JPH07318703A - Optical thin film material and antireflection film using that - Google Patents

Optical thin film material and antireflection film using that

Info

Publication number
JPH07318703A
JPH07318703A JP6109694A JP10969494A JPH07318703A JP H07318703 A JPH07318703 A JP H07318703A JP 6109694 A JP6109694 A JP 6109694A JP 10969494 A JP10969494 A JP 10969494A JP H07318703 A JPH07318703 A JP H07318703A
Authority
JP
Japan
Prior art keywords
thin film
titanium
film
antireflection film
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6109694A
Other languages
Japanese (ja)
Inventor
Tomonori Aoki
智則 青木
Nobuyuki Ida
信之 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTORON KK
Canon Inc
Original Assignee
OPUTORON KK
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTORON KK, Canon Inc filed Critical OPUTORON KK
Priority to JP6109694A priority Critical patent/JPH07318703A/en
Publication of JPH07318703A publication Critical patent/JPH07318703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical thin film material with which an optical thin film excellent in antireflection characteristics and durability can be formed and to obtain an antireflection film using this material by using a metal oxide containing tantalum and titanium as metal elements. CONSTITUTION:This optical thin film material is metal oxide containing tantalum and titanium as metal elements. This antireflection film is a thin film of metal oxide containing tantalum and titanium formed on a plastic optical element. The thin film of metal oxide containing tantalum and titanium is preferably produced by mixing a ditantalum pentoxide powder and a titanium oxide powder, sintering or fusing the mixture, and vapor depositing the material by an electron gun heating method. Ditantalum pentoxide and titanium oxide used in this method are not limited but any state of these can be used. Especially, for sintering, a powdery state having a proper particle size is preferable for easy sintering. Further, it is preferable to mix the two powders before sintering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学薄膜材料およびプラ
スチック製の光学素子上に形成される反射防止膜、特
に、その反射防止特性および耐久性が向上された反射防
止膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film formed on an optical thin film material and an optical element made of plastic, and more particularly to an antireflection film having improved antireflection properties and durability.

【0002】[0002]

【従来の技術】プラスチック製の光学素子はその軽量
性、耐衝撃性にすぐれ、また加工が容易にできることか
らメガネレンズ、カメラレンズ、CRTフィルター等に
用いられる。このような光学素子において、それら光学
素子の表面からの反射は光透過性を低下させ、またフレ
アーやゴースト等と呼ばれる不用な反射を引き起こして
その光学特性を低下させる。そのためその表面に反射を
防止するため多層反射防止膜を真空蒸着法やスパッタリ
ング法で付けることが広く行われている。
2. Description of the Related Art Optical elements made of plastics are used for eyeglass lenses, camera lenses, CRT filters, etc. because of their light weight, excellent impact resistance and easy processing. In such an optical element, the reflection from the surface of the optical element lowers the light transmissivity and causes unnecessary reflection called flare, ghost, etc. to deteriorate the optical characteristics. Therefore, in order to prevent reflection, a multi-layer antireflection film is widely applied to the surface by a vacuum deposition method or a sputtering method.

【0003】[0003]

【発明が解決しようとする課題】これら多層反射防止膜
においてその膜の種類は光学薄膜の理論によって計算さ
れた膜厚および屈折率を満たすように決定されるが、屈
折率については実際に存在する物質の屈折率に限りがあ
るために必ずしも十分な反射防止効果がある反射防止膜
ができるとはかぎらない。特に現在用いられている屈折
率が1.60をこえるような高屈折率のプラスチック基
板用多層反射防止膜には高屈折率薄膜材料として屈折率
が2.00以上、特に2.10以上が望まれ、酸化ジル
コニウム、酸化チタニウム、五酸化二タンタル、酸化セ
リウム等が好んで用いられる。しかし、酸化ジルコニウ
ムは屈折率が1.95〜2.00と低いため十分な反射
防止効果が得られず酸化チタニウムや酸化セリウムは屈
折率が2.05〜2.15であるがその膜は軟らかくま
た耐熱衝撃性が低い、五酸化二タンタルは屈折率で2.
00〜2.05が得られるが薄膜に吸収が発生し透過率
が低くなってしまい、良好な特性が得られない。
In these multilayer antireflection films, the type of the film is determined so as to satisfy the film thickness and the refractive index calculated by the theory of the optical thin film, but the refractive index actually exists. Since the refractive index of the substance is limited, it is not always possible to form an antireflection film having a sufficient antireflection effect. In particular, a multilayered antireflection film for a plastic substrate having a high refractive index of more than 1.60 currently used is desired to have a refractive index of 2.00 or more, particularly 2.10 or more as a high refractive index thin film material. Rarely, zirconium oxide, titanium oxide, tantalum pentoxide, cerium oxide, etc. are preferably used. However, since zirconium oxide has a low refractive index of 1.95 to 2.00, a sufficient antireflection effect cannot be obtained, and titanium oxide and cerium oxide have a refractive index of 2.05 to 2.15, but the film is soft. Also, tantalum pentoxide, which has low thermal shock resistance, has a refractive index of 2.
However, good characteristics cannot be obtained because absorption occurs in the thin film and the transmittance becomes low.

