JPH07318595A - System for detecting change in quantity of ac electricity - Google Patents

System for detecting change in quantity of ac electricity

Info

Publication number
JPH07318595A
JPH07318595A JP6135019A JP13501994A JPH07318595A JP H07318595 A JPH07318595 A JP H07318595A JP 6135019 A JP6135019 A JP 6135019A JP 13501994 A JP13501994 A JP 13501994A JP H07318595 A JPH07318595 A JP H07318595A
Authority
JP
Japan
Prior art keywords
electricity
amount
value
change
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6135019A
Other languages
Japanese (ja)
Other versions
JP3483621B2 (en
Inventor
Takafumi Maeda
隆文 前田
Mitsuru Yamaura
充 山浦
Yasuhiro Kurosawa
保広 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP13501994A priority Critical patent/JP3483621B2/en
Publication of JPH07318595A publication Critical patent/JPH07318595A/en
Application granted granted Critical
Publication of JP3483621B2 publication Critical patent/JP3483621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To accurately detect the change in the quantity of AC electricity without being affected by frequency by obtaining the inner outer product values of the quantity of change of AC electricity of a power system with the quantity of reference electricity before and after the change with the quantity of AC electricity which does not change as a reference. CONSTITUTION:A present data of the volume of AC electricity to be detected, and a preceding data of a set time before from the current data, and a data of the quantity of AC electricity which are not affected by the change in the quantity of AC electricity, and a data preceding a set time from it are obtained. Then, the current inner product value between the quantity of AC electricity to be detected and the quantity of AC electricity which is not affected by the influence in the change of the quantity of AC electricity, the square value of the difference of the inner product value preceding a set time, and the sum of the square value of the difference between the current outer product value of the same of electricity, and the outer product value preceding a set time are obtained. Then, the square value of the amplitude value of the quantity of AC electricity which does not affect the change in the quantity of AC electricity is calculated and the value is multiplied by a setting value K. Then, the difference between the inner and outer product values preceding a set time is compared with the sum of the square value and the value obtained by multiplying a set value K.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力系統の交流電気量の
ベクトル変化分の大きさを高精度に検出する交流電気量
変化分検出方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a change amount of alternating current electricity for detecting a magnitude of a vector change amount of alternating current electricity of a power system with high accuracy.

【0002】[0002]

【従来の技術】電力系統には常時負荷電流が流れている
ことは周知であるが、近年、系統の構成が複雑になり、
系統が健全状態であっても平衡性を保つことが難しく、
常時でも零相、逆相電圧・電流が存在することが報告さ
れている。このような状態下にあっても事故を確実に検
出する必要がある。このため、事故時に発生する電気量
が微小な場合に、常時存在する前記零相、逆相電気量が
事故時電気量に重畳しても、当該電気量の大きさをその
まま検出する方式では困難になってきている。
2. Description of the Related Art It is well known that a load current is constantly flowing through a power system, but in recent years, the system configuration has become complicated,
It is difficult to maintain balance even if the system is in a healthy state,
It has been reported that zero-phase and negative-phase voltage / current exist even at all times. Even under such a condition, it is necessary to reliably detect an accident. Therefore, when the amount of electricity generated at the time of an accident is very small, even if the always-present zero-phase or negative-phase electricity amount is superimposed on the electricity amount at the time of the accident, it is difficult to detect the magnitude of the electricity amount as it is. Is becoming.

【0003】[0003]

【発明が解決しようとする課題】電力系統に事故が発生
すると、系統の電気量が事故様相に応じて変化する。こ
の場合、負荷電流が流れているとこれが事故電流に重畳
するため、電流検出感度が悪くなる。そこで負荷電流分
をキャンセルする方式の電流変化分検出リレーがある。
この方式での変化分は(1) 式で示されるように、現時点
の電流瞬時値データim とその数サイクル前のデータi
m-M の差分値のレベルを検出するものである。
When an accident occurs in the power system, the amount of electricity in the system changes according to the aspect of the accident. In this case, if a load current is flowing, it will be superimposed on the fault current, and the current detection sensitivity will deteriorate. Therefore, there is a current change detection relay that cancels the load current.
Variation in this method, as shown in (1), the moment of the current instantaneous values i m and its several cycles before the data i
The level of the difference value of mM is detected.

【数1】 Δim =im −im-M ………………(1) [Equation 1] Δi m = i m −i mM ……………… (1)

【0004】今、電流瞬時値データを次式のようにおく
と、
Now, when the current instantaneous value data is set as the following equation,

【数2】 im =I sin(ωtm ) im-M =I sin(ω(tm −M・T)) (M・ωo T=M・2πfo /fs =N・2π)…M=N・fs /fo (fs :サンプリング周波数,T:サンプリング周期)## EQU00002 ## i m = I sin (ωt m ) imM = I sin (ω (t m −M · T)) (M · ω o T = M · 2πf o / f s = N · 2π) ... M = N · f s / f o (f s : sampling frequency, T: sampling period)

【0005】上記(1) 式は(2) 式となる。The above formula (1) becomes the formula (2).

【数3】 Δim =im −im-M =2I・sin((ωM・T)/2)・cos(ω(tm −M・T/2)) =2I・sin((ωM・T)/2) =2I・ sin(M・(ωo +Δω)・T) =2I・sin((M・ωo T+M・Δω・T)/2) =−2I・sin((M・Δω・T)/2) ……………(2) (N:整数,ω=ωo +Δω,ωo :系統基本周波数,
Δω:周波数変動分)
[Number 3] Δi m = i m -i mM = 2I · sin ((ωM · T) / 2) · cos (ω (t m -M · T / 2)) = 2I · sin ((ωM · T) / 2) = 2I ・ sin (M ・ (ω o + Δω) ・ T) = 2I ・ sin ((M ・ ω o T + M ・ Δω ・ T) / 2) = -2I ・ sin ((M ・ Δω ・ T) / 2) …………… (2) (N: integer, ω = ω o + Δω, ω o : system fundamental frequency,
Δω: Frequency fluctuation)

【0006】ここで平常時に交流電気量の周波数が変動
した場合、本来零であるべき電気量が(2) 式に示す変化
分として生じてしまう。例えばN=1(1サイクル前)
(M=12であるから)、Δω=5%、fs /fo =1
2の時、
Here, when the frequency of the alternating-current electricity quantity fluctuates during normal times, the electricity quantity which should be zero originally occurs as a change amount shown in the equation (2). For example, N = 1 (one cycle before)
(Since M = 12), Δω = 5%, f s / f o = 1
When 2,

