JPH07318013A - Multi-stage lean premixing combustion method - Google Patents

Multi-stage lean premixing combustion method

Info

Publication number
JPH07318013A
JPH07318013A JP11248594A JP11248594A JPH07318013A JP H07318013 A JPH07318013 A JP H07318013A JP 11248594 A JP11248594 A JP 11248594A JP 11248594 A JP11248594 A JP 11248594A JP H07318013 A JPH07318013 A JP H07318013A
Authority
JP
Japan
Prior art keywords
combustion
gas
lean premixed
temperature
premixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11248594A
Other languages
Japanese (ja)
Other versions
JP3253801B2 (en
Inventor
Masaru Takei
勝 武井
Wataru Fujisaki
亘 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP11248594A priority Critical patent/JP3253801B2/en
Publication of JPH07318013A publication Critical patent/JPH07318013A/en
Application granted granted Critical
Publication of JP3253801B2 publication Critical patent/JP3253801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform a complete combustion of lean premixed gas out of an ignitable limitation without discharging not-yet ignited substituent by a method wherein a lean premixed gas and a high temperature combustion gas are mixed and reacted in such a manner that a temperature within a combustion device may always become a value not less than a specified temperature after both gases are mixed and reacted with each other. CONSTITUTION:A lean secondary premixed gas Q2 out of an ignitable limitation is mixed with a high temperature combustion gas of a primary premixed gas generated within a primary combustion chamber 21 and reacted within a secondary combustion chamber 22. A thermocouple 40 and a sampling probe 50 are disposed at an outlet 24 of a combustion chamber 20 of the combustion device and then a temperature of the lean secondary premixed gas Q2 is measured by the thermocouple 40 after being mixed and reacted with the high temperature combustion gas. Then, during the actual operation, the lean premixed gas is mixed with the high temperature combustion gas and reacted with it in such a manner that the temperature within the combustion device after being mixed with and reacted with the high temperature mixture gas may always become a value not less than a specified temperature defined in response to the type of the combustion device and combustion constituents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多段希薄予混合燃焼法に
関し、特に、従来完全燃焼させることが不可能とされて
いた可燃限界外の超希薄予混合ガスを完全燃焼させるよ
うにした多段希薄予混合燃焼法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage lean premixed combustion method, and more particularly, to a multi-stage lean premixed gas which is out of the flammability limit, which has hitherto been impossible to completely burn it. Premix combustion method.

【0002】[0002]

【従来の技術】各種燃焼器の低NOx 燃焼法として予混
合燃焼法が注目されており、各方面で実用燃焼器の開発
が行われている。予混合燃焼法において低負荷時におけ
るCOや未燃炭化水素の排出(いわゆる、未燃焼成分の
排出)による燃焼効率の低下抑制と、最大負荷時におけ
るNOx 排出量の低減とはトレードオフの関係にあり、
これらをどうバランスさせるかが技術的課題となってい
る。
And premixed combustion method has attracted attention as a low NO x combustion method of the Related Art Various combustor, the development of practical combustor in various fields have been made. In the premixed combustion method, there is a trade-off relationship between suppression of deterioration of combustion efficiency due to emission of CO and unburned hydrocarbons at low load (so-called emission of unburned components) and reduction of NO x emission at maximum load. In
How to balance these is a technical issue.

【0003】このような課題を克服するため、負荷変動
に応じて空気をバイパスさせ、燃焼領域の空燃比を一定
範囲にコントロールする方式が、大型のガスタービン燃
焼器で一部実用化されているが、この方式ではシステム
が非常に複雑であることなどから、スペース、安全性、
コストなどの面で中、小型のガスタービン燃焼器への適
用が困難である。
In order to overcome such problems, a method of bypassing air according to load fluctuations and controlling the air-fuel ratio in the combustion region within a certain range has been partially put to practical use in large gas turbine combustors. However, in this method, the system is very complicated, so space, safety,
In terms of cost, it is difficult to apply to medium and small gas turbine combustors.

【0004】この解決手段として、本出願人は、図1に
示すように燃料ガスと空気の予混合ガスを2段に分割供
給し、燃料制御のみで広い負荷範囲にわたって高い燃焼
効率と低NOx 性を実現する燃焼器の開発を行ないすで
に出願している(特開平5−296412号公報、特開
平5−340508号公報参照)。すなわち、予混合ガ
ス供給は2段に分割され、1段目には低空気比の予混合
ガスを供給して1次燃焼火炎として安定に燃焼させ、2
段目には負荷に応じて制御される燃料ガスが供給され
る。その間に2段目には一定の空気量が供給されている
ことから、結果として、空気比が1.3〜3.5程度の領域
において未燃分の排出を低い値に抑えたままで低NOx
燃焼が行われる。
As a solution to this problem, the applicant of the present invention dividedly supplies a premixed gas of fuel gas and air in two stages as shown in FIG. 1, and has high combustion efficiency and low NO x over a wide load range only by fuel control. Has been developed and a patent has already been filed (see JP-A-5-296412 and JP-A-5-340508). That is, the premixed gas supply is divided into two stages, and the first stage supplies the low-air-ratio premixed gas for stable combustion as the primary combustion flame.
Fuel gas that is controlled according to the load is supplied to the stage. During that time, a constant amount of air is being supplied to the second stage, and as a result, in the region where the air ratio is about 1.3 to 3.5, the amount of unburned matter is kept low while maintaining low NO. x
Burning takes place.

【0005】[0005]

【発明が解決しようとする課題】本発明者らがさらに実
験を継続する過程において、負荷の低下に伴い2段目の
燃料ガスの供給量を低下させていくと、空気比20程度
(すなわち、燃料濃度が低く燃焼限界を外れているも
の)まで燃焼を継続することが可能であること、しかし
ながら、その過程において未燃焼成分 (COや炭化水素
を主成分とする)が排出され、いわゆる不完全燃焼状態
を示すことを知見した。すなわち、この種の希薄予混合
燃焼法は、NOx 排出量を大幅に削減できるものの、特
に2段目が高空気比での低負荷燃焼において、NOx
出量の低減と未燃炭化水素などの未燃焼成分の排出抑制
を同時に達成できる範囲が非常に狭く、そのために、燃
焼器の燃焼状態を監視しながら未燃焼成分の排出を低減
した状態での継続燃焼を行うことのできる燃焼法の開発
が必要であることを知った。
When the present inventors further reduce the supply amount of the fuel gas in the second stage as the load decreases in the course of further continuing the experiment, the air ratio is about 20 (that is, It is possible to continue combustion until the fuel concentration is low and it is out of the combustion limit. However, unburned components (mainly composed of CO and hydrocarbons) are discharged in the process, and so-called incomplete It was found that it shows a combustion state. In other words, lean premixed combustion method of this type, although it significantly reduces NO x emissions amount, especially the second stage is in the low load combustion at high air ratio, NO x emissions reduction and unburned hydrocarbons, etc. The range in which the emission control of unburned components can be achieved at the same time is very narrow. Therefore, while monitoring the combustion state of the combustor, it is possible to perform continuous combustion in a state where the emission of unburned components is reduced. I learned that development is needed.

【0006】そこで、本発明者らは、公知のガスタービ
ンにおいてその燃焼器の燃焼状態を監視し燃焼を制御す
る従来の制御方法について検討した。その一例として、
1段目および2段目の燃焼室を持つガスタービンにおい
て、排気ダクト中に排ガス中の未燃焼成分の濃度を検知
する複数個のセンサを配置し、このセンサにより検知さ
れる未燃焼成分の濃度分布パターンにより2段目燃焼室
の燃焼状態を判定するようにしたものが知られている
(特開平2−49933号公報参照)。
Therefore, the present inventors have examined a conventional control method for controlling combustion by monitoring the combustion state of the combustor of a known gas turbine. As an example,
In a gas turbine having first-stage and second-stage combustion chambers, a plurality of sensors that detect the concentration of unburned components in exhaust gas are arranged in the exhaust duct, and the concentrations of unburned components detected by these sensors are arranged. It is known that the combustion state of the second stage combustion chamber is determined based on a distribution pattern (see Japanese Patent Laid-Open No. 2-49933).

【0007】上記の燃焼状態監視方法においては濃度セ
ンサを用いているが、一般に濃度センサは複雑であり、
耐久性、コンパクト性、さらにはコストの点で実用化に
は課題があった。そこで、濃度を測定する代わりに温度
を測定する方法が考えられている。温度を測定する方法
では、頭部および後部の燃焼室を持つガスタービン燃焼
器において、燃焼室に燃焼火炎を検出するセンサとして
温度を検出するセンサを設けて、該センサからの信号に
より燃焼状態を監視するようにしたものも知られている
(特開平3−102118号公報参照)。
Although the concentration sensor is used in the above combustion state monitoring method, the concentration sensor is generally complicated,
There was a problem in practical application in terms of durability, compactness, and cost. Therefore, a method of measuring temperature instead of measuring concentration has been considered. In the method of measuring the temperature, in a gas turbine combustor having a head and a rear combustion chamber, a sensor for detecting the temperature is provided as a sensor for detecting a combustion flame in the combustion chamber, and a combustion state is detected by a signal from the sensor. There is also known one that is monitored (see Japanese Patent Laid-Open No. 3-102118).

【0008】従来のガスタービン燃焼器における多段予
混合燃焼は、各段とも可燃限界内にある空気比の予混合
ガスを燃焼させるものであり、上記従来の制御方法にお
ける燃焼室内での燃焼状態の判定は着火または失火ある
いは不着火の状態の判定となっている。そのために、例
えば未燃焼成分の濃度を検知する場合には、検出すべき
濃度変化が大きくかつ急激であることを利用して燃焼状
態の判定を可能としている。また、燃焼火炎を検出する
センサとして温度を検出するセンサを設けて燃焼状態を
監視する場合でも、失火あるいは不着火により急激に温
度が低下して燃焼用空気の温度と同レベルの温度になる
ことから、容易に失火あるいは不着火の判定をすること
ができる。
The multi-stage premixed combustion in the conventional gas turbine combustor is to burn a premixed gas having an air ratio within a combustible limit at each stage. The judgment is the judgment of the state of ignition, misfire or non-ignition. Therefore, for example, when detecting the concentration of the unburned component, it is possible to determine the combustion state by utilizing the fact that the concentration change to be detected is large and abrupt. In addition, even if a sensor that detects the temperature is provided as a sensor that detects the combustion flame to monitor the combustion state, the temperature may drop sharply due to misfire or misfire and reach the same level as the temperature of the combustion air. From this, it is possible to easily determine misfire or misfire.

【0009】しかしながら、図1に示すような多段希薄
予混合燃焼装置を用いて、前段での燃焼により生じた高
温燃焼ガスに、前記のように高空気比であって可燃限界
外にある超希薄予混合ガスを混合して反応させる場合に
おいては、希薄予混合ガスは高温燃焼ガスと混合しなが
ら熱を奪い反応する。このため、希薄予混合ガスの反応
による発熱が微量である場合には、高温燃焼ガスとの混
合の途中で燃焼器内の温度が低下し、希薄予混合ガスの
反応が停止することはあるが、着火あるいは失火という
現象は現れない。つまり、高温燃焼ガスに可燃限界外に
ある超希薄予混合ガスが混合される場合には急激な未燃
焼成分の排出増加や温度の低下などの現象は現れない。
それにより、上記したような従来知られたガスタービン
の燃焼状態監視手段をそのまま適用することは不可能で
あることを知った。
However, by using the multi-stage lean premixed combustion apparatus as shown in FIG. 1, the high temperature combustion gas generated by the combustion in the preceding stage has a high air ratio and is outside the flammability limit as described above. When the premixed gas is mixed and reacted, the lean premixed gas absorbs heat and reacts while mixing with the high temperature combustion gas. Therefore, when the amount of heat generated by the reaction of the lean premixed gas is small, the temperature in the combustor may drop during the mixing with the high temperature combustion gas, and the reaction of the lean premixed gas may stop. The phenomenon of ignition or misfire does not appear. That is, when the high-temperature combustion gas is mixed with the ultra-lean premixed gas that is outside the flammability limit, phenomena such as a sudden increase in the emission of unburned components and a decrease in temperature do not appear.
As a result, it has been found that it is impossible to directly apply the above-described conventionally known combustion state monitoring means for a gas turbine.

【0010】従って、本発明の目的は、前段での燃焼に
より生じた高温燃焼ガスに可燃限界外にある希薄予混合
ガスを混合して反応させる多段希薄予混合燃焼法におい
て、該可燃限界外の希薄予混合ガスを未燃焼成分を排出
することなく完全燃焼させるようにした多段希薄予混合
燃焼法を提供することにある。
Therefore, an object of the present invention is to provide a multi-stage lean premixed combustion method in which a high temperature combustion gas generated by combustion in the preceding stage is mixed with a lean premixed gas outside the flammability limit to react with the hot combustion gas. It is an object of the present invention to provide a multi-stage lean premixed combustion method in which a lean premixed gas is completely burned without discharging unburned components.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決しかつ
目的を達成するために、本発明者らは図1に示す形式の
2段希薄予混合燃焼器を用いて種々の燃焼試験を行っ
た。燃焼試験に用いた燃焼器は、一次旋回流バーナ10
と燃焼室20とから構成され、一次旋回流バーナ10に
おいて一次空気入口11からの空気A1 と一次燃料入口
12からの燃料ガスG1 がスワーラ13を通り可燃範囲
にある一次予混合ガスQ1 となり一次燃焼室21に安定
した予混合火炎を形成して完全燃焼し高温燃焼ガスを形
成する。一次燃焼室21の下流には二次予混合ガス(希
薄予混合ガス)供給ノズル30が設けられ、そこから可
燃限界外にある希薄な二次予混合ガスQ2 が供給され
る。供給された二次予混合ガスQ2 は、一次燃焼室内2
1で生成した一次予混合ガスの前記高温燃焼ガスと混合
し、二次燃焼室22において反応する。
In order to solve the above problems and achieve the object, the present inventors have conducted various combustion tests using a two-stage lean premixed combustor of the type shown in FIG. It was The combustor used for the combustion test was a primary swirl flow burner 10
Is composed of a combustion chamber 20. The air A 1 and the primary premix gas Q 1 in the street combustible range fuel gas G 1 is swirler 13 from the primary fuel inlet 12 from the primary air inlet 11 in the primary swirl flow burner 10 Next, a stable premixed flame is formed in the primary combustion chamber 21, and complete combustion is performed to form high temperature combustion gas. A secondary premixed gas (lean premixed gas) supply nozzle 30 is provided downstream of the primary combustion chamber 21, and a lean secondary premixed gas Q 2 outside the flammability limit is supplied from the nozzle 30. The supplied secondary premixed gas Q 2 is supplied to the primary combustion chamber 2
The primary premixed gas produced in 1 is mixed with the high temperature combustion gas and reacted in the secondary combustion chamber 22.

【0012】上記燃焼器の燃焼室20の出口24には熱
電対40およびサンプリングプローブ50を配置して、
熱電対40により希薄二次予混合ガスQ2 が高温燃焼ガ
スと混合し反応した後の温度Tを測定し、さらに、サン
プリングプローブ50により燃焼器出口24での排気ガ
スを収集してその成分分析を行い未燃焼成分の有無を測
定した。なお、23は断熱材である。
At the outlet 24 of the combustion chamber 20 of the combustor, a thermocouple 40 and a sampling probe 50 are arranged,
The temperature T after the lean secondary premixed gas Q 2 is mixed and reacted with the high temperature combustion gas is measured by the thermocouple 40, and the exhaust gas at the combustor outlet 24 is collected by the sampling probe 50 to analyze its components. Then, the presence or absence of unburned components was measured. In addition, 23 is a heat insulating material.

【0013】燃焼試験においては、一次予混合ガスQ1
の空気比λ1 、二次希薄予混合ガスQ2 の空気比λ2
一次予混合ガスQ1 と二次予混合ガスQ2 との流量比と
を種々に組み合わせて行い、それぞれについて、排気ガ
ス温度Tの測定および成分分析を行った。その燃焼試験
を通して、燃焼条件が異なっていても、燃焼排気ガスの
温度、すなわち希薄予混合ガスが高温燃焼ガスと混合し
反応した後の温度Tが燃焼機器および燃料成分によって
定まる特定の温度よりも高い場合には、燃焼排気ガスに
は未燃焼成分は含まれておらず完全燃焼しており、前記
特定の温度よりも低い場合には燃焼排気ガスに未燃焼成
分が含まれていることを知った。
In the combustion test, the primary premixed gas Q 1
Air ratio lambda 1 of the air ratio lambda 2 of the secondary lean premixed gas Q 2,
Various combinations of the flow rates of the primary premixed gas Q 1 and the secondary premixed gas Q 2 were performed, and the exhaust gas temperature T was measured and the components were analyzed for each. Through the combustion test, even if the combustion conditions are different, the temperature of the combustion exhaust gas, that is, the temperature T after the lean premixed gas is mixed and reacted with the high temperature combustion gas is higher than the specific temperature determined by the combustion equipment and the fuel component. If it is higher, the combustion exhaust gas contains no unburned components and is completely combusted, and if it is lower than the specific temperature, it is known that the combustion exhaust gas contains unburned components. It was

【0014】本発明の多段希薄予混合燃焼法は上記の知
見に基づくものであり、基本的に、前段での燃焼により
生じた高温燃焼ガスに可燃限界外にある希薄予混合ガス
を混合して反応させる多段希薄予混合燃焼法であって、
予め、当該燃焼器について燃焼器出口からの未燃焼成分
排出開始前後における燃焼器内での前記希薄予混合ガス
が高温燃焼ガスと混合し反応した後の温度を測定してお
き、実際の運転において、希薄予混合ガスが高温混合ガ
スと混合し反応した後の燃焼器内の温度が常に前記測定
温度以上となるように、高温燃焼ガスに希薄予混合ガス
を混合し反応させることを特徴とする。
The multi-stage lean premixed combustion method of the present invention is based on the above findings. Basically, the high temperature combustion gas produced by the combustion in the preceding stage is mixed with the lean premixed gas outside the flammability limit. A multi-stage lean premixed combustion method for reacting,
The temperature after the lean premixed gas in the combustor is mixed and reacted with the high temperature combustion gas before and after the start of the discharge of unburned components from the combustor outlet for the combustor is measured in advance in actual operation. , The lean premixed gas is mixed and reacted with the high temperature combustion gas so that the temperature in the combustor after the lean premixed gas is mixed with the high temperature mixed gas and reacted is always higher than the measured temperature. .

【0015】実際の運転において、希薄予混合ガスが高
温燃焼ガスと混合し反応した後の燃焼器内の温度の測定
は一測定点で行ってもよく、好ましくは燃焼ガスの流れ
を横切る同一断面における複数箇所の複数の測定点で行
ってもよい。後者の場合には、その内の最低温度を前記
測定した温度以上となるように、高温燃焼ガスに希薄予
混合ガスを混合し反応させることにより、未燃焼成分の
排出は確実に回避できる。
In actual operation, the temperature in the combustor after the lean premixed gas is mixed with the hot combustion gas and reacted may be measured at one measurement point, preferably the same cross section across the flow of the combustion gas. The measurement may be performed at a plurality of measurement points at a plurality of points. In the latter case, the unburned components can be surely avoided by mixing and reacting the lean premixed gas with the high temperature combustion gas so that the lowest temperature of the latter is equal to or higher than the measured temperature.

【0016】本発明による燃焼法は、その第1段として
可燃範囲にある予混合ガスの燃焼を行い、その燃焼ガス
に対して可燃限界外にある希薄予混合ガスを上記のよう
な条件の下に混合していく態様の2段予混合燃焼法であ
ってもよく、さらに、前記の2段予混合燃焼により生成
される燃焼ガスを「前段において燃焼した高温燃焼ガ
ス」とし、そこに可燃限界外にある希薄予混合ガスを上
記の条件を満足するように混合していく態様であっても
よい。その繰り返し段数は任意であり、それにより多段
希薄予混合燃焼法を得ることができる。
In the combustion method according to the present invention, as the first stage, the premixed gas in the flammable range is burned, and the lean premixed gas which is outside the flammable limit with respect to the combustion gas is treated under the above conditions. It may be a two-stage premixed combustion method in which the combustion gas produced by the above two-stage premixed combustion is referred to as "high temperature combustion gas burned in the preceding stage", and the flammability limit is set there. A mode may be adopted in which the lean premixed gas outside is mixed so as to satisfy the above conditions. The number of repeating stages is arbitrary, whereby a multi-stage lean premixed combustion method can be obtained.

【0017】[0017]

【作 用】本発明によれば、明確な火炎が現れずまた未
燃焼成分が生じた場合であっても燃焼域の温度の急変も
成分の急変も生じない、高温燃焼ガスに可燃限界外にあ
る希薄予混合ガスを混合して反応させる多段希薄予混合
燃焼においても、燃焼室出口すなわち希薄予混合ガスが
高温燃焼ガスと混合し反応した後の燃焼器内の温度を測
定し、その温度が予め求めておいた特定温度値よりも高
い値となるように、高温燃焼ガスに希薄予混合ガスを混
合して反応させることにより、未燃焼成分の発生のない
完全燃焼状態を維持して燃焼を継続することが可能とな
る。
[Operation] According to the present invention, even when a clear flame does not appear and an unburned component is generated, neither a sudden change in temperature in the combustion region nor a sudden change in component occurs. Even in a multi-stage lean premixed combustion in which a certain lean premixed gas is mixed and reacted, the temperature in the combustion chamber outlet, that is, after the lean premixed gas is mixed with the high temperature combustion gas and reacted, is measured, and the temperature is measured. Combustion is performed by maintaining a complete combustion state without the generation of unburned components by mixing the lean premixed gas with the high-temperature combustion gas and reacting them so that the temperature becomes higher than the specific temperature value obtained in advance. It is possible to continue.

【0018】[0018]

【実施例】以下、図1に示した燃焼装置を用いかつ希薄
予混合ガスとしてメタンを主成分とする燃料を用いた実
験例に基づき、本発明をさらに詳細に説明する。実験に
おいて、一次予混合ガスQ1 の空気比λ1 が1.2〜1.
8、2次希薄予混合ガスの空気比λ2 が2〜12、一次
予混合ガスQ1 と2次希薄予混合ガスQ2の供給量の比
が5:5および6:4の場合について種々の組み合わせ
の下で実験を行い、それぞれ、熱電対40により燃焼室
出口すなわち希薄予混合ガスが高温燃焼ガスと混合し反
応した後の燃焼器内の温度Tを測定し、また、サンプリ
ングプローブ50で収集した排気ガスの成分をガスクロ
マトグラフィーにより分析した。そして、二次希薄予混
合ガスの燃焼効率2nd.C.E.(%) を次式により求めた。
EXAMPLES The present invention will be described in more detail below based on experimental examples using the combustion apparatus shown in FIG. 1 and using a fuel containing methane as a main component as a lean premixed gas. In the experiment, the air ratio lambda 1 of the primary premix gas Q 1 is 1.2 to 1.
8. Various cases where the air ratio λ 2 of the secondary lean premixed gas is 2 to 12, and the ratio of the supply amount of the primary premixed gas Q 1 to the secondary lean premixed gas Q 2 is 5: 5 and 6: 4. Experiments were conducted under the combination of, and the temperature T in the combustor after the combustion chamber outlet, that is, the lean premixed gas was mixed and reacted with the high temperature combustion gas by the thermocouple 40, was measured by the sampling probe 50. The components of the collected exhaust gas were analyzed by gas chromatography. Then, the combustion efficiency 2nd.CE (%) of the secondary lean premixed gas was obtained by the following formula.

【0019】[0019]

【数1】 [Equation 1]

【0020】その燃焼試験の結果を図2〜図7に示す。
なお、図において、横軸は二次予混合ガスQ2 の空気比
λ2 、左縦軸は二次予混合ガスQ2 の燃焼効率2nd.C.
E.(%) 、右縦軸は燃焼室出口温度である。図2〜図4
は、一次予混合ガスQ1 と2次希薄予混合ガスQ2 の供
給量の比が5:5の条件下で、一次予混合ガスQ1 の空
気比λ1 =1.2、1.4、1.6に変化させ、さらにそれぞ
れについて、2次希薄予混合ガスQ2 の空気比λ2 を2
から12まで変化させた場合のものである。
The results of the combustion test are shown in FIGS.
Incidentally, in the figure, the air ratio lambda 2 on the horizontal axis secondary premixed gas Q 2, the left vertical axis combustion efficiency of the secondary premixed gas Q 2 2nd.C.
E. (%), the right vertical axis is the combustion chamber outlet temperature. 2 to 4
Is an air ratio λ 1 = 1.2, 1.4 of the primary premixed gas Q 1 under the condition that the ratio of the supply amounts of the primary premixed gas Q 1 and the secondary lean premixed gas Q 2 is 5: 5. , 1.6, and the air ratio λ 2 of the secondary lean premixed gas Q 2 is changed to 2 for each.
It is the case when changing from 1 to 12.

【0021】すなわち、図2は、一次予混合ガスQ1
空気比λ1 が1.2の場合であり、2次希薄予混合ガスQ
2 の燃焼効率2nd.C.E. はその空気比λ2 の変化にかか
わらずすべて100%であるが、燃焼室出口すなわち希
薄予混合ガスが高温燃焼ガスと混合し反応した後の燃焼
器内の温度Tは、2次希薄予混合ガスQ2 の空気比λ 2
が高くなるにつれて約1200℃〜950℃に降下して
いる。
That is, FIG. 2 shows the primary premixed gas Q.1of
Air ratio λ1Is 1.2, the secondary lean premixed gas Q
2Combustion efficiency of 2nd.C.E. is the air ratio λ2Change of
However, all are 100%,
Combustion after a thin premixed gas mixes and reacts with the hot combustion gas
The temperature T in the vessel is the secondary lean premixed gas Q2Air ratio λ 2
As the temperature rises, it drops to about 1200 ℃ -950 ℃
There is.

【0022】図3は一次予混合ガスQ1 の空気比λ1
1.4の場合であり、この場合には、一次予混合ガスQ1
中の燃料ガスの減少の影響で図2の場合よりも燃焼室出
口の温度Tは低下している。そして、2次希薄予混合ガ
スQ2 の空気比λ2 が6前後のところで2次希薄予混合
ガスQ2 の燃焼効率2nd.C.E. は100%でなくなり未
燃焼成分が発生したことを示している。そのときの燃焼
室出口の温度Tはほぼ900℃である。
FIG. 3 is an air ratio lambda 1 of the primary premix gas Q 1 is
In the case of 1.4, in this case, the primary premixed gas Q 1
Due to the decrease in the fuel gas inside, the temperature T at the outlet of the combustion chamber is lower than in the case of FIG. The secondary lean air ratio lambda 2 of the premixed gas Q 2 combustion efficiency 2nd.CE secondary lean premixed gas Q 2 at the 6 before and after shows that unburned components no longer 100% occurs . At that time, the temperature T at the outlet of the combustion chamber is approximately 900 ° C.

【0023】図4は一次予混合ガスQ1 の空気比λ1
1.6とさらに希薄なものとした場合であり、一次予混合
ガスQ1 中の燃料ガスの減少の影響で図2の場合よりも
燃焼室出口の温度Tは低下している。そして、2次希薄
予混合ガスQ2 の空気比λ2が3前後のところで2次希
薄予混合ガスQ2 の燃焼効率2nd.C.E. は100%でな
くなっており、そのときの燃焼室出口の温度Tはほぼ9
00℃である。
FIG. 4 shows the air ratio λ 1 of the primary premixed gas Q 1.
In the case of a more dilute case of 1.6, the temperature T at the outlet of the combustion chamber is lower than that in the case of FIG. 2 due to the influence of the decrease in the fuel gas in the primary premixed gas Q 1 . Then, the air ratio lambda 2 of second lean premixed gas Q 2 is 3 combustion efficiency 2nd.CE secondary lean premixed gas Q 2 at the front and rear are no longer 100%, the temperature of the combustion chamber outlet at the time T is almost 9
It is 00 ° C.

【0024】図5〜図7は、一次予混合ガスQ1 と2次
希薄予混合ガスQ2 の供給量の比が6:4の条件下で、
一次予混合ガスQ1 の空気比λ1 =1.4、1.6、1.8に
変化させ、さらにそれぞれについて、2次希薄予混合ガ
スQ2 の空気比λ2 を2から12まで変化させた場合の
ものである。この場合においても、図5の場合すなわち
一次予混合ガスQ1 の空気比λ1 が1.4の場合では、2
次希薄予混合ガスQ2 の燃焼効率2nd.C.E. は、その空
気比λ2 の変化にかかわらずすべて100%であり、燃
焼室出口すなわち希薄予混合ガスが高温燃焼ガスと混合
し反応した後の燃焼器内の温度Tは2次希薄予混合ガス
2 の空気比λ2 の増加とともに約1100℃〜920
℃に降下している。
5 to 7 show that under the condition that the ratio of the supply amounts of the primary premixed gas Q 1 and the secondary lean premixed gas Q 2 is 6: 4,
Changing the air ratio λ 1 = 1.4,1.6,1.8 primary premixed gas Q 1, for each further change the air ratio of the secondary lean premixed gas Q 2 lambda 2 from 2 to 12 It is the case when it is made to. Also in this case, when the air ratio lambda 1 in the case of FIG. 5 or primary premix gas Q 1 is 1.4, the 2
The combustion efficiency 2nd.CE of the next lean premixed gas Q 2 is 100% irrespective of the change in the air ratio λ 2 , and the combustion chamber outlet, that is, after the lean premixed gas is mixed with the high temperature combustion gas and reacted. The temperature T in the combustor is about 1100 ° C. to 920 as the air ratio λ 2 of the secondary lean premixed gas Q 2 increases.
It has dropped to ℃.

【0025】図6は一次予混合ガスQ1 の空気比λ1
1.6の場合であり、この場合には、一次予混合ガスQ1
中の燃料ガスの減少の影響で図5の場合よりも燃焼室出
口の温度Tは低下しており、かつ、2次希薄予混合ガス
2 の空気比λ2 が6前後のところで2次希薄予混合ガ
スQ2 の燃焼効率2nd.C.E. は100%でなくなり未燃
焼成分が発生したことを示している。そのときの燃焼室
出口の温度Tはやはりほぼ900℃である。
[0025] Figure 6 is an air ratio lambda 1 of the primary premix gas Q 1
In the case of 1.6, in this case, the primary premixed gas Q 1
The temperature T of the combustion chamber outlet than in Figure 5 under the influence of reduction in the fuel gas has fallen in, and the secondary lean secondary lean premixed air ratio lambda 2 gas Q 2 is at the 6 before and after The combustion efficiency 2nd.CE of the premixed gas Q 2 was not 100%, indicating that unburned components were generated. At that time, the temperature T at the outlet of the combustion chamber is still about 900 ° C.

【0026】図7は一次予混合ガスQ1 の空気比λ1
1.8とさらに希薄なものとした場合であり、この場合に
も、一次予混合ガスQ1 中の燃料ガスの減少の影響で図
5の場合よりも燃焼室出口の温度Tは低下しており、か
つ、2次希薄予混合ガスQ2の空気比λ2 が3前後のと
ころで2次希薄予混合ガスQ2 の燃焼効率2nd.C.E.は
100%でなくなっている。そのときの燃焼室出口の温
度Tもやはりほぼ900℃である。
FIG. 7 shows the air ratio λ 1 of the primary premixed gas Q 1.
In this case, the combustion chamber outlet temperature T is lower than that in the case of FIG. 5 due to the decrease in the fuel gas in the primary premixed gas Q 1 . cage, and an air ratio lambda 2 of second lean premixed gas Q 2 combustion efficiency 2nd.CE secondary lean premixed gas Q 2 at the 3 before and after are no longer 100%. At that time, the temperature T at the outlet of the combustion chamber is also about 900 ° C.

【0027】図5〜図7の結果も、一次予混合ガスQ1
と2次希薄予混合ガスQ2 の供給量の比を不変とし、一
次予混合ガスQ1 の空気比λ1 を変化させた場合におい
て、燃焼室出口すなわち希薄予混合ガスが高温燃焼ガス
と混合し反応した後の燃焼器内の温度Tが約900℃以
上であれば、2次希薄予混合ガスQ2 の燃焼効率は常に
100%であり、それは2次希薄予混合ガスQ2 の空気
比λ2 とは無関係であることを示している。
The results of FIGS. 5 to 7 also show that the primary premixed gas Q 1
When the ratio of the secondary lean supply amount of the premixed gas Q 2 is unchanged, in the case of changing the air ratio lambda 1 of the primary premix gas Q 1, a combustion chamber outlet That lean premixed gas and hot combustion gases mix If the temperature T in the combustor after the reaction is about 900 ° C. or higher, the combustion efficiency of the secondary lean premixed gas Q 2 is always 100%, which is the air ratio of the secondary lean premixed gas Q 2 . It shows that it has nothing to do with λ 2 .

【0028】次に、図3と図5を比較してみると、一次
予混合ガスQ1 の空気比λ1 =1.4の場合に、一次予混
合ガスQ1 と2次希薄予混合ガスQ2 の供給量の比が変
化することで燃焼室出口の温度Tは異なる変化を示して
いるが、温度Tが約900℃以上であれば2次希薄予混
合ガスQ2 の燃焼効率は常に100%を示している。こ
のことは、図4と図6との対比においても同様である上
記の結果から、前段での燃焼により生じた高温燃焼ガス
に可燃限界外にある希薄予混合ガスを混合して反応させ
る多段希薄予混合形式の上記燃焼装置において、希薄予
混合ガスとしてメタンを主成分とする燃料を用いる場合
には、前記希薄予混合ガスが高温燃焼ガスと混合し反応
した後の燃焼器内の温度が常に約900℃以上となるよ
うに制御しつつ燃焼を継続することにより、未燃焼成分
の発生がない燃焼を行い得ることがわかる。
Next, FIG. 3 and Comparing FIG. 5, when the air ratio lambda 1 = 1.4 primary premixed gas Q 1, the primary premix gas Q 1 and the secondary lean premixed gas Although the temperature T at the combustion chamber outlet changes differently as the ratio of the supply amount of Q 2 changes, if the temperature T is about 900 ° C. or higher, the combustion efficiency of the secondary lean premixed gas Q 2 is always It shows 100%. This is the same in comparison between FIG. 4 and FIG. 6. From the above results, the multi-stage lean reaction in which the high temperature combustion gas generated by the combustion in the previous stage is mixed with the lean premixed gas outside the flammability limit In the above premixing type combustion apparatus, when a fuel containing methane as a main component is used as the lean premixed gas, the temperature in the combustor after the lean premixed gas is mixed with the high temperature combustion gas and reacted is always It is understood that the combustion can be performed without the generation of unburned components by continuing the combustion while controlling the temperature to be about 900 ° C. or higher.

【0029】上記の温度T=900℃の値は、燃焼装置
の形式や希薄予混合ガスとして用いる燃料の主成分の種
類により変動することが推測される。従って、実機を用
いた運転においては、予め、当該燃焼器について燃焼器
出口からの未燃焼成分排出開始前後における燃焼器内で
の前記希薄予混合ガスが高温燃焼ガスと完全に混合し反
応した後の温度を測定しておき、実際の運転に際して
は、希薄予混合ガスが高温燃焼ガスと混合し反応した後
の燃焼器内の温度が常に前記測定温度以上となるよう
に、高温燃焼ガスに希薄予混合ガスを混合して反応させ
ることが望ましい。
It is presumed that the value of the temperature T = 900 ° C. varies depending on the type of the combustion device and the type of the main component of the fuel used as the lean premixed gas. Therefore, in the operation using an actual machine, after the lean premixed gas in the combustor before and after the start of the discharge of unburned components from the combustor outlet of the combustor is completely mixed and reacted with the high temperature combustion gas, Temperature is measured in advance, and in actual operation, the lean premixed gas is diluted with the high temperature combustion gas so that the temperature in the combustor after mixing and reacting with the high temperature combustion gas is always above the measured temperature. It is desirable to mix and react the premixed gas.

【0030】その際に、燃焼器の燃焼室の形式あるいは
2次希薄予混合ガスの供給形態などの外的要因により、
高温燃焼ガスと希薄予混合ガスとの混合後の燃焼器内の
温度分布に機器に特有の分布を生じることが予測され
る。従って、実際の運転において、希薄予混合ガスが高
温燃焼ガスと混合し反応した後の燃焼器内の好ましくは
燃焼ガスの流れを横切る同一断面における複数箇所の温
度を測定し、その内の最低温度が常に前記の測定温度以
上となるように、高温燃焼ガスに希薄予混合ガスを混合
し反応させることもまた、きわめて望ましい態様とな
る。
At this time, due to external factors such as the type of combustion chamber of the combustor or the supply form of the secondary lean premixed gas,
It is expected that the temperature distribution in the combustor after mixing the hot combustion gas and the lean premixed gas will produce a distribution characteristic of the equipment. Therefore, in actual operation, the temperature of the lean premixed gas after mixing and reaction with the high temperature combustion gas, preferably at a plurality of points in the same cross section across the flow of the combustion gas in the combustor is measured, and the lowest temperature among them is measured. It is also a very desirable mode to mix the lean premixed gas with the high-temperature combustion gas and to react them so that the above temperature is always above the measured temperature.

【0031】[0031]

【発明の効果】本発明によれば、従来燃焼不可能と考え
られてきた予混合ガス、つまり理論的にそれ自身のみで
は燃焼し得ないきわめて希薄な予混合ガス(例えばメタ
ンの場合に予熱温度が25℃では空気比2以上の予混合
ガス)を完全燃焼させることが可能となる。それによ
り、トータルで非常に高空気比の燃焼が可能な低NOx
燃焼器を実現することもできる。
According to the present invention, a premixed gas which has been considered to be incombustible in the past, that is, an extremely lean premixed gas which theoretically cannot burn by itself (for example, in the case of methane, the preheating temperature is At 25 ° C., it is possible to completely burn a premixed gas having an air ratio of 2 or more. As a result, low NO x that enables combustion with a very high air ratio in total
A combustor can also be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】多段希薄予混合燃焼装置の一例を示す説明図。FIG. 1 is an explanatory diagram showing an example of a multi-stage lean premixed combustion device.

【図2】燃焼試験の結果を示すグラフ。FIG. 2 is a graph showing the results of a combustion test.

【図3】燃焼試験の結果を示すグラフ。FIG. 3 is a graph showing the results of a combustion test.

【図4】燃焼試験の結果を示すグラフ。FIG. 4 is a graph showing the results of a combustion test.

【図5】燃焼試験の結果を示すグラフ。FIG. 5 is a graph showing the results of a combustion test.

【図6】燃焼試験の結果を示すグラフ。FIG. 6 is a graph showing the results of a combustion test.

【図7】燃焼試験の結果を示すグラフ。FIG. 7 is a graph showing the results of a combustion test.

【符号の説明】[Explanation of symbols]

1 …一次予混合ガス、Q2 …2次希薄予混合ガス、1
0…一次旋回流バーナ、20…燃焼室、21…一次燃焼
室、22…二次燃焼室
Q 1 … Primary premixed gas, Q 2 … Secondary lean premixed gas, 1
0 ... Primary swirl flow burner, 20 ... Combustion chamber, 21 ... Primary combustion chamber, 22 ... Secondary combustion chamber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 前段での燃焼により生じた高温燃焼ガス
に可燃限界外にある希薄予混合ガスを混合して反応させ
る多段希薄予混合燃焼法であって、 予め、当該燃焼器について燃焼器出口からの未燃焼成分
排出開始前後における燃焼器内での前記希薄予混合ガス
が高温燃焼ガスと混合し反応した後の温度を測定してお
き、 実際の運転において、希薄予混合ガスが高温燃焼ガスと
混合し反応した後の燃焼器内の温度が常に前記測定温度
以上となるように、高温燃焼ガスに希薄予混合ガスを混
合し反応させることを特徴とする多段希薄予混合燃焼
法。
1. A multi-stage lean premixed combustion method in which a high temperature combustion gas generated by combustion in a first stage is mixed with a lean premixed gas outside a flammability limit to react, and the combustor outlet is provided in advance for the combustor. The temperature after the lean premixed gas in the combustor is mixed and reacted with the high temperature combustion gas before and after the start of the discharge of unburned components from the A multi-stage lean premixed combustion method, characterized in that a lean premixed gas is mixed with a high temperature combustion gas and reacted so that the temperature in the combustor after mixing and reacting with is always above the measurement temperature.
【請求項2】 前段での燃焼により生じた高温燃焼ガス
に可燃限界外にある希薄予混合ガスを混合して反応させ
る多段希薄予混合燃焼法であって、 予め、当該燃焼器について燃焼器出口からの未燃焼成分
排出開始前後における燃焼器内での前記希薄予混合ガス
が高温燃焼ガスと混合し反応した後の温度を測定してお
き、 実際の運転において、希薄予混合ガスが高温燃焼ガスと
混合し反応した後の燃焼器内の同一断面における複数箇
所の温度を測定し、その内の最低温度が常に前記測定し
た温度以上となるように、高温燃焼ガスに希薄予混合ガ
スを混合し反応させることを特徴とする多段希薄予混合
燃焼法。
2. A multi-stage lean premixed combustion method in which a high temperature combustion gas produced by combustion in a first stage is mixed with a lean premixed gas outside a flammability limit to react, and the combustor outlet is provided in advance for the combustor. The temperature after the lean premixed gas in the combustor is mixed and reacted with the high temperature combustion gas before and after the start of the discharge of unburned components from the After mixing and reacting with, measure the temperature at multiple points in the same cross section in the combustor, and mix the lean premixed gas with the high temperature combustion gas so that the lowest temperature among them is always above the measured temperature. A multistage lean premixed combustion method characterized by reacting.
【請求項3】 前段での燃焼により生じた高温燃焼ガス
に可燃限界外にある希薄予混合ガスを混合して反応させ
る多段希薄予混合燃焼法において、希薄予混合ガスとし
てメタンを主成分とする燃料を用い、かつ、希薄予混合
ガスが高温燃焼ガスと混合し反応した後の燃焼器内の温
度が常に900℃前後以上となるように、高温燃焼ガス
に希薄予混合ガスを混合し反応させることを特徴とする
多段希薄予混合燃焼法。
3. In a multi-stage lean premixed combustion method in which a high temperature combustion gas produced by combustion in the preceding stage is mixed with a lean premixed gas outside a flammability limit and reacted, methane is the main component as the lean premixed gas. Using the fuel, the lean premixed gas is mixed and reacted with the high temperature combustion gas so that the temperature in the combustor after the lean premixed gas is mixed with the high temperature combustion gas and reacted is always around 900 ° C. or higher. A multi-stage lean premixed combustion method characterized by the above.
【請求項4】 前段での燃焼により生じた高温燃焼ガス
に可燃限界外にある希薄予混合ガスを混合して反応させ
る多段希薄予混合燃焼法において、希薄予混合ガスとし
てメタンを主成分とする燃料を用い、かつ、希薄予混合
ガスが高温燃焼ガスと混合し反応した後の燃焼器内の同
一断面における複数箇所の温度を測定し、その内の最低
温度が常に900℃前後以上となるように、高温燃焼ガ
スに希薄予混合ガスを混合し反応させることを特徴とす
る多段希薄予混合燃焼法。
4. In a multi-stage lean premixed combustion method in which a high temperature combustion gas generated by combustion in a first stage is mixed with a lean premixed gas outside a flammability limit to react with each other, methane is a main component of the lean premixed gas. Measure the temperature at multiple points in the same cross section in the combustor after using the fuel and reacting the lean premixed gas with the high temperature combustion gas, and make sure that the minimum temperature is always around 900 ° C or higher. In addition, a multistage lean premixed combustion method is characterized in that a high temperature combustion gas is mixed with a lean premixed gas and reacted.
JP11248594A 1994-05-26 1994-05-26 Multi-stage lean premix combustion method Expired - Fee Related JP3253801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11248594A JP3253801B2 (en) 1994-05-26 1994-05-26 Multi-stage lean premix combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11248594A JP3253801B2 (en) 1994-05-26 1994-05-26 Multi-stage lean premix combustion method

Publications (2)

Publication Number Publication Date
JPH07318013A true JPH07318013A (en) 1995-12-08
JP3253801B2 JP3253801B2 (en) 2002-02-04

Family

ID=14587830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11248594A Expired - Fee Related JP3253801B2 (en) 1994-05-26 1994-05-26 Multi-stage lean premix combustion method

Country Status (1)

Country Link
JP (1) JP3253801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214674A (en) * 2007-03-01 2008-09-18 Sumitomo Metal Ind Ltd Method for operating continuous heating furnace, and continuous heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214674A (en) * 2007-03-01 2008-09-18 Sumitomo Metal Ind Ltd Method for operating continuous heating furnace, and continuous heating furnace

Also Published As

Publication number Publication date
JP3253801B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
CN105765304B (en) Method and apparatus for extending Flammability limits in combustion reaction
US7197880B2 (en) Lean blowoff detection sensor
US7216486B2 (en) Method for operating a turbine group
Sirignano et al. Nitrogen oxide emissions from rich premixed reacting jets in a vitiated crossflow
JPH05203146A (en) Gas turbine combustion apparatus and gas turbine power generator
US9170023B2 (en) Operation of a gas turbine
US10006635B2 (en) Apparatus and a method of controlling the supply of fuel to a combustion chamber
Marinov et al. On swirl stabilized flame characteristics near the weak extinction limit
Zhao et al. Effects of N2 and CO2 dilution on the combustion characteristics of C3H8/O2 mixture in a swirl tubular flame burner
Ding et al. Chemiluminescence based operating point control of domestic gas boilers with variable natural gas composition
Gupta et al. Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines
JP2860234B2 (en) Gas turbine combustor combustion control method and gas turbine combustor equipment for performing the method
JP3253801B2 (en) Multi-stage lean premix combustion method
JPH10317991A (en) Gas turbine
Foster et al. Factors affecting NOx formation from nitrogen-containing fuels
Shehata Emissions and wall temperatures for lean prevaporized premixed gas turbine combustor
Maughan et al. A dry low NOx combustor for the MS3002 regenerative gas turbine
JP3253810B2 (en) Prevention method of incomplete combustion in multi-stage lean premixed combustion
JP2001108237A (en) Gas turbine combustor
JP3153374B2 (en) Multi-stage ultra-lean premixed combustion method
Becker et al. Premixing gas and air to reduce NOx emissions with existing proven gas turbine combustion chambers
JP3153421B2 (en) Prevention method of incomplete combustion in multi-stage lean premixed combustion
JP3453973B2 (en) Control method of premixed combustion device
JPH0336409A (en) Low nox burner
JP3523417B2 (en) Combustion condition diagnosis method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees