cast slab by smoothly supplying powder into a mold. CONSTITUTION:In a method for heating and supplying the powder into the mold 1 for continuous casting, the powder is heated to the temp. developing the fluidity without changing the constituting components and material property value by using hot blast 7 in a vessel 6 on the way of supplying the powder and supplied into the mold by gas stream carrying 8. By this method, the temp. drop near a meniscus is prevented and the surface defect, such as pin hole, entrapment of slag, can drastically be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、連続鋳造において鋳
型内へパウダーを加熱して供給する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating and supplying powder into a mold in continuous casting.

【0002】[0002]

【従来の技術】鋳型に溶鋼を注入し、鋳型内での一次冷
却および二次冷却帯において冷却しつつロールにより鋳
片を引き抜いて連続的に鋳造を行う連続鋳造において
は、鋳型内の溶鋼面下に溶鋼を注入する浸漬ノズルと、
鋳型内の溶鋼面を被覆するパウダーの供給装置と、鋳型
を上下動させるオッシレーション装置が採用されてい
る。パウダーは、鋳型内溶鋼表面の酸化防止、鋳型と鋳
片の間の潤滑、浮上した介在物の捕捉、鋳型内溶鋼表面
の保温の役割を果たしている。
2. Description of the Related Art In continuous casting, in which molten steel is poured into a mold and continuously cast by pulling out a slab with a roll while cooling in the primary cooling and secondary cooling zones in the mold, Immersion nozzle to inject molten steel below,
A powder supply device for coating the molten steel surface in the mold and an oscillation device for vertically moving the mold are used. The powder plays a role of preventing oxidation of the surface of the molten steel in the mold, lubricating between the mold and the slab, capturing floating inclusions, and keeping the surface of the molten steel in the mold warm.

【0003】前記連続鋳造における鋳型内へのパウダー
の供給は、従来スプリングフィーダー等による機械輸送
による散布方式が主流であるが、熱的問題から装置の信
頼性が低い等の問題がある。また、気流輸送方式も試み
られているが、粉塵発生による作業環境の悪化や輸送コ
ストの点で問題がある。さらに、パウダーは、通常室温
のままで鋳型内に供給されており、溶鋼面の最上端であ
るメニスカスを不可避的に冷却し、溶鋼面皮張り等によ
るスラグの噛み込み、ピンホール等の鋳片表面欠陥の原
因となることが知られている。
The powder supply into the mold in the above continuous casting has conventionally been a spraying method by mechanical transportation using a spring feeder or the like, but there is a problem that the reliability of the apparatus is low due to thermal problems. An air flow transportation method has also been tried, but there are problems in that the working environment is deteriorated due to dust generation and the transportation cost is low. Furthermore, the powder is normally supplied into the mold at room temperature, inevitably cooling the meniscus at the top end of the molten steel surface, biting the slag by skinning of the molten steel surface, the surface of slabs such as pinholes. It is known to cause defects.

【0004】このようなメニスカス部の温度低下を防止
する方法としては、パウダーの粉末化(通常顆粒)、発
熱型パウダーの使用がある。発熱型パウダーは、構成成
分として添加されたCa−Al、Ca−Si等の金属粉
を鋳型内において酸化反応させ、この時発生する発熱に
よってメニスカス部を保温するものである。しかしなが
ら、粉末パウダーでは、保温効果が十分でなく、また、
発熱型パウダーは、発熱剤が急激な反応を起こし、発熱
効果の持続性がなく、連続的な保温効果が得られず、鋳
片表面品質の飛躍的改善は望めない。また、発熱型パウ
ダーは、酸化源として含まれるFe23や酸化反応生成
物であるAl23、SiO2等の酸化物も介在物として
鋳片内部品質を悪化させる。
As a method of preventing such a temperature drop in the meniscus portion, there are powdering (usually granules) and use of heat-generating powder. The exothermic powder is a metal powder such as Ca-Al or Ca-Si added as a constituent component, which is oxidized in the mold to keep the meniscus portion warm by the heat generated at this time. However, the powder powder does not have sufficient heat retention effect, and
The heat-generating powder causes a rapid reaction of the heat-generating agent, does not maintain the heat-generating effect, does not provide a continuous heat-retaining effect, and is not expected to dramatically improve the surface quality of the slab. The exothermic powder also deteriorates the internal quality of the cast slab by using Fe 2 O 3 contained as an oxidation source and oxides such as Al 2 O 3 and SiO 2 which are oxidation reaction products as inclusions.

【0005】上記問題を解消する方法としては、パウダ
ーをパウダー供給過程においてパウダーの構成成分およ
び物性値が変化しない温度に加熱し、加熱されたパウダ
ーを鋳型内に投入する方法(特開平4−143052号
公報)、パウダーをパウダー供給過程の容器内でマイク
ロ波を用いて加熱すると共に、その加熱温度をパウダー
の構成成分および物性値が変化しない温度とし、加熱さ
れたパウダーを鋳型内に投入する方法(特開平4−14
3053号公報)が提案されている。
As a method for solving the above problems, the powder is heated to a temperature at which the constituent components and physical properties of the powder do not change during the powder supply process, and the heated powder is put into a mold (Japanese Patent Laid-Open No. 1443052). Gazette), the powder is heated in the container during the powder supply process using microwaves, and the heating temperature is set to a temperature at which the constituent components and physical properties of the powder do not change, and the heated powder is charged into the mold. (JP-A-4-14
No. 3053) is proposed.

【0006】[0006]

【発明が解決しようとする課題】上記特開平4−143
052号公報、特開平4−143053号公報に開示さ
れているパウダーをパウダー供給過程でパウダーの構成
成分および物性値が変化しない温度に加熱して鋳型内に
投入する方法は、加熱したパウダーの鋳型内への投入に
スクリュー式の連続切出し装置が用いられており、前記
機械輸送による散布方式に該当し、熱的問題から装置の
信頼性が低い等の問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent Application No. 052 and Japanese Patent Application Laid-Open No. 4-143053 is heated to a temperature at which the constituent components and physical properties of the powder do not change during the powder supply process and charged into the mold. A screw-type continuous cutting device is used for charging into the inside, which corresponds to the spraying method by mechanical transportation, and there are problems such as low reliability of the device due to thermal problems.

【0007】この発明の目的は、上記加熱したパウダー
を鋳型内へ供給する方法の欠点を解消し、粉塵発生によ
る作業環境の悪化を生じさせることなく、円滑にパウダ
ーを鋳型内へ供給でき、鋳片表面品質を大幅に改善でき
る連続鋳造用パウダーの供給方法を提供することにあ
る。
The object of the present invention is to eliminate the drawbacks of the method of supplying the heated powder into the mold and to smoothly supply the powder into the mold without deteriorating the working environment due to dust generation. It is an object of the present invention to provide a method for supplying powder for continuous casting which can significantly improve the surface quality of one surface.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験検討を重ねた。その結果、パウダ
ーを加熱することによって流動性を向上させれば、少量
の気体によって気流搬送でき、気流輸送に伴う粉塵発生
による作業環境の悪化を防止できることを確認し、この
発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted various tests and examinations in order to achieve the above object. As a result, it was confirmed that if the fluidity is improved by heating the powder, a small amount of gas can be carried by air flow, and the deterioration of the working environment due to the generation of dust due to air flow transport can be prevented, and the present invention has been reached.

【0009】すなわちこの発明は、連続鋳造用鋳型内へ
パウダーを加熱して供給する方法において、パウダー供
給過程の容器内で熱風を用いてパウダーの構成成分およ
び物性値が変化しないで、かつパウダーの流動性が生じ
る温度に加熱すると共に、パウダーを気流輸送により鋳
型内に供給することを特徴とする連続鋳造用パウダーの
供給方法である。
That is, according to the present invention, in a method of heating and supplying powder into a continuous casting mold, the constituent components and physical properties of the powder are not changed by using hot air in the container during the powder supply process, and A method for supplying powder for continuous casting, which comprises heating to a temperature at which fluidity is generated and supplying the powder into the mold by air flow transportation.

【0010】[0010]

【作用】この発明においては、パウダー供給過程の容器
内で熱風を用いてパウダーの構成成分および物性値が変
化しないで、かつパウダーの流動性が生じる温度に加熱
すると共に、パウダーを気流輸送により鋳型内に供給す
るから、常温のパウダーを気流輸送する場合に比較し、
同一輸送量であれば、輸送気体量を1/3以下に低減す
ることができ、気流輸送に伴う粉塵発生による作業環境
の悪化と輸送コストの上昇を抑制することができる。ま
た、パウダー加熱と熱風による気流輸送によってメニス
カス部の温度低下を抑制でき、スラグの噛み込み、ピン
ホール等による鋳片表面品質の悪化を抑制することがで
きる。
In the present invention, the constituent components and physical properties of the powder are not changed by using hot air in the container during the powder supply process, and the powder is heated to a temperature at which fluidity of the powder is generated, and the powder is transported by air flow to the mold. Since it is supplied inside, compared with the case of air-powdered powder at room temperature,
With the same amount of transportation, the amount of transportation gas can be reduced to 1/3 or less, and the deterioration of the work environment and the increase of transportation cost due to dust generation accompanying airflow transportation can be suppressed. Further, it is possible to suppress the temperature decrease of the meniscus portion by the powder heating and the air flow transportation by hot air, and it is possible to suppress the deterioration of the surface quality of the slab due to the biting of the slag, the pinhole and the like.

【0011】この発明におけるパウダーの加熱温度は、
パウダーの構成成分および物性値が変化しないで、かつ
パウダーの流動性が生じる温度、例えば、100〜30
0℃程度に高温の不活性ガスを用いて加熱するのが望ま
しい。しかしながら、パウダーの流動性は、加熱温度お
よびパウダーへの添加カーボン量によって変化するの
で、加熱温度およびパウダーへの添加カーボン量によっ
てパウダーの流動性をコントロールし、少量の乾燥した
高温気体により気流輸送できる程度の流動性を付与する
ことが肝要である。この発明におけるパウダーの気流輸
送に用いる気体としては、窒素ガス、アルゴンガス等の
不活性ガス、空気等が考えられるが、パウダー加熱用の
熱風と同じ加熱窒素ガスを使用するのがパウダーの変質
防止およびコストの観点から好ましい。
The heating temperature of the powder in the present invention is
The temperature at which the flowability of the powder occurs, for example, 100 to 30 without changing the constituent components and physical properties of the powder.
It is desirable to heat using an inert gas having a high temperature of about 0 ° C. However, since the fluidity of the powder changes depending on the heating temperature and the amount of carbon added to the powder, the fluidity of the powder can be controlled by the heating temperature and the amount of carbon added to the powder, and a small amount of dry hot gas can be used for air flow transport. It is important to give a certain degree of fluidity. As the gas used for air flow transportation of the powder in the present invention, nitrogen gas, inert gas such as argon gas, air and the like are considered, but it is possible to prevent deterioration of the powder by using the same heated nitrogen gas as the hot air for heating the powder. And it is preferable from the viewpoint of cost.

【0012】[0012]

【実施例】以下にこの発明の詳細を実施の一例を示す図
1ないし図7に基づいて説明する。図1はこの発明方法
を実施する装置の一例を示す側断面図、図2はパウダー
の加熱温度と流動性指数との関係を示すグラフ、図3は
パウダーへの添加カーボン率と流動性指数との関係を示
すグラフ、図4は常温と200℃加熱の場合の移送気体
流量とパウダー切出量との関係を示すグラフ、図5は常
温と200〜300℃加熱の場合のメニスカスからの距
離と凝固温度との差を示すグラフ、図6はパウダーの加
熱温度とオッシレーション爪深さ指標との関係を示すグ
ラフ、図7はパウダーの加熱温度と表面疵発生指標との
関係を示すグラフである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to FIGS. FIG. 1 is a side sectional view showing an example of an apparatus for carrying out the method of the present invention, FIG. 2 is a graph showing the relationship between the heating temperature of powder and the fluidity index, and FIG. 3 is the carbon content added to the powder and the fluidity index. 4 is a graph showing the relationship between the flow rate of the transferred gas and the amount of powder cut out at room temperature and 200 ° C. heating, and FIG. 5 is the distance from the meniscus at room temperature and 200 to 300 ° C. heating. FIG. 6 is a graph showing the relationship between the heating temperature of powder and the index of oscillating nail depth, and FIG. 7 is a graph showing the relationship between the heating temperature of powder and the index of surface flaw generation. .

【0013】図1において、1は連続鋳造用の鋳型、2
は鋳型1内の溶鋼3上面下に溶鋼を注入する図示しない
タンディッシュの浸漬ノズル、4は鋳型1により冷却さ
れて鋳片表面に生成した凝固シェル、5は鋳型1内の溶
鋼3上面を被覆するパウダー、6はパウダーのホッパ
ー、7はホッパー6の下部に設けた熱風吹き込み管で、
ホッパー6内のパウダーをパウダーの構成成分および物
性値が変化しないで、かつパウダーの流動性が生じる温
度、例えば、100〜300℃に加熱する。この場合、
パウダーの流動性は、図2、図3に示すとおり、加熱温
度およびパウダーへの添加カーボン量によって変化する
ので、加熱温度およびパウダーへの添加カーボン量によ
ってパウダーの流動性をコントロールし、少量の乾燥し
た気体により気流輸送できる程度の流動性を付与する。
8はホッパー6の下部からパウダー供給管9を介して鋳
型1内へパウダーを気流輸送する移送気体吹き込み部
で、所定の供給速度で鋳型1内へパウダーを供給するよ
う構成されている。
In FIG. 1, 1 is a casting mold for continuous casting, and 2 is a casting mold.
Is a tundish immersion nozzle (not shown) for injecting molten steel below the upper surface of the molten steel 3 in the mold 1, 4 is a solidified shell which is cooled by the mold 1 and is generated on the surface of the slab, 5 is the upper surface of the molten steel 3 in the mold 1. Powder, 6 is a powder hopper, 7 is a hot air blowing tube provided at the bottom of the hopper 6,
The powder in the hopper 6 is heated to a temperature at which the powder constituents and physical properties do not change and fluidity of the powder occurs, for example, 100 to 300 ° C. in this case,
As shown in Fig. 2 and Fig. 3, the fluidity of the powder changes depending on the heating temperature and the amount of carbon added to the powder. Therefore, the fluidity of the powder is controlled by the heating temperature and the amount of carbon added to the powder, and a small amount of drying is performed. It imparts fluidity to the extent that it can be transported by air by the gas.
Reference numeral 8 denotes a transfer gas blowing section for air-transporting the powder from the lower part of the hopper 6 into the mold 1 through the powder supply pipe 9, and is configured to supply the powder into the mold 1 at a predetermined supply speed.

【0014】上記のとおり構成したことによって、パウ
ダーは、ホッパー6内で下部熱風吹き込み管7から吹き
込まれる熱風により、パウダーの構成成分および物性値
が変化しないで、かつパウダーの流動性が生じる温度、
例えば200℃に加熱され、流動性を付与される。ホッ
パー6内で200℃に加熱され流動性を付与されたパウ
ダーは、ホッパー6下部の移送気体吹き込み部8から吹
き込まれる移送気体、例えば窒素ガスによってパウダー
供給管9内を気流輸送され、所定の供給速度で鋳型1内
へ供給される。この場合、パウダーは、加熱され、かつ
流動性を付与されているから、図4に示すとおり、常温
のパウダーを気流輸送する場合に比較し、同一移送気体
量であれば、3倍以上のパウダーを供給することがで
き、移送気体量の少量化および流動性の向上により粉塵
発生および搬送コストを低減することができる。
With the above-described structure, the powder has a temperature at which the constituent components and physical properties of the powder are not changed by the hot air blown from the lower hot air blowing pipe 7 in the hopper 6, and the fluidity of the powder is generated.
For example, it is heated to 200 ° C. to impart fluidity. The powder heated to 200 ° C. in the hopper 6 and imparted with fluidity is air-transported in the powder supply pipe 9 by a transfer gas, for example, nitrogen gas, which is blown from the transfer gas blowing portion 8 in the lower part of the hopper 6, and a predetermined supply is performed. It is fed into the mold 1 at a speed. In this case, since the powder is heated and has fluidity, as shown in FIG. 4, as compared with the case where the powder at room temperature is transported by air, if the amount of gas to be transferred is three times or more, Can be supplied, and the generation of dust and the transportation cost can be reduced by reducing the amount of gas to be transferred and improving the fluidity.

【0015】また、鋳型1内へ供給されたパウダーは、
200℃に加熱されているから、図5に示すとおり、常
温のままでパウダーを鋳型1内へ供給する場合と比較
し、メニスカス近傍での温度降下を小さい。このメニス
カス近傍での温度降下を小さくすることによって、図6
に示すとおり、オッシレーションの爪深さが小さくな
る。このことは、オッシレーションの爪に捕捉される気
泡、介在物が少なくなることを物語っている。さらに、
鋳片の表面品質の面においては、図7に示すとおり、パ
ウダーを加熱したことによって、表面疵発生比率が大幅
に低減することができる。
The powder supplied into the mold 1 is
Since it is heated to 200 ° C., as shown in FIG. 5, the temperature drop in the vicinity of the meniscus is small as compared with the case where the powder is supplied into the mold 1 at room temperature. By reducing the temperature drop in the vicinity of the meniscus, as shown in FIG.
As shown in, the nail depth of the oscillation becomes smaller. This means that the bubbles and inclusions trapped by the nail of the oscillation are reduced. further,
In terms of the surface quality of the slab, as shown in FIG. 7, by heating the powder, the surface flaw generation ratio can be significantly reduced.

【0016】[0016]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、連続鋳造用鋳型内へパウダーを加熱して供給するに
際し、パウダーに流動性を付与したから少量の移送気体
によりパウダーを気流輸送でき、粉塵発生や移送コスト
の問題なく、円滑に鋳型内へパウダーを供給できる。ま
た、パウダーの加熱によってメニスカス近傍の温度低下
が防止され、ピンホール、ズラグ噛み込み等による鋳片
表面欠陥を大幅に低減できる。
As described above, according to the method of the present invention, when the powder is heated and fed into the continuous casting mold, the powder is fluidized so that the powder can be pneumatically transported by a small amount of the transfer gas. The powder can be smoothly supplied into the mold without generating dust or transfer cost. Further, the temperature of the vicinity of the meniscus is prevented from being lowered by heating the powder, and the slab surface defects due to pinholes, slag entrapment, etc. can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施する装置の一例を示す側断
面図である。
FIG. 1 is a side sectional view showing an example of an apparatus for carrying out the method of the present invention.

【図2】パウダーの加熱温度と流動性指数との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between the heating temperature of powder and the fluidity index.

【図3】パウダーへの添加カーボン率と流動性指数との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the ratio of carbon added to powder and the fluidity index.

【図4】常温と200℃加熱の場合の移送気体流量とパ
ウダー切出量との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the flow rate of transferred gas and the amount of powder cut out when heated at room temperature and 200 ° C.

【図5】常温と200〜300℃加熱の場合のメニスカ
スからの距離と凝固温度との差を示すグラフである。
FIG. 5 is a graph showing the difference between the solidification temperature and the distance from the meniscus when heated at room temperature and 200 to 300 ° C.

【図6】パウダーの加熱温度とオッシレーション爪深さ
指標との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a powder heating temperature and an oscillation nail depth index.

【図7】パウダーの加熱温度と表面疵発生指標との関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between the powder heating temperature and the surface flaw generation index.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 溶鋼 4 凝固シェル 5 パウダー 6 ホッパー 7 熱風吹き込み管 8 移送気体吹き込み部 9 パウダー供給管 1 Mold 2 Immersion Nozzle 3 Molten Steel 4 Solidification Shell 5 Powder 6 Hopper 7 Hot Air Blowing Pipe 8 Transfer Gas Blowing Port 9 Powder Supply Pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用鋳型内へパウダーを加熱して
供給する方法において、パウダー供給過程の容器内で熱
風を用いてパウダーの構成成分および物性値が変化しな
いで、かつパウダーの流動性が生じる温度に加熱すると
共に、パウダーを気流輸送により鋳型内に供給すること
を特徴とする連続鋳造用パウダーの供給方法。
1. A method for heating and supplying powder into a continuous casting mold, wherein hot powder is used in the container during the powder supply process without changing the constituent components and physical properties of the powder, and the fluidity of the powder is improved. A method for supplying powder for continuous casting, which comprises heating to a temperature at which it is generated and supplying the powder into the mold by air flow.
【請求項2】 パウダーを熱風により気流輸送させるこ
とを特徴とする請求項1記載の連続鋳造用パウダーの供
給方法。
2. The method of supplying powder for continuous casting according to claim 1, wherein the powder is transported by hot air.
JP19688093A 1993-07-13 1993-07-13 Method for supplying powder for continuous casting Pending JPH0732104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19688093A JPH0732104A (en) 1993-07-13 1993-07-13 Method for supplying powder for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19688093A JPH0732104A (en) 1993-07-13 1993-07-13 Method for supplying powder for continuous casting

Publications (1)

Publication Number Publication Date
JPH0732104A true JPH0732104A (en) 1995-02-03

Family

ID=16365192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19688093A Pending JPH0732104A (en) 1993-07-13 1993-07-13 Method for supplying powder for continuous casting

Country Status (1)

Country Link
JP (1) JPH0732104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749910B2 (en) 2001-07-04 2010-07-06 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
US7883628B2 (en) 2001-07-04 2011-02-08 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
CN105081245A (en) * 2015-08-21 2015-11-25 重庆煜琨珑冶金材料有限公司 Powder material flow adjuster
CN108463299A (en) * 2016-02-04 2018-08-28 新日铁住金株式会社 The added material input method of molten metal and the added material of molten metal put into device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749910B2 (en) 2001-07-04 2010-07-06 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
US7883628B2 (en) 2001-07-04 2011-02-08 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
CN105081245A (en) * 2015-08-21 2015-11-25 重庆煜琨珑冶金材料有限公司 Powder material flow adjuster
CN108463299A (en) * 2016-02-04 2018-08-28 新日铁住金株式会社 The added material input method of molten metal and the added material of molten metal put into device

Similar Documents

Publication Publication Date Title
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
AU638305B2 (en) Method for horizontal continuous casting of metal strip and apparatus therefor
JPH0333053B2 (en)
US5924476A (en) Casting steel strip
JPH0732104A (en) Method for supplying powder for continuous casting
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JPH081294A (en) Method and device for heating mold powder for continuous casting
TW201919792A (en) Continuous casting method for steel and method for manufacturing thin steel plate
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
WO2015029106A1 (en) Continuous casting method
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
US4030532A (en) Method for casting steel ingots
JP3308102B2 (en) Metal strip continuous casting method
US3575230A (en) Method of making steel
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JPH10296406A (en) Stopper rod for continuous casting
JPH0639505A (en) Method for casting molten titanium-containing stainless steel
JP5693420B2 (en) Continuous casting method
JP3669388B2 (en) Temperature control device for semi-molten metal slurry
JP3546137B2 (en) Steel continuous casting method
JPS5847941B2 (en) Rhinoceros slag
Mills et al. Fluxes for Ingot Casting
JPH09276996A (en) Method for preventing surface oxidation (deckel) at the time of starting reused tundish
JPS6061148A (en) Low temperature continuous casting method of molten metal
JPH10180423A (en) Method for continuously casting thin plate