【0004】これらの問題を解決するために特開平2−
291502では五酸化二タンタル、酸化ジルコニウ
ム、酸化イットリウムの混合物焼結体の使用が開示され
ている。しかしこの焼結体は真空蒸着時に電子銃を使用
すると材料の飛散が激しく、その飛散した材料の一部が
大きな粒子となって光学素子上に付着し、不良の原因と
なることがあるため必ずしも十分とはいえず、またいず
れの材料を使用する場合も基板と多層反射防止膜の間に
薄膜の強度を増すために有機珪素化合物のハードコート
層を設けることが多いが耐熱衝撃性に関しては十分では
なかった。
To solve these problems, Japanese Unexamined Patent Publication No.
291502 discloses the use of a sintered mixture of ditantalum pentoxide, zirconium oxide and yttrium oxide. However, in this sintered body, when an electron gun is used during vacuum vapor deposition, the material scatters violently, and some of the scattered material becomes large particles that adhere to the optical element, which may cause defects. It cannot be said to be sufficient, and when using any of the materials, a hard coat layer of an organosilicon compound is often provided between the substrate and the multilayer antireflection film to increase the strength of the thin film, but the thermal shock resistance is not sufficient. Was not.

【0005】上記のようにプラスチック上に蒸着された
多層膜は高屈折材料の屈折率が十分高くないため反射防
止特性が十分でなく、また耐熱衝撃性が弱いという問題
点があった。従って本発明の解決とする問題点はプラス
チック基板上に光学特性および耐熱衝撃性が十分でな
い。
As described above, the multilayer film deposited on the plastic has problems that the antireflection property is not sufficient and the thermal shock resistance is weak because the refractive index of the high refractive material is not sufficiently high. Therefore, the problem to be solved by the present invention is that the optical characteristics and thermal shock resistance are not sufficient on the plastic substrate.

【0006】[0006]

【課題を解決するための手段】本発明は上記の問題点を
解決するためになされたもので、本発明による反射防止
膜は、プラスチック基板上に形成される反射防止膜にお
いて、前記反射防止膜がタンタルおよびチタニウムを含
む金属酸化物の薄膜であることを特徴とするものであ
る。また、本発明は、金属元素としてタンタルおよびチ
タニウムを含む金属酸化物であることを特徴とする光学
薄膜材料である。
The present invention has been made to solve the above problems, and an antireflection film according to the present invention is an antireflection film formed on a plastic substrate. Is a thin film of a metal oxide containing tantalum and titanium. Further, the present invention is an optical thin film material, which is a metal oxide containing tantalum and titanium as metal elements.

【0007】本発明においてタンタルおよびチタニウム
を含む金属酸化物の薄膜は五酸化二タンタル粉末および
酸化チタニウム粉末を混合し焼結あるいは溶融化合した
ものを電子銃加熱法にて蒸着させた物が好適である。こ
こで用いられる五酸化二タンタルおよび酸化チタニウム
は特に制限はなくいずれの物でも使用可能であるが特に
焼結においては焼結しやすいように適度の粒径の粉末状
の物が好ましい。これらの平均粒径としては五酸化二タ
ンタルは0.5〜1μm程度で、酸化チタニウムとして
は0.2〜0.3μm程度であることが望ましい。さら
に焼結前に両者を予め混合することが望ましく、その混
合方法としてはボールミルを用いるなどの方法がある。
焼結は粉体をあらかじめプレス等の方法でペレット状に
してそれらを電気炉等で焼き固める。加熱温度は100
0℃以上あることが望ましい。また溶融する場合も同様
に両者が十分混ざるようにあらかじめボールミル等で混
合した後、溶融することが望ましい。溶融する方法とし
ては高周波溶解、電子ビーム溶解などが用いられる。各
粉末を混合してなる混合または化合物の組成比は重量比
において五酸化二タンタル95%に対して酸化チタニウ
ム5%であることが好ましい。このようにして得られた
蒸着膜は五酸化二タンタル膜のような吸収がなく、また
酸化チタニウム膜に比べてはるかに耐熱衝撃性が良く、
とくに温水試験においては非常に優れた耐久性を持つ。
さらに屈折率において、例えば2.15の高い数値を示
し、膜設計上からも有効である。なお五酸化二タンタル
100重量部に対して酸化チタニウム100〜0.5重
量部が好適混合比である酸化チタニウムの混合比が10
0重量部以下が材料の飛散が少ない点で好ましく、ま
た、0.5重量以上が薄膜の吸収が少なく、十分な透過
性が得られる点で好ましい。酸化チタニウムとしては、
TiO2、Ti23およびTi35などが用いられる。
In the present invention, the metal oxide thin film containing tantalum and titanium is preferably a thin film obtained by vapor-depositing a mixture of ditantalum pentoxide powder and titanium oxide powder, and sintering or melting compound, by an electron gun heating method. is there. The tantalum pentoxide and titanium oxide used here are not particularly limited and any of them can be used, but in particular, in the case of sintering, a powdery material having an appropriate particle diameter is preferable so that it can be easily sintered. It is desirable that the average particle diameter of these is about 0.5 to 1 μm for ditantalum pentoxide and about 0.2 to 0.3 μm for titanium oxide. Furthermore, it is desirable to mix both of them in advance before sintering, and as a mixing method, there is a method such as using a ball mill.
For sintering, the powder is made into pellets by a method such as pressing in advance, and the pellets are baked in an electric furnace or the like. Heating temperature is 100
It is preferably 0 ° C or higher. In the case of melting, it is desirable that the two should be mixed in advance with a ball mill or the like so that they are sufficiently mixed and then melted. As a melting method, high frequency melting, electron beam melting, or the like is used. The composition ratio of the mixture or the compound obtained by mixing the powders is preferably 95% ditantalum pentoxide and 5% titanium oxide. The vapor-deposited film thus obtained does not absorb like a tantalum pentoxide film, and has a much better thermal shock resistance than a titanium oxide film,
Especially, it has very good durability in hot water test.
Further, the refractive index shows a high numerical value of 2.15, for example, which is effective from the viewpoint of film design. A preferable mixing ratio is 100 to 0.5 parts by weight of titanium oxide with respect to 100 parts by weight of tantalum pentoxide.
The amount of 0 parts by weight or less is preferable in that the material is less scattered, and the amount of 0.5 parts by weight or more is preferable in that the thin film is less absorbed and sufficient permeability is obtained. As titanium oxide,
TiO 2 , Ti 2 O 3 and Ti 3 O 5 are used.

【0008】反射防止膜の構成としてはλ/2−λ/4
の2層膜、λ/4−λ/2−λ/4、の3層膜等の大層
反射防止膜が考えられるが反射防止の特性をさらに向上
させるには4層以上の多層膜でも可能である。
The structure of the antireflection film is λ / 2-λ / 4
A large-layer antireflection film such as a two-layer film of λ / 4-λ / 2-λ / 4 and a three-layer film of λ / 4-λ / 2-λ / 4 can be considered, but a multilayer film of four layers or more is also possible to further improve the antireflection property. is there.

【0009】低屈折率膜と高屈折率膜とを交互に積層し
てなる多層反射防止膜において、高屈折率膜がタンタル
およびチタニウムを含む金属酸化物の薄膜であることが
好適である。なお低屈折率膜としては物理的特性の面か
ら特に二酸化珪素膜を用いることが好ましい。
In the multilayer antireflection film in which the low refractive index film and the high refractive index film are alternately laminated, the high refractive index film is preferably a thin film of a metal oxide containing tantalum and titanium. It is preferable to use a silicon dioxide film as the low refractive index film from the viewpoint of physical characteristics.

【0010】本発明に用いられる反射防止膜の基材とな
るプラスチックとしてはメチルメタクリレート単独重合
体、メチルメタクリレートと1種以上の他のモノマーと
をモノマー成分とする共重合体、ジエチレングリコール
ビスアリルカーボネート単独重合体、ジエチレングリコ
ールビスアリルカーボネートと1種以上の他のモノマー
とをモノマー成分とする共重合体、イオウ含有共重合
体、ハロゲン含有共重合体、ポリカーボネート、ポリス
チレン、ポリ塩化ビニル、不飽和ポリエステル、ポリエ
チレンテレフタレート、ポリウレタン等のプラスチック
製光学基板などがあげられる。また、これらのプラスチ
ック基板の上に有機珪素化合物を含んだハードコート層
を設けた物も含めることができる。
The plastic used as the base material of the antireflection film used in the present invention is a methyl methacrylate homopolymer, a copolymer containing methyl methacrylate and at least one other monomer as a monomer component, and diethylene glycol bisallyl carbonate alone. Polymer, copolymer containing diethylene glycol bisallyl carbonate and at least one other monomer as a monomer component, sulfur-containing copolymer, halogen-containing copolymer, polycarbonate, polystyrene, polyvinyl chloride, unsaturated polyester, polyethylene Examples include plastic optical substrates such as terephthalate and polyurethane. Further, it is also possible to include those in which a hard coat layer containing an organic silicon compound is provided on these plastic substrates.

【0011】さらに、反射防止膜の形成方法としては真
空蒸着法の他に、イオンプレーティング法やスパッタリ
ング法等を含めることができる。
Further, as a method for forming the antireflection film, an ion plating method, a sputtering method or the like can be included in addition to the vacuum vapor deposition method.

【0012】[0012]

【実施例】以下本発明を実施例にもとずき具体的に説明
するが、本発明はこれに限定される物ではない。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited thereto.

【0013】(実施例1)五酸化二タンタルの粉末(平
均粒径0.7μm)と酸化チタニウム(TiO2)の粉
末(平均粒径0.25μm)を95:5の重量比でボー
ルミルを用いて混合しプレス成形した後、大気中で10
00℃で4時間焼結をおこなって蒸着用ペレットとし
た。これを真空槽(シンクロン製BMC850)の中に
配置された電子銃(日本電子製JEBG102)の蒸着
用ハースにセットし、装置内を1×10-5Torr になる
まで排気した後、電子ビームによってこれらを溶解し蒸
発させ、あらかじめ真空槽内にセットしたジエチレング
リコールビスアリルカーボネートの重合体からなるプラ
スチックの平板に光学的膜厚nd=125nm堆積させ
た。蒸着終了後それらのプラスチックの平板を取り出
し、分光光度計(日立U−3400型)から求めた薄膜
の透過率と反射率から吸収と屈折率を計算した。吸収の
計算には式1を、屈折率の計算には式2を用いた。 式1 (吸収)=100-((透過率)+(反射率))
Example 1 A tantalum pentoxide powder (average particle size 0.7 μm) and titanium oxide (TiO 2 ) powder (average particle size 0.25 μm) were used in a ball mill at a weight ratio of 95: 5. After mixing and press molding, 10 in the atmosphere
Sintering was performed at 00 ° C. for 4 hours to obtain pellets for vapor deposition. This was set on the hearth for vapor deposition of an electron gun (JEBG102 made by JEOL) placed in a vacuum chamber (BMC850 made by SYNCHRON), and the inside of the apparatus was evacuated to 1 × 10 −5 Torr, then by an electron beam. These were dissolved and evaporated, and an optical film thickness nd = 125 nm was deposited on a plastic plate made of a polymer of diethylene glycol bisallyl carbonate set in advance in a vacuum chamber. After completion of vapor deposition, the plastic flat plates were taken out, and the absorption and the refractive index were calculated from the transmittance and the reflectance of the thin film obtained from a spectrophotometer (Hitachi U-3400 type). Equation 1 was used to calculate the absorption, and Equation 2 was used to calculate the refractive index. Formula 1 (Absorption) = 100-((Transmittance) + (Reflectance))

【0014】[0014]

【外1】 この評価の結果、本発明の薄膜材料は第1表に示すよう
に2.0以上の高い屈折率が吸収なく得られることがわ
かった。
[Outer 1] As a result of this evaluation, it was found that the thin film material of the present invention could obtain a high refractive index of 2.0 or more without absorption as shown in Table 1.

【0015】(実施例2)ジエチレングリコールビスア
リルカーボネートの重合体からなるプラスチック製眼鏡
レンズに、2ーエトキシエタノール300g、2ーメト
キシエタロール分散コロイダルシリカ470g、α−グ
リシドキシプロピルトリメトキシシラン185g、フロ
ーコントロール剤0.03g及び0.05N塩酸水溶液
50gを加え、室温で2時間かくはんした溶液をディッ
プコートしハードコート層としたものを被蒸着基板と
し、実施例1で作成した蒸着用ペレットとと溶融二酸化
珪素(オプトロン製)を1〜3mmに粒度調製したもの
を真空槽の中に配置された電子銃蒸着用ハースにそれぞ
れセットし、装置内を1×10-5Torrになるまで排気し
た後、電子銃によってこれらを溶解し蒸発させ第2表の
様な膜構成の多層反射防止膜を作成した。このようにし
て作成した多層反射防止膜についてその耐久性を評価す
るためにレンズの外観、薄膜の密着性、耐熱衝撃性を以
下の要領で比較した。
Example 2 A plastic eyeglass lens made of a polymer of diethylene glycol bisallyl carbonate was added to 300 g of 2-ethoxyethanol, 470 g of colloidal silica dispersed with 2-methoxyetalol, and 185 g of α-glycidoxypropyltrimethoxysilane. A flow control agent (0.03 g) and a 0.05N aqueous hydrochloric acid solution (50 g) were added, and the solution was stirred at room temperature for 2 hours to form a hard coat layer on the substrate to be vapor-deposited, and the pellets for vapor deposition prepared in Example 1 were used. After melted silicon dioxide (manufactured by Optron) having a particle size adjusted to 1 to 3 mm was set in each of the hearths for electron gun vapor deposition placed in a vacuum chamber, and the inside of the apparatus was evacuated to 1 × 10 −5 Torr. , Multi-layered reflection with film structure as shown in Table 2 by melting and evaporating them with an electron gun It has created a stop film. In order to evaluate the durability of the thus prepared multilayer antireflection film, the appearance of the lens, the adhesion of the thin film, and the thermal shock resistance were compared in the following manner.

【0016】外観 スライドプロジェクターを光源とする照明にレンズをか
ざし目視にて、割れ、ひび、しわの無いことおよび光の
散乱の無いこと。
Appearance There should be no cracks, cracks, wrinkles, and no light scattering when visually observing the lens by illuminating it with the slide projector as the light source.

【0017】密着性 レンズ面を1mm間隔で100ますになるようにクロス
カットし、その上にセロファンテープ(セキスイ製、商
品名セロテープNo.252)を強く張り付けた後45
度の角度で急速に引き剥し多層反射防止膜、ハードコー
ト層および基板面の剥離の有無を調べた。
Adhesion: The lens surface is cross-cut so as to be 100 mm at intervals of 1 mm, and cellophane tape (made by Sekisui, trade name Cellotape No. 252) is strongly adhered to it 45
The multilayer antireflection film, the hard coat layer, and the surface of the substrate were peeled off rapidly at an angle of 10 degrees, and the presence or absence of peeling was examined.

【0018】耐熱衝撃性(温水試験) 多層反射防止膜をつけたレンズを温水と20℃に保った
冷水に交互に10秒ずつ浸し、これを5回繰り返した。
温水の温度は60℃から初め5℃ずつ上げて、外観にひ
び割れやしわなどの異常が発生するまで試験を行った。
Thermal shock resistance (hot water test) A lens provided with a multilayer antireflection film was alternately immersed in warm water and cold water kept at 20 ° C. for 10 seconds each, and this was repeated 5 times.
The temperature of the warm water was increased from 60 ° C. by 5 ° C. at a time, and the test was conducted until abnormalities such as cracks and wrinkles occurred in the appearance.

【0019】これらの評価の結果は第3表に示すとお
り、いずれの項目においても良好であり、本発明の材料
が耐久性、特に耐熱衝撃性は非常に優れていることがわ
かった。
As shown in Table 3, the results of these evaluations are good in all the items, and it was found that the material of the present invention is very excellent in durability, particularly in thermal shock resistance.

【0020】(実施例3)五酸化二タンタルの粉末(平
均粒径0.7μm)と酸化チタニウム(TiO)の粉
末(平均粒径0.5μm)を95:5の重量比でボール
ミルを用いて混合しプレス成形した後、電子ビームを用
いて溶融反応させ五酸化二タンタルと酸化チタニウムの
化合物を生成させそれを1−3mmに粉砕した物を第1
表の膜構成で実施例2と同様のプラスチック基板上に実
施例2と同様の方法で多層反射防止膜を形成し実施例2
と同様の方法で評価した。得られた結果は第3表に示す
とおり良好であった。
Example 3 A tantalum pentoxide powder (average particle size 0.7 μm) and titanium oxide (TiO 2 ) powder (average particle size 0.5 μm) were used in a ball mill at a weight ratio of 95: 5. After mixing and press-molding, melt reaction using an electron beam to produce a compound of ditantalum pentoxide and titanium oxide, and crushing it into 1-3 mm
A multilayer antireflection film was formed by the same method as in Example 2 on the same plastic substrate as in Example 2 with the film configuration shown in the table.
It evaluated by the method similar to. The results obtained were good as shown in Table 3.

【0021】(実施例4)実施例2の基板をチオウレタ
ン樹脂に替え実施例2と同様の方法で多層反射防止膜の
形成、評価を行ったところ第3表に示す様に良好であっ
た。
(Example 4) The substrate of Example 2 was replaced with a thiourethane resin, and a multilayer antireflection film was formed and evaluated in the same manner as in Example 2, and it was good as shown in Table 3. .

【0022】(比較例1)実施例1の五酸化二タンタル
粉末と酸化チタニウムの粉末を重量比で50:50の割
合で混合、プレス、焼結させ実施例1と同じ装置で溶解
したところ突沸が激しく、はね上がった粒子が基板につ
いてしまい、外観上好ましくなかった。
Comparative Example 1 The ditantalum pentoxide powder of Example 1 and the titanium oxide powder were mixed, pressed and sintered at a weight ratio of 50:50, and melted in the same apparatus as in Example 1 to cause bumping. Was severe, and the particles that jumped up were attached to the substrate, which was not desirable in appearance.

【0023】(比較例2)実施例1の五酸化二タンタル
粉末のみを、プレス、焼結させ実施例1と同じ装置で溶
解・蒸発させたところ薄膜に吸収が発生し茶色の着色が
みられ、外観上好ましくなかった。
Comparative Example 2 When only the ditantalum pentoxide powder of Example 1 was pressed and sintered and dissolved and evaporated in the same apparatus as in Example 1, absorption occurred in the thin film and brown coloring was observed. The appearance was not preferable.

【0024】(比較例3)実施例2の酸化チタニウムの
粉末のみをプレス成形、焼成した後、第2表の膜構成で
実施例2と同様のプラスチック基板上に実施例2と同様
の方法で多層反射防止膜を形成し実施例2と同様の方法
で評価した。得られた結果は第3表に示すとおり耐熱衝
撃性に劣るものであった。
(Comparative Example 3) Only the titanium oxide powder of Example 2 was press-molded and fired, and then, on the same plastic substrate as in Example 2 with the film constitution shown in Table 2, by the same method as in Example 2. A multilayer antireflection film was formed and evaluated in the same manner as in Example 2. The results obtained were inferior in thermal shock resistance as shown in Table 3.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】以上のように本発明はプラスチックレン
ズ上に低屈折率膜と高屈折率膜を交互に積層してなる多
層反射防止膜において、前記高屈折率膜にタンタルとチ
タニウムを含む金属酸化物の薄膜を使用することによっ
てその特性および耐久性を著しく向上させることが可能
となった。
As described above, according to the present invention, in a multilayer antireflection film formed by alternately laminating a low refractive index film and a high refractive index film on a plastic lens, the high refractive index film contains a metal containing tantalum and titanium. By using a thin film of oxide, it has become possible to significantly improve its properties and durability.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属元素としてタンタルおよびチタニウ
ムを含む金属酸化物であることを特徴とする光学薄膜材
料。
1. An optical thin film material, which is a metal oxide containing tantalum and titanium as metal elements.
【請求項2】 金属酸化物が、五酸化二タンタルおよび
酸化チタニウムの燒結体であることを特徴とする請求項
1の光学薄膜材料。
2. The optical thin film material according to claim 1, wherein the metal oxide is a sintered body of ditantalum pentoxide and titanium oxide.
【請求項3】 金属酸化物が五酸化二タンタルおよび酸
化チタニウムの溶融体であることを特徴とする請求項1
の光学薄膜材料。
3. The metal oxide is a melt of ditantalum pentoxide and titanium oxide.
Optical thin film material.
【請求項4】 五酸化二タンタル100重量部に対して
酸化チタニウムが100〜0.5重量部である請求項2
または3の光学薄膜材料。
4. Titanium oxide is 100 to 0.5 parts by weight with respect to 100 parts by weight of ditantalum pentoxide.
Or the optical thin film material of 3.
【請求項5】 プラスチック製の光学素子上に形成され
る反射防止膜において、前記反射防止膜がタンタルとチ
タニウムを含む金属酸化物の薄膜であることを特徴とす
る反射防止膜。
5. An antireflection film formed on a plastic optical element, wherein the antireflection film is a thin film of a metal oxide containing tantalum and titanium.
【請求項6】 プラスチック製の光学素子上に有機珪素
化合物のハードーコート層を設けその上に反射防止膜が
形成されていることを特徴とする請求項5の反射防止
膜。
6. The antireflection film according to claim 5, wherein a hard coat layer of an organic silicon compound is provided on the plastic optical element, and the antireflection film is formed thereon.
JP6109694A 1994-05-24 1994-05-24 Optical thin film material and antireflection film using that Pending JPH07318703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6109694A JPH07318703A (en) 1994-05-24 1994-05-24 Optical thin film material and antireflection film using that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6109694A JPH07318703A (en) 1994-05-24 1994-05-24 Optical thin film material and antireflection film using that

Publications (1)

Publication Number Publication Date
JPH07318703A true JPH07318703A (en) 1995-12-08

Family

ID=14516837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6109694A Pending JPH07318703A (en) 1994-05-24 1994-05-24 Optical thin film material and antireflection film using that

Country Status (1)

Country Link
JP (1) JPH07318703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825904B2 (en) 2000-07-14 2004-11-30 Seiko Epson Corporation Liquid crystal device, color filter substrate with vapor deposited metal oxide insulating layer under transparent conductor, method for manufacturing liquid crystal device, and method for manufacturing color filter substrate
JP2011245479A (en) * 2010-04-27 2011-12-08 Harison Toshiba Lighting Corp Ultraviolet irradiation apparatus, ultraviolet irradiation method, and method for manufacturing of ultraviolet irradiation apparatus
CN114195187A (en) * 2021-12-15 2022-03-18 福建阿石创新材料股份有限公司 Coating material and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825904B2 (en) 2000-07-14 2004-11-30 Seiko Epson Corporation Liquid crystal device, color filter substrate with vapor deposited metal oxide insulating layer under transparent conductor, method for manufacturing liquid crystal device, and method for manufacturing color filter substrate
JP2011245479A (en) * 2010-04-27 2011-12-08 Harison Toshiba Lighting Corp Ultraviolet irradiation apparatus, ultraviolet irradiation method, and method for manufacturing of ultraviolet irradiation apparatus
TWI497560B (en) * 2010-04-27 2015-08-21 Harison Toshiba Lighting Corp Ultraviolet ray irradiation apparatus, ultraviolet irradiation method, and ultraviolet ray irradiation apparatus
CN114195187A (en) * 2021-12-15 2022-03-18 福建阿石创新材料股份有限公司 Coating material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101657713B1 (en) Optical article and method for producing the same
US6627320B2 (en) Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film
TWI231864B (en) Composition for vapor deposition, method for forming antireflection film using it, and optical element
JPH07318703A (en) Optical thin film material and antireflection film using that
KR101050612B1 (en) Deposition Materials for Making High Refractive Index Optical Layers
JP5066644B2 (en) Multilayer ND filter
JP2021055149A (en) Manufacturing method of optical thin film, optical thin film and optical member
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JPH07119845B2 (en) Optical components
JPS6128027B2 (en)
JP5095994B2 (en) Vapor deposition material for producing high refractive index optical layers
JP2576637B2 (en) Heat ray reflective glass
JP3404346B2 (en) Method of manufacturing optical thin film and method of manufacturing substrate having optical thin film
JP3353931B2 (en) Optical thin film, optical component formed with this optical thin film, antireflection film, and plastic optical component formed with this antireflection film
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
KR102215218B1 (en) Thermal shock resistant coating material for low refractive lens and method of forming coating film using the same
JPH07119844B2 (en) Optical component having antireflection film
JP2002082208A (en) Antireflection film and optical component with the same
JP2000180604A (en) High refractive index optical thin film material and optical thin film using therewith
JPH07287103A (en) Glass optical parts
JPH10311902A (en) Fogproof antireflective optical article and optical apparatus
JP2000347024A (en) Optical selective absorption filter
JPH0547625B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020827