【数4】 |Δim |=2I・ sin(M・Δω・T/2) =2I・ sin(12・0.05・π/12) =2I・ sin(9°)=0.31・I …………(3) となり、31%の誤差を生じることになる。本発明は上
記問題点を解決するためになされたものであり、電力系
統の周波数が基本周波数に対して変化しても、周波数の
影響を受けずに交流電気量の変化分を高精度に検出する
ことの可能な交流電気量変化分検出方式を提供すること
を目的としている。
[Expression 4] | Δi m | = 2I · sin (M · Δω · T / 2) = 2I · sin (12 · 0.05 · π / 12) = 2I · sin (9 °) = 0.31 · I ………… (3), which results in a 31% error. The present invention has been made to solve the above-mentioned problems, and even if the frequency of the power system changes with respect to the fundamental frequency, the amount of change in the AC electricity amount is detected with high accuracy without being affected by the frequency. It is an object of the present invention to provide a method for detecting the amount of change in alternating-current electricity amount that can be performed.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
交流電気量変化分検出方式は、電力系統の交流電気量の
変化分を算出する方式において、検出対象とする交流電
気量の現時点のデータとそれより一定時間前データ、及
び前記交流電気量の変化に影響を受けない交流電気量の
データとそれより一定時間前のデータとを得る第1の手
段と、検出対象とする交流電気量と前記交流電気量の変
化に影響を受けない交流電気量の現時点の内積値と一定
時間前の内積値の差分の2乗値と同電気量の現時点の外
積値と一定時間前の外積値の差分の2乗値の和を得る第
2の手段と、前記交流電気量の変化に影響を与えない交
流電気量の振幅値の2乗値を算出し、その値に所定の設
定値Kを乗じる第3の手段と、第2の手段で得られる値
と第3で得られた所定値との大小を比較する第4の手段
とを備えたものである。
According to a first aspect of the present invention, there is provided a method for detecting a change amount of an alternating current electricity amount in a method for calculating a change amount of an alternating current electricity amount of a power system. Means and data for a certain time before it, and data for the amount of AC electricity not affected by changes in the amount of AC electricity and data for a certain time before that, and AC electricity to be detected Quantity and the squared value of the difference between the inner product value of the alternating current electricity quantity and the inner product value of the current electricity quantity which is not affected by the change of the alternating current electricity quantity, and the outer product value of the current electricity quantity and the outer product value of the same electricity quantity before the fixed time Second means for obtaining the sum of squared values of the difference and a squared value of the amplitude value of the AC electricity quantity that does not affect the change of the AC electricity quantity, and a predetermined set value K is set to the value. The third means to multiply, the value obtained by the second means and the third obtained It is obtained and a fourth means for comparing the magnitude of the value.

【0008】本発明の請求項2に係る交流電気量変化分
検出方式は、請求項1において、第1の手段として、検
出対象とする交流電気量のサンプリング値(im ,i
m-k/2,im-k )とそれより一定時間前(時系列Mサン
プリング前)のサンプリング値(im-M ,im-k/2-M
m-k-M )、及び前記交流電気量の変化に影響を受けな
い交流電気量のサンプリング値(Vpm,Vpn)とそれよ
り一定時間前(時系列Mサンプリング前)のサンプリン
グ値(Vpm-M,Vpm-k/2-M,Vpm-k-M)とを得、第2の
手段として、前記サンプリング値から下式に基づいて交
流電気量の変化分を得、
[0008] AC electric quantity variation detection method according to claim 2 of the present invention, in claim 1, as a first means, the AC electric quantity of sampling values (i m to be detected, i
mk / 2 , i mk ) and sampling values (i mM , i mk / 2-M ,) before a certain time (before time-series M sampling)
i mkM ), and the sampling value (V pm , V pn ) of the AC electricity quantity that is not affected by the change in the AC electricity quantity, and the sampling value (V pm-M ) before a certain time (before time-series M sampling). , V pm-k / 2-M , V pm-kM ), and as a second means, obtain the change in the AC electric quantity from the sampling value based on the following equation:

【数5】 (ΔI・Vp 2 ={(im-k/2 ・Vpm-k/2−(im-k ・Vpm+im ・Vpm-k)/2) −(im-k/2-M ・Vpm-k/2-M−(im-k-M ・Vpm-M−im-M ・Vpm-k-M)/2}2 +{(im ・Vpm-k/2−im-k/2 ・Vpm) −(im-M ・Vpm-k/2-M−im-k/2-M ・Vpm-M)}2 ……(4) 第3の手段では、Equation 5] (ΔI · V p) 2 = {(i mk / 2 · V pm-k / 2 - (i mk · V pm + i m · V pm-k) / 2) - (i mk / 2- M · V pm-k / 2-M − (i mkM · V pm-M −i mM · V pm-kM ) / 2} 2 + {(i m · V pm-k / 2 −i mk / 2 · V pm ) − (i mM · V pm-k / 2-M −i mk / 2-M · V pm-M )} 2 (4) In the third means,

【数6】 Vp 2 =Vpm-k/2 2 −Vpm-k・Vpm ……………………(5) (m,Mはサンプリング時系列) (kはサンプリング時系列で基本周波数での位相が18
0°相当の差)を算出するようにしたものである。
[Equation 6] V p 2 = V pm-k / 2 2 −V pm-k · V pm (5) (m and M are sampling time series) (k is a sampling time series) The phase at the fundamental frequency is 18
The difference corresponding to 0 °) is calculated.

【0009】本発明の請求項3に係る交流電気量変化分
検出方式は、請求項1において、第1の手段の検出対象
電気量としては、3相電力系統の一線地絡事故時に発生
する零相電圧、又は逆相電圧、又は零相電圧と逆相電圧
の和、その電気量の変化に影響を受けない電気量として
は地絡相以外の健全相間電圧を使用するものである。
According to a third aspect of the present invention, there is provided a method for detecting a change in alternating-current electricity amount according to the first aspect, wherein as the electricity amount to be detected by the first means, zero which occurs when a one-line ground fault occurs in a three-phase power system. A healthy interphase voltage other than the ground fault phase is used as the phase voltage, the reverse phase voltage, the sum of the zero phase voltage and the reverse phase voltage, or the quantity of electricity that is not affected by the change in the quantity of electricity.

【0010】本発明の請求項4に係る交流電気量変化分
検出方式は、請求項1において、第1の手段の検出対象
電気量としては、3相電力系統の一線地絡事故時に発生
する零相電流、又は逆相電流、又は零相電流と逆相電流
の和、その電気量の変化に影響を受けない電気量として
は地絡相以外の健全相間電圧を使用するものである。
According to a fourth aspect of the present invention, there is provided a method for detecting a change in alternating-current electricity amount according to the first aspect, wherein the electricity amount to be detected by the first means is zero generated in a one-line ground fault in a three-phase power system. The normal interphase voltage other than the ground fault phase is used as the phase current, the reverse phase current, or the sum of the zero phase current and the reverse phase current, and the quantity of electricity that is not affected by the change in the quantity of electricity.

【0011】[0011]

【作用】本発明の請求項1,請求項2,請求項3,請求
項4に係る交流電気量変化分検出方式は、電力系統の交
流電気量の変化分を、変化前後に影響を受けない電気量
を基準にして、変化前後でこの基準電気量に対する同相
成分と直交成分をベクトルの内積,外積計算で求め、各
々の成分の変化前後の差分値の2乗値の和をとって算出
するようにしたものである。式で示すと(6) 式のように
なる。即ち、検出対象の交流電気量と基準電気量の内
積,外積値を高精度に算出すれば、時間及び電力系統の
周波数の影響を受けない直流量に変換できることに着目
し、交流電気量の変化分を直接求めずに、内積,外積値
に変換した量での変化分から算出するようにしたもので
ある。
The alternating current electricity amount variation detecting method according to claim 1, claim 2, claim 3, and claim 4 of the present invention does not affect the variation amount of the alternating current electricity amount of the power system before and after the change. Based on the electric quantity, the in-phase component and the quadrature component with respect to the reference electric quantity before and after the change are obtained by vector inner product and outer product calculation, and the sum of the squared values of the difference values before and after the change of each component is calculated. It was done like this. The formula is as shown in formula (6). That is, if the inner product and the outer product value of the detection target AC electricity quantity and the reference electricity quantity are calculated with high accuracy, it can be converted into a DC quantity that is not affected by time and the frequency of the power system, and changes in the AC electricity quantity Instead of directly calculating the minute, the change is calculated from the change in the inner product and outer product values.

【数7】 (ΔI)2 ・Vp 2 ={(I・Vp ・ cos(θ))m −(I・Vp ・ cos(θ))M 2 +{(I・Vp ・ sin(θ))m −(I・Vp ・ sin(θ))M 2 …………………(6) (m,Mはサンプリング時系列、M:変化前、m:変化
後)
[Formula 7] (ΔI) 2 · V p 2 = {(I · V p · cos (θ)) m − (I · V p · cos (θ)) M } 2 + {(I · V p · sin (Θ)) m − (I · V p · sin (θ)) M } 2 …………………… (6) (m and M are sampling time series, M: before change, m: after change)

【0012】[0012]

【実施例】図2は本発明による方式が適用されるディジ
タル継電器のブロック構成例図である。図2において、
電力系統から所定のレベルにて変換して取り込まれた交
流電流量i,電圧量vは先ずサンプルホールド回路S/
Hでサンプリングされ、マルチプレクサMPXを介して
順次アナログ・ディジタル変換器A/Dへ入力される。
アナログ・ディジタル変換器にて変換されたディジタル
値は演算部CPUへ入力される。CPUでは本発明に基
づく所定の動作判定演算を行ない、その結果を出力する
概略構成を有している。
FIG. 2 is a block diagram of a digital relay to which the system according to the present invention is applied. In FIG.
The AC current amount i and the voltage amount v converted and taken in from the power system at a predetermined level are first determined by the sample hold circuit S /
The signal is sampled at H and sequentially input to the analog / digital converter A / D via the multiplexer MPX.
The digital value converted by the analog / digital converter is input to the arithmetic unit CPU. The CPU has a schematic configuration for performing a predetermined operation determination calculation based on the present invention and outputting the result.

【0013】図2では電流i,電圧vのS/H回路の出
力を各々im ,vm としているが、ディジタル演算部C
PU内のディジタル処理においても区別せずに同様に記
す。そして本発明では演算部CPU内にあるディジタル
継電器に関する処理内容を、交流電気量変化分検出方式
としたものである。
In FIG. 2, the outputs of the S / H circuit for the current i and the voltage v are i m and v m , respectively.
The same applies to digital processing in PU without distinction. Further, in the present invention, the processing content relating to the digital relay in the arithmetic unit CPU is of the alternating current electricity quantity change detection method.

【0014】図1は本発明による交流電気量変化分検出
方式の一実施例を示すブロック図である。先ず第1の手
段1として、検出対象とする交流電気量のサンプリング
値(im ,im-k/2 ,im-k )と、それより一定時間前
(時系列Mサンプリング前)のサンプリング値
(im-M ,im-k/2-M ,im-k-M )、及び前記交流電気
量の変化に影響を受けない交流電気量のサンプリング値
(Vpm)と、それより一定時間前(時系列Mサンプリン
グ前)のサンプリング値(Vpm-M,Vpm-k/2-M,Vpm-k
-M)とを得、第2の手段2では、前記サンプリング値か
ら下式に基づいて交流電気量の変化分を得る。
FIG. 1 is a diagram showing the detection of a change in AC electricity according to the present invention.
It is a block diagram which shows one Example of a system. First the first hand
As step 1, sampling of the amount of AC electricity to be detected
Value (im, Imk / 2, Imk) And a certain time before that
Sampling value (before time series M sampling)
(ImM, Imk / 2-M, ImkM), And said AC electricity
Sampling value of AC electricity quantity that is not affected by changes in quantity
(Vpm) And a certain time before that (time series M sampler)
Before sampling) (Vpm-M, Vpm-k / 2-M, Vpm-k
-M) And, in the second means 2, the sampling value
Then, the variation of the AC electricity is obtained based on the following equation.

【0015】[0015]

【数8】 (ΔI・Vp 2 ={(im-k/2 ・Vpm-k/2−(im-k ・Vpm+im ・Vpm-k)/2) −(im-k/2-M ・Vpm-k/2-M−(im-k-M ・Vpm-M−im-M ・Vpm-k-M)/2}2 +{(im ・Vpm-k/2−im-k/2 ・Vpm) −(im-M ・Vpm-k/2-M−im-k/2-M ・Vpm-M)}2 Equation 8] (ΔI · V p) 2 = {(i mk / 2 · V pm-k / 2 - (i mk · V pm + i m · V pm-k) / 2) - (i mk / 2- M · V pm-k / 2-M − (i mkM · V pm-M −i mM · V pm-kM ) / 2} 2 + {(i m · V pm-k / 2 −i mk / 2 · V pm ) − (i mM · V pm-k / 2-M −i mk / 2-M · V pm-M )} 2

【0016】第3の手段3では、Vp 2 =Vpm-k/2 2
pm-k・Vpm(kはサンプリング時系列で基本周波数で
の位相がmと180°相当の差)基準電気量の2乗値に
設定値Kを乗じた量を算出し、第4の手段4では、第2
の手段で算出した量(ΔI)2 ・Vp 2 と第3の手段で
算出した量K(Vp 2 との大小を比較(ΔI)2 ・V
p 2 >K・(Vp 2 するものである。
In the third means 3, V p 2 = V pm-k / 2 2
V pm-k · V pm (where k is the sampling time series and the phase at the fundamental frequency is the difference between 180 and m) The square value of the reference electric quantity is multiplied by the set value K to calculate the fourth value. In the means 4, the second
Of the amount (ΔI) 2 · V p 2 calculated by the means described above and the amount K (V p ) 2 calculated by the third means (ΔI) 2 · V
p 2 > K · (V p ) 2 .

【0017】次に上記した図1の演算結果を検証する。
今、変化分検出対象の電気量及び変化しない基準電気量
をi,vとし、そのサンプリング時系列を下式のように
与える。
Next, the operation result of FIG. 1 will be verified.
Now, the electric quantity of the change detection target and the reference electric quantity that does not change are set to i and v, and the sampling time series is given by the following equation.

【数9】 im =I・ sin(ωtm ),im-k =I・ sin(ωtm −kωT) im-M =IM ・ sin(ωtm +φ−MωT) im-k-M =IM ・ sin(ωtm +φ−kωT−MωT) Vpm=V・ sin(ωtm +θ),Vpm-k=V・ sin(ωtm +θ−kωT) Vpm-M=V・ sin(ωtm +θ−MωT) Vpm-k-M=V・ sin(ωtm +θ−kωT−MωT)Equation 9] i m = I · sin (ωt m), i mk = I · sin (ωt m -kωT) i mM = I M · sin (ωt m + φ-MωT) i mkM = I M · sin (ωt m + φ-kωT−MωT) V pm = V · sin (ωt m + θ), V pm-k = V · sin (ωt m + θ−kωT) V pm-M = V · sin (ωt m + θ−MωT) V pm-kM = V · sin ( ωt m + θ-kωT-MωT)

【0018】ここにφ,θ及びIM は以下に示す通りで
ある。 φ:時刻(tm −MT)での交流量iに対する時刻tm
での交流量iの進位相。 θ:時刻tm での交流量vの交流量iに対する進位相。 IM :時刻(tm −MT)での交流量iの振幅値(変化
前)。
Here, φ, θ and I M are as shown below. φ: time (t m -MT) time for the exchange amount i at t m
Leading phase of alternating current amount i. θ: Leading phase of alternating current amount v with respect to alternating current amount i at time t m . I M: Time (t m -MT) amplitude values of the alternating quantity i in (before the change).

【0019】変化前の交流量iとvの内積値は以下(7)
式に示す通りとなる。
The inner product value of the alternating current amounts i and v before the change is as follows (7)
It is as shown in the formula.

【数10】 (I・Vp ・cos(θ))M =im-k/2-M ・Vpm-k/2-M−(im-k-M ・Vpm-M+im-M ・Vpm-k-M)/2 =IM ・V・{sin(ωtm +φ−kωT/2−MωT) ・sin(ωtm +θ−kωT/2−MωT) −sin(ωtm +φ−kωT−MωT) ・sin(ωtm +θ−MωT) −sin(ωtm +φ−MωT) ・sin(ωtm +θ−kωT−MωT))/2} =IM ・V・[1/2{cos(φ−θ) −cos(2ωtm +(φ+θ)−kωT−2MωT)}−1/2 ・{cos(θ−φ)・cos(kωT) −cos(2ωtm +(φ+θ)−kωT−2MωT)}] =IM ・V・1/2・[cos(φ−θ)−cos(θ−φ)・cos(kωT)] =IM ・V・ cos(φ−θ)・ sin2 (kωT/2) ……………………(7) (10) (I · V p · cos (θ)) M = i mk / 2-M · V pm-k / 2-M − (i mkM · V pm-M + i mM · V pm-kM ) / 2 = I M · V · {sin (ωt m + φ−kωT / 2−MωT) · sin (ωt m + θ−kωT / 2−MωT) −sin (ωt m + φ−kωT−MωT) · sin (ωt m + θ -MωT) -sin (ωt m + φ -MωT) · sin (ωt m + θ-kωT-MωT)) / 2} = I M · V · [1/2 {cos (φ-θ) -cos (2ωt m + (φ + θ) -kωT-2MωT )} - 1/2 · {cos (θ-φ) · cos (kωT) -cos (2ωt m + (φ + θ) -kωT-2MωT)}] = I M · V · 1 / 2 · [cos (φ−θ) −cos (θ−φ) · cos (kωT)] = I M · V · cos (φ−θ) · sin 2 (kωT / 2) ………………………… (7)

【0020】又、変化後の内積値は、以下(8) 式に示す
通りとなる。
The inner product value after the change is as shown in the following equation (8).

【数11】 (I・Vp ・cos(θ))m =im-k/2 ・Vpm-k/2−(im-k ・Vpm+im ・Vpm-k)/2 =I・V・[sin(ωtm −kωT/2)・sin(ωtm +θ−kωT/2) −{sin(ωtm −kωT) ・sin(ωtm +θ) +sin(ωtm )・sin(ωtm +θ−kωT)}/2] =I・V・[1/2{cos(θ)−cos(2ωtm +θ−kωT)} −1/2・{cos(θ)・cos(kωT) −cos(2ωtm +θ−kωT)}] =I・V・1/2・[cos(θ)− cos(θ)・cos(kωT)] =I・V・ cos(θ)・ sin2 (kωT/2)] ………………(8) [Number 11] (I · V p · cos ( θ)) m = i mk / 2 · V pm-k / 2 - (i mk · V pm + i m · V pm-k) / 2 = I · V · [Sin (ωt m −kωT / 2) · sin (ωt m + θ−kωT / 2) − {sin (ωt m −kωT) · sin (ωt m + θ) + sin (ωt m ) · sin (ωt m + θ−kωT )} / 2] = I · V · [1/2 {cos (θ) -cos (2ωt m + θ-kωT)} -1/2 · {cos (θ) · cos (kωT) -cos (2ωt m + θ −kωT)}] = I · V · 1/2 · [cos (θ) − cos (θ) · cos (kωT)] = I · V · cos (θ) · sin 2 (kωT / 2)] …… ………… (8)

【0021】同様に交流量iとvの外積値は、以下(9)
式に示す通りとなる。
Similarly, the outer product value of the alternating current amounts i and v is (9)
It is as shown in the formula.

【数12】 (I・Vp ・cos(θ))M =im-k/2-M ・Vpm-M−im-M ・Vpm-k/2-M =IM ・V・{sin(ωtm +φ−kωT/2−MωT) ・sin(ωtm +θ−MωT) −sin(ωtm +φ−MωT) ・sin(ωtm +θ−kωT/2−MωT)} =IM ・V・[1/2{cos(φ−θ)−kωT/2) −cos(2ωtm +(φ+θ)−kωT/2−2MωT)}−1/2 ・{cos(θ−φ)+kωT/2) −cos(2ωtm +(φ+θ)−kωT/2−2MωT)}] =IM ・V・1/2・[ cos((φ−θ)−kωT/2) − cos((θ−φ)+kωT/2)] =IM ・V・ sin(φ−θ)・ sin(kωT/2) ……………(9) (12) (I · V p · cos (θ)) M = i mk / 2-M · V pm-M −i mM · V pm-k / 2-M = I M · V · {sin (ωt m + φ-kωT / 2- MωT) · sin (ωt m + θ-MωT) -sin (ωt m + φ-MωT) · sin (ωt m + θ-kωT / 2-MωT)} = I M · V · [1 / 2 {cos (φ−θ) −kωT / 2) −cos (2ωt m + (φ + θ) −kωT / 2-2MωT)} − ½ · {cos (θ−φ) + kωT / 2) −cos (2ωt m + (φ + θ) -kωT / 2-2MωT)}] = I M · V · 1/2 · [cos ((φ-θ) -kωT / 2) - cos ((θ-φ) + kωT / 2)] = I M · V · sin (φ-θ) · sin (kωT / 2) …………… (9)

【0022】又、変化後の外積値は、以下(10)式に示す
通りとなる。
The changed outer product value is as shown in the following expression (10).

【数13】 (I・Vp ・cos(θ))m =im-k/2 ・Vpm−im ・Vpm-k/2 =I・V・[sin(ωtm −kωT/2)・sin(ωtm +θ) −sin(ωtm )・sin(ωtm +θ−kωT/2)] =I・V・1/2{cos(θ+kωT/2)−cos(2ωtm +θ−kωT/2)} −cos(θ−kωT/2)+cos(2ωtm +θ−kωT/2)}] =I・V・1/2・[cos(θ+kωT/2)−cos(θ−kωT/2)] =I・V・ sin(θ)・ sin(kωT/2) ………………(10)(I · V p · cos (θ)) m = i mk / 2 · V pm −i m · V pm-k / 2 = I · V · [sin (ωt m −kωT / 2) · sin (ωt m + θ) −sin (ωt m ) · sin (ωt m + θ−kωT / 2)] = I · V · 1/2 {cos (θ + kωT / 2) −cos (2ωt m + θ−kωT / 2) } -cos (θ-kωT / 2 ) + cos (2ωt m + θ-kωT / 2)}] = I · V · 1/2 · [cos (θ + kωT / 2) -cos (θ-kωT / 2)] = I・ V ・ sin (θ) ・ sin (kωT / 2) ……………… (10)

【0023】以上において(8) 式の右辺第1項,第2項
は、以下に示す(11)式(12)式となる。
In the above, the first and second terms on the right side of the equation (8) become the following equations (11) and (12).

【数14】 {(I・Vp ・ cos(θ))m −(I・Vp ・ cos(θ))M 2 ={I・V・cos(θ)・ sin2 (kωT/2) −IM ・V・cos(φ−θ)・ sin2 (kωT/2)}2 ={V・ sin2 (kωT/2)}2 {I・cos(θ)−IM ・cos(φ−θ)}2 ……………………(11) {(I・Vp ・ sin(θ))m −(I・Vp ・ sin(θ))M } ={I・V・sin(θ)・ sin(kωT/2) −IM ・V・sin(φ−θ)・ sin(kωT/2)}2 ={V・ sin(kωT/2)}2 {I・sin(θ)−IM ・sin(φ−θ)}2 ……………………(12)[Expression 14] {(I · V p · cos (θ)) m − (I · V p · cos (θ)) M } 2 = {I · V · cos (θ) · sin 2 (kωT / 2) −I M · V · cos (φ−θ) · sin 2 (kωT / 2)} 2 = {V · sin 2 (kωT / 2)} 2 · {I · cos (θ) −I M · cos (φ −θ)} 2 …………………… (11) {(I ・ V p・ sin (θ)) m − (I ・ V p・ sin (θ)) M } = {I ・ V ・ sin (θ) · sin (kωT / 2) -I M · V · sin (φ-θ) · sin (kωT / 2)} 2 = {V · sin (kωT / 2)} 2 · {I · sin (θ ) −I M · sin (φ−θ)} 2 …………………… (12)

【0024】(11)式,(12)式において、kは基本周波数
においてmより位相が180°遅れる時系列であるの
で、kωo T/2=90°となる。上式においてアンダ
ーライン部で示す量の物理的な意味は図3に示すような
関係となる。同図において、基準電気量vに対して、ベ
クトルOMが変化前の交流量iで位相角は(θ−φ)で
ある。ベクトルOFが変化後の交流量iで、位相角はθ
である。従って交流量の変化分がベクトルMFである。
従ってベクトルMFの大きさの基準電気量量vに対する
同相成分が(11)式となり、直交成分が(12)式のアンダー
ライン部で表される。従って(11)式,(12)式の各々の2
乗和をとると変化分MFの大きさを求めることが可能と
なる。
In equations (11) and (12), k is a time series whose phase is delayed by 180 ° from m at the fundamental frequency, so kω o T / 2 = 90 °. In the above equation, the physical meaning of the amount indicated by the underlined portion has the relationship shown in FIG. In the figure, with respect to the reference electric quantity v, the vector quantity OM is the alternating current quantity i before the change and the phase angle is (θ−φ). The amount of alternating current i after the vector OF changes, and the phase angle is θ
Is. Therefore, the change amount of the alternating current amount is the vector MF.
Therefore, the in-phase component of the magnitude of the vector MF with respect to the reference electric quantity v is the equation (11), and the orthogonal component is represented by the underlined portion of the equation (12). Therefore, 2 of each of the equations (11) and (12)
By taking the sum of multiplications, the magnitude of the change MF can be obtained.

【0025】変化分MFの大きさは以下(13)式のように
算出される。
The magnitude of the change amount MF is calculated by the following equation (13).

【数15】 (ΔI・Vp m 2 ={V・ sin(kωT/2))2 ・[{ sin(kωT/2)}2 ・{I・ cos(θ)−IM ・ cos(φ−θ)}2 +{I・sin(θ)−IM ・sin(φ−θ)}2 ] =*{V・sin(kωT/2)}2 ・[(I−x2 /2) ・{I・cos(θ)−IM ・cos(φ- θ)}2 +{I・sin(θ)−IM ・sin(φ−θ)}2 ………………(13) (なお、=*印はおおよそを意味する。x=ε・kωo
T/2=ε・π/2,ε=f/fo −1であるため)
Equation 15] (ΔI · V p) m 2 = {V · sin (kωT / 2)) 2 · [{sin (kωT / 2)} 2 · {I · cos (θ) -I M · cos (φ -θ)} 2 + {I · sin (θ) -I M · sin (φ-θ)} 2] = * {V · sin (kωT / 2)} 2 · [(I-x 2/2) · {I · cos (θ) -I M · cos (φ- θ)} 2 + {I · sin (θ) -I M · sin (φ-θ)} 2 .................. (13) ( Note , = * Means approximately: x = ε · kω o
T / 2 = ε · π / 2, which is ε = f / f o -1 order)

【0026】又、第3の手段3では変化しない基準交流
電気量vの振幅値の大きさの2乗値と定数Kとの積を算
出する。基準交流電気量vの振幅値の大きさの2乗値は
以下のようになる。
Further, the third means 3 calculates the product of the square value of the magnitude of the amplitude value of the reference AC electric quantity v which does not change and the constant K. The square value of the magnitude of the amplitude value of the reference AC electricity amount v is as follows.

【数16】 Vpm 2 =Vpm-k/2 2 −Vpm-k・Vpm=V2 ・ sin2 (kωT/2)[Formula 16] V pm 2 = V pm-k / 2 2 −V pm-k · V pm = V 2 · sin 2 (kωT / 2)

【0027】従って第4の手段4では(14)式に基づいて
大小を判定することになる。
Therefore, the fourth means 4 judges the magnitude based on the equation (14).

【数17】 {V・sin(kωT/2)}2 ・[(I−x2 /2)・{I・cos(θ) −IM ・cos(φ−θ)}2 +{I・sin(θ)−IM ・sin(φ−θ)}2 ] >K・V2 ・ sin2 (kωT/2) ………………………(14) 本式を更にまとめると、Equation 17] {V · sin (kωT / 2 )} 2 · [(I-x 2/2) · {I · cos (θ) -I M · cos (φ-θ)} 2 + {I · sin (θ) -I M · sin (φ-θ)} 2 ]> K · V 2 · sin 2 (kωT / 2) ………………………… (14)

【数18】 (I−x2 /2)・{I・cos(θ)−IM ・cos(φ- θ)}2 +{I・sin(θ)−IM ・sin(φ−θ)}2 >K ……………(15)Equation 18] (I-x 2/2) · {I · cos (θ) -I M · cos (φ- θ)} 2 + {I · sin (θ) -I M · sin (φ-θ) } 2 > K ……………… (15)

【0028】以上が本発明の骨子である。(15)式をみて
分かるように、変化をとる時間幅、即ち、時系列とMの
差分に依存せずに、交流量の変化分を算出することがで
きる。又、周波数の変動幅によって受ける影響も、
The above is the outline of the present invention. As can be seen from the expression (15), the change amount of the AC amount can be calculated without depending on the time width of the change, that is, the difference between the time series and M. Also, the influence of the fluctuation range of the frequency,

【数19】 er=x2 /2・{I・cos(θ)−IM ・cos(φ−θ)}2 x=ε・kωo T/2=ε・π/2 ε=5%であっても、 er=0.00308・{I・cos(θ)−IM ・cos(φ−θ)}2 となり、無視可能である。Equation 19] er = x 2/2 · { I · cos (θ) -I M · cos (φ-θ)} 2 x = ε · kω o T / 2 = ε · π / 2 ε = 5% even, er = 0.00308 · {I · cos (θ) -I M · cos (φ-θ)} 2 , and the is negligible.

【0029】以上の方式に、変化分検出対象電気量とし
て一線地絡事故での零相電圧,逆相電圧,零相+逆相電
圧量を、地絡相外、即ち健全相電圧量を変化の影響を受
けない電気量として適用することにより、平常時の電力
系統にわずかに存在する零相電圧,逆相電圧の影響を受
けずに高感度な事故検出が可能となる。図4にα相一線
地絡時のクラーク座標法の(αβO)等価回路を示す。
同図においてZ2 ,Z0 は事故点Fと電源Ea 間の逆
相,零相インピーダンスを示す。α回路とO回路(零
相)に流れる電流IαF とIOFの間にはIαF =−2I
OFの関係で接続される。同図から分かるように、一線地
絡ではβ回路成分は変化しないことが分かる。
In the above method, the zero-phase voltage, the negative-phase voltage, and the zero-phase + negative-phase voltage amount in the one-line ground fault are changed to the outside-ground fault phase, that is, the healthy phase voltage amount as the change-target electric quantity to be detected. By applying it as the amount of electricity that is not affected by, it is possible to detect accidents with high sensitivity without being affected by the zero-phase voltage and the reverse-phase voltage that are slightly present in the normal power system. FIG. 4 shows an (αβO) equivalent circuit of the Clark coordinate method when an α-phase one-line ground fault occurs.
In the figure, Z2 and Z0 represent the negative phase and zero phase impedances between the accident point F and the power source Ea. Between the current I .alpha.F and I OF flowing through the α circuits and O circuitry (zero phase) I .alpha.F = -2I
Connected because of OF . As can be seen from the figure, the β circuit component does not change in the one-line ground fault.

【0030】このβ回路成分が健全相電圧である。This β circuit component is a healthy phase voltage.

【数20】 i=(va +a2 ・vb +a・vc )/3 ……逆相電圧 i=(va +vb +vc )/3 ………零相電圧 (a:I・exp(j120°)) v=vbc・exp(j90°) ………健全相間(bc相間) 電圧を90°進相Equation 20] i = (v a + a 2 · v b + a · v c) / 3 ...... reverse-phase voltage i = (v a + v b + v c) / 3 ......... zero-phase voltage (a: I · exp (J120 °)) v = v bc · exp (j90 °) ……… Between healthy phases (between bc phases) Advance the voltage by 90 °

【0031】又、事故時電圧と同様電流についても変化
分電気量として一線地絡事故での零相電流,逆相電流,
零相+逆相電流量を、地絡相外、即ち健全相間電圧量を
変化の影響を受けない電気量として、適用することも当
然可能である。
As with the voltage at the time of the fault, the amount of change in the amount of change in the amount of electricity is zero-phase current, negative-phase current in the one-line ground fault,
It is naturally possible to apply the zero-phase + negative-phase current amount outside the ground fault phase, that is, as the sound phase-to-phase voltage amount as the electric amount that is not affected by the change.

【数21】 i=(ia +a2 ・ib +a・ic )/3 ……逆相電圧 i=(ia +ib +ic )/3 ………零相電圧 (a:I・exp(j120°)) ……単位120°移相 ベクトル v=vbc・exp(j90°) ………健全相間(bc相間) 電圧を90°進相I = (i a + a 2 i b + a c ) / 3 ・ ・ ・ Negative phase voltage i = (i a + i b + i c ) / 3 ・ ・ ・ ・ ・ ・ ・ ・ Zero phase voltage (a: Iexp) (J120 °)) Unit: 120 ° phase shift vector v = v bc · exp (j90 °) ……… Healthy phase (bc phase) Voltage is advanced by 90 °

【0032】更に検出対象電気量として、電力系統に同
期した電気所内電源から所定の電気量にレベル変換した
電気量を、前記ディジタル継電器に取り込まれる交流電
流回路に重畳して、所定の電気量が重畳されたか否かを
チェックする点検を行なう場合でも本発明を適用でき
る。即ち、点検用所内電気量を重畳する電流回路の電流
を検出対象電気量iとし、点検電気量を印加しない電圧
量を基準電気量として扱えば、点検印加前の電流に依存
せずに、印加した点検電気量の大きさを高精度に算出す
ることが可能になる。
Further, as the amount of electricity to be detected, the amount of electricity level-converted from the power source in the electric power station synchronized with the power system to a predetermined amount of electricity is superposed on the alternating current circuit taken in by the digital relay to obtain a predetermined amount of electricity. The present invention can be applied even when an inspection is performed to check whether or not they are superposed. That is, if the electric current of the current circuit that superimposes the electric quantity in the inspection place is set as the electric quantity i to be detected and the voltage quantity that does not apply the electric quantity for inspection is treated as the reference electric quantity, the electric current is applied without depending on the current before applying the inspection. It is possible to calculate the magnitude of the checked electricity quantity with high accuracy.

【0033】[0033]

【数22】i=iM+iTS iM:点検印加前の電流 iTS:点検電気量 v=v() ………()は代表相の電圧 なお、本点検電気量印加回路例については、電気協同研
究第41巻第4号(ディジタルリレー)(昭和61年1
月号)のP72−第5−2−2図に概略示される。
[Equation 22] i = iM + iTS iM: Current before application of inspection iTS: Electricity for inspection v = v () ……… () is the voltage of the representative phase. Volume 41 Issue 4 (Digital Relay)
Monthly issue) P72-Fig. 5-2-2.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば電
力系統の交流電気量の変化分量を変化しない交流電気量
を基準として、変化前後の基準電気量との内積,外積値
を求めてから、内積,外積値での変化分を算出するよう
に構成したので、変化をみる時間幅の大きさ,系統の周
波数の変化で影響を受けずに、高精度に算出することが
可能となった。
As described above, according to the present invention, the inner product and the outer product value with the reference amount of electricity before and after the change are calculated with reference to the amount of change of the amount of alternating current of the power system that does not change. Since it is configured to calculate the change in the inner product and the outer product, it is possible to calculate with high accuracy without being affected by the size of the time width to see the change and the change in the system frequency. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による周波数検出方式を説明する一実施
例のブロック構成図。
FIG. 1 is a block diagram of an embodiment for explaining a frequency detection method according to the present invention.

【図2】本発明が適用されるディジタル継電器の概要構
成図。
FIG. 2 is a schematic configuration diagram of a digital relay to which the present invention is applied.

【図3】本発明の原理を説明する図。FIG. 3 is a diagram illustrating the principle of the present invention.

【図4】本発明の応用例を説明する図。FIG. 4 is a diagram illustrating an application example of the present invention.

【符号の説明】[Explanation of symbols]

1 サンプリング値取り込み部 2 変化分算出部 3 定数設定部 4 変化分レベル判定部 S/H サンプリングホールド回路 A/D アナログ・ディジタル変換器 MPX マルチプレクサ回路 CPU 演算部 1 Sampling value capture unit 2 Change calculation unit 3 Constant setting unit 4 Change level determination unit S / H Sampling hold circuit A / D Analog / digital converter MPX multiplexer circuit CPU calculation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 保広 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Kurosawa No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu factory inside

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の交流電気量の変化分を算出す
る交流電気量変化分検出方式において、検出対象とする
交流電気量の現時点のデータとそれより一定時間前デー
タ、及び前記交流電気量の変化に影響を受けない交流電
気量のデータとそれより一定時間前のデータとを得る第
1の手段と、検出対象とする交流電気量と前記交流電気
量の変化に影響を受けない交流電気量の現時点の内積値
と一定時間前の内積値の差分の2乗値と同電気量の現時
点の外積値と一定時間前の外積値の差分の2乗値の和
((ΔI・Vp 2 )を得る第2の手段と、前記交流電
気量の変化に影響を与えない交流電気量の振幅値の2乗
値(Vp 2 を算出し、その値に所定の設定値Kを乗じ
る第3の手段と、前記第2の手段で得られる値と第3の
手段で得られた所定値との大小を比較する第4の手段と
からなることを特徴とする交流電気量変化分検出方式。
1. An AC electricity amount change detection method for calculating a change in the AC electricity amount of a power system, wherein current data of the AC electricity amount to be detected and data before a certain time from the data, and the AC electricity amount. Means for obtaining data on the amount of alternating current electricity that is not affected by changes in the amount of electricity and data for a certain time period before that, and alternating current electricity that is not affected by changes in the amount of alternating current electricity to be detected and the amount of alternating current electricity Sum of squared values of the difference between the inner product value of the current amount and the inner product value of the fixed amount of time before, and the squared value of the difference of the current outer product value of the same amount of electricity and the outer product value of the fixed amount before ((ΔI · V p ) 2 ) to obtain 2 ), and a square value (V p ) 2 of the amplitude value of the AC electricity quantity that does not affect the change of the AC electricity quantity is calculated, and the value is multiplied by a predetermined set value K. Third means, the value obtained by the second means and the predetermined value obtained by the third means AC electric quantity variation detection method, characterized by comprising a fourth means for comparing the magnitude.
【請求項2】 第1の手段では検出対象とする交流電気
量のサンプリング値(im ,im-k/2 ,im-k )とそれ
より一定時間前(時系列Mサンプリング前)のサンプリ
ング値(im-M ,im-k/2-M ,im-k-M )、及び前記交
流電気量の変化に影響を受けない交流電気量のサンプリ
ング値(Vpm,Vpn)とそれより一定時間前(時系列M
サンプリング前)のサンプリング値(Vpm-M,V
pm-k/2-M,Vpm-k-M)とを得、第2の手段では前記サン
プリング値から下式に基づいて交流電気量の変化分を
得、 【数1】 (ΔI・Vp 2 ={(im-k/2 ・Vpm-k/2−(im-k ・Vpm+im ・Vpm-k)/2) −(im-k/2-M ・Vpm-k/2-M−(im-k-M ・Vpm-M−im-M ・Vpm-k-M)/2}2 +{(im ・Vpm-k/2−im-k/2 ・Vpm) −(im-M ・Vpm-k/2-M−im-k/2-M ・Vpm-M)}2 第3の手段では、Vp 2 =Vpm-k/2 2 −Vpm-k・V
pm(kはサンプリング時系列で基本周波数での位相がm
と180°相当の差)を算出するようにしたことを特徴
とする請求項1記載の交流電気量変化分検出方式。
2. The first means includes sampling values (i m , i mk / 2 , i mk ) of the alternating-current electricity amount to be detected and sampling values (i mM , imk / 2-M , imkM ), and the sampling value (V pm , V pn ) of the AC electric quantity that is not affected by the change of the AC electric quantity, and a predetermined time before that (time series M).
Sampling value (before sampling) (V pm-M , V
pm-k / 2-M , V pm-kM ), and the second means obtains the variation of the alternating current electric quantity from the sampling value based on the following equation, and the following equation (1) (ΔI · V p ) 2 = {(i mk / 2 · V pm-k / 2 - (i mk · V pm + i m · V pm-k) / 2) - (i mk / 2-M · V pm-k / 2-M - (i mkM · V pm- M -i mM · V pm-kM) / 2} 2 + {(i m · V pm-k / 2 -i mk / 2 · V pm) - (i mM · V pm -k / 2-M- i mk / 2-M · V pm-M )} 2 In the third means, V p 2 = V pm-k / 2 2- V pm-k · V
pm (k is the sampling time series and the phase at the fundamental frequency is m
And a difference equivalent to 180 °) are calculated.
【請求項3】 第1の手段の検出対象電気量としては、
3相電力系統の一線地絡事故時に発生する零相電圧、又
は逆相電圧、又は零相電圧と逆相電圧の和、その電気量
の変化に影響を受けない電気量としては地絡相以外の健
全相間電圧を使用することを特徴とする請求項1記載の
交流電気量変化分検出方式。
3. The quantity of electricity to be detected by the first means is
Zero-phase voltage or negative-phase voltage that occurs in a one-line ground fault in a three-phase power system, or the sum of zero-phase voltage and negative-phase voltage, and the amount of electricity that is not affected by changes in the amount of electricity 2. The method for detecting an amount of change in AC electricity according to claim 1, wherein the normal interphase voltage is used.
【請求項4】 第1の手段の検出対象電気量としては、
3相電力系統の一線地絡事故時に発生する零相電流、又
は逆相電流、又は零相電流と逆相電流の和、その電気量
の変化に影響を受けない電気量としては地絡相以外の健
全相間電圧を使用することを特徴とする請求項1記載の
交流電気量変化分検出方式。
4. The electric quantity to be detected by the first means is
Zero-phase current or negative-phase current that occurs at the time of a one-line ground fault in a three-phase power system, or the sum of zero-phase current and negative-phase current, and the amount of electricity that is not affected by changes in the amount of electricity 2. The method for detecting an amount of change in AC electricity according to claim 1, wherein the normal interphase voltage is used.
JP13501994A 1994-05-25 1994-05-25 AC electricity change detection method Expired - Fee Related JP3483621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13501994A JP3483621B2 (en) 1994-05-25 1994-05-25 AC electricity change detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13501994A JP3483621B2 (en) 1994-05-25 1994-05-25 AC electricity change detection method

Publications (2)

Publication Number Publication Date
JPH07318595A true JPH07318595A (en) 1995-12-08
JP3483621B2 JP3483621B2 (en) 2004-01-06

Family

ID=15142037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13501994A Expired - Fee Related JP3483621B2 (en) 1994-05-25 1994-05-25 AC electricity change detection method

Country Status (1)

Country Link
JP (1) JP3483621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187866A (en) * 2007-01-31 2008-08-14 Takaoka Electric Mfg Co Ltd Ground directional relay device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187866A (en) * 2007-01-31 2008-08-14 Takaoka Electric Mfg Co Ltd Ground directional relay device

Also Published As

Publication number Publication date
JP3483621B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US5514978A (en) Stator turn fault detector for AC motor
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
US5786708A (en) Self-tuning and compensating turn fault detector
JP6324629B2 (en) Leakage current detector
JPWO2018167909A1 (en) Leakage current detection device, method, and program for detecting leakage current
JPH05149982A (en) Electric power detector
EP0581015B1 (en) Method for determining fault currents on transmission lines and a fault current filter for carrying out the method
JP3483621B2 (en) AC electricity change detection method
JP2005172617A (en) Leakage current measuring device
JP2633637B2 (en) Symmetrical protection relay
JP2000341847A (en) Tripping device using phase reconfiguration and breaker therewith
JPH04109174A (en) Impedance measuring device
JP2004156986A (en) Power failure detection device
JP3119541B2 (en) Frequency detection method
JP2630862B2 (en) Change width detector
JPH08196035A (en) Direction detector
JP2538758Y2 (en) Vector change detector
JP2715090B2 (en) Fault location device
JP2616285B2 (en) Zero-phase current detector
JP3617189B2 (en) Digital protective relay input circuit inspection method
JPH0613583Y2 (en) Residual voltage / current removal circuit
JP2692163B2 (en) Fault locator for power transmission system
JP2535922Y2 (en) Vector change detector
JP3543380B2 (en) Digital type voltage balanced relay
JPH10327529A (en) Digital ground-fault distance relay

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees