JPH07317768A - Static pressure porous bearing - Google Patents

Static pressure porous bearing

Info

Publication number
JPH07317768A
JPH07317768A JP6112935A JP11293594A JPH07317768A JP H07317768 A JPH07317768 A JP H07317768A JP 6112935 A JP6112935 A JP 6112935A JP 11293594 A JP11293594 A JP 11293594A JP H07317768 A JPH07317768 A JP H07317768A
Authority
JP
Japan
Prior art keywords
bearing
groove
porous
clearance
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6112935A
Other languages
Japanese (ja)
Inventor
Takashi Murai
隆司 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP6112935A priority Critical patent/JPH07317768A/en
Publication of JPH07317768A publication Critical patent/JPH07317768A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0618Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a static porous bearing which improves bearing rigidity and loading capacity and is capable of restricting self-excited vibration at a low cost. CONSTITUTION:A bearing face a radial bearing face 33, thrust bearing face 35) which is provided in the porous member 30 attached to a housing, which is one of bearing members, is opposed to the other bearing face a radial bearing face 22, thrust bearing face 23) which is provided in the rotary member 20, which is the other bearing member, through a radial bearing clearance 34 or thrust bearing clearance 36, and air is injected from the porous member 30 to the bearing clearances 34 and 36. A groove is provided in at least either the bearing faces 33 and 35 or the other bearing faces 22 and 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超精密機械や高周速
化された工作機械等の主軸や回転テーブル等に用いられ
る静圧多孔質軸受の改良に係り、特に、剛性,負荷容
量,自励振動の抑制等の性能を向上した静圧多孔質軸受
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a hydrostatic porous bearing used for a spindle, a rotary table, etc. of an ultra-precision machine or a machine tool having a high peripheral speed, and particularly, to improve rigidity, load capacity, The present invention relates to a hydrostatic porous bearing having improved performance such as suppression of self-excited vibration.

【0002】[0002]

【従来の技術】従来のこの種の静圧多孔質軸受として
は、例えば本出願人が先に出願した実開平1−7562
4号(以下、第1従来例という),特開平4−2666
15号(第2従来例という)等に提案されたものがあ
る。これらはいずれも、一方の軸受部材である固定のハ
ウジングの内側に、他方の軸受部材である円筒状の回転
部材が両端部にフランジ状の鍔部を有して回転自在に非
接触で支承されている。そのハウジングの内周面には短
円筒状の多孔質部材が固着されており、一方の軸受面と
してその多孔質部材の内周面にラジアル軸受面が設けら
れると共に、多孔質部材の端面にスラスト軸受面が設け
られている。
2. Description of the Related Art As a conventional static pressure type porous bearing of this type, for example, the applicant of the present application previously filed No. 1-7562.
No. 4 (hereinafter referred to as the first conventional example), Japanese Patent Laid-Open No. 4-2666
No. 15 (referred to as a second conventional example) and the like are proposed. In each of these, a cylindrical rotating member, which is the other bearing member, is rotatably supported in a non-contact manner inside a fixed housing, which is one bearing member, with flanged flanges at both ends. ing. A short cylindrical porous member is fixed to the inner peripheral surface of the housing, a radial bearing surface is provided on the inner peripheral surface of the porous member as one bearing surface, and a thrust member is attached to the end surface of the porous member. A bearing surface is provided.

【0003】これに対し、回転部材には、前記ラジアル
軸受面にラジアル軸受すきまを介して対向する他方の軸
受面として円筒状の外周面にラジアル受面が設けられる
とともに、フランジ状の鍔部の内側端面に前記スラスト
軸受面にスラスト軸受すきまを介して対向する他方の軸
受面としてスラスト受面が設けられている。そして、こ
のスラスト受面に、軸受すきまと略同程度の深さのポケ
ットが円周方向に連続して(第1従来例)、又は円周方
向に断続して(第2従来例)設けられている。このポケ
ットは、多孔質部材から軸受すきまに噴出させた圧縮空
気の圧力溜めとして機能し、剛性や負荷容量などの軸受
性能を向上させている。
On the other hand, the rotary member is provided with a radial receiving surface on the cylindrical outer peripheral surface as the other bearing surface facing the radial bearing surface via the radial bearing clearance, and also has a flange-shaped flange portion. A thrust receiving surface is provided on the inner end surface as the other bearing surface facing the thrust bearing surface with a thrust bearing clearance therebetween. The thrust receiving surface is provided with a pocket having a depth substantially equal to the bearing clearance continuously in the circumferential direction (first conventional example) or intermittently in the circumferential direction (second conventional example). ing. The pocket functions as a pressure reservoir for compressed air ejected from the porous member into the bearing clearance to improve the bearing performance such as rigidity and load capacity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の静圧多孔質軸受にあっては、いずれも圧縮空気の圧
力溜めとなるポケットが存在することにより、気体の圧
縮性に起因する自励振動が発生し易いという問題点を有
している。そこで、この発明は、上記従来の問題点に着
目してなされたものであり、軸受剛性,負荷容量を向上
させつつしかも自励振動を抑制できる従来実用化が困難
とされた静圧多孔質軸受を安価に提供することを目的と
している。
However, in each of the above-mentioned conventional static pressure porous bearings, there is a pocket that serves as a pressure reservoir for compressed air, which results in self-excited vibration caused by the compressibility of gas. Has a problem that is likely to occur. Therefore, the present invention has been made by paying attention to the above-mentioned conventional problems, and it is difficult to put into practical use the conventional hydrostatic porous bearing which is capable of suppressing bearing vibration while improving bearing rigidity and load capacity. Is intended to be provided at low cost.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するこ
の発明は、一方の軸受部材に取り付けた多孔質部材に設
けた一方の軸受面が他方の軸受部材に設けた他方の軸受
面と軸受すきまを介して対向し、多孔質部材から軸受す
きまに気体を噴出する静圧多孔質軸受において、一方の
軸受面と他方の軸受面との少なくとも一方に溝を設けた
ことを特徴とするものである。
According to the present invention, which achieves the above object, one bearing surface provided on a porous member attached to one bearing member and another bearing surface provided on the other bearing member are provided. In a static pressure porous bearing which faces through a clearance and ejects gas from a porous member into a bearing clearance, a groove is provided on at least one of one bearing surface and the other bearing surface. is there.

【0006】[0006]

【作用】自励振動は、軸受すきまへ供給される質量流量
(流入質量流量)と軸受すきま内の質量流量と軸受すき
ま内から大気へ放出される質量流量(流出質量流量)と
が全て等しい時には発生しない。従って、自励振動抑制
の見地からみると、外力等により軸受すきまに変化が生
じるなどして前記それぞれの質量流量が平衡状態から変
化したときでも、それぞれの変化分が小さくなることが
望ましい。
[Function] Self-excited vibration occurs when the mass flow rate supplied to the bearing clearance (inflow mass flow rate), the mass flow rate in the bearing clearance, and the mass flow rate released from the bearing clearance to the atmosphere (outflow mass flow rate) are all equal. Does not occur. Therefore, from the standpoint of suppressing self-excited vibration, it is desirable that even when the respective mass flow rates change from the equilibrium state due to changes in the bearing clearance due to external force or the like, the respective changes are reduced.

【0007】ところで、従来例の静圧多孔質軸受におけ
るポケットは、深さが軸受すきま(ラジアル軸受すきま
は直径方向の片側で7〜13μm、スラスト軸受すきま
は5〜10μmが多い)と同等程度と浅く、且つ幅が5
〜10mmと広い。これに対して、本発明にあっては、
ポケットに比べて深く且つ幅が狭い溝が圧力溜めとして
機能する。そのため、外力等により軸受内で質量流量に
変化が生じても、流入質量流量及び流出質量流量の各変
化分は小さく抑制することができる。
Incidentally, the depth of the pocket in the hydrostatic porous bearing of the conventional example is about the same as the bearing clearance (the radial bearing clearance is 7 to 13 μm on one side in the diametrical direction, and the thrust bearing clearance is often 5 to 10 μm). Shallow and width 5
It is as wide as -10 mm. On the other hand, in the present invention,
A groove that is deeper and narrower than the pocket functions as a pressure reservoir. Therefore, even if the mass flow rate changes in the bearing due to an external force or the like, each change in the inflow mass flow rate and the outflow mass flow rate can be suppressed to be small.

【0008】すなわち、流入質量流量は軸受すきま内の
圧力に反比例する。このため、従来の浅く幅広のポケッ
トの場合は圧力変化が大きいことから流入質量流量の変
化分も大きくなる(軸受すきま内の圧力が高くなると流
入質量流量は著しく低下する)。しかして、本発明の深
く幅の狭い溝にあっては、前記従来のポケットより圧力
変化が小さいことから流入質量流量の変化分は小さい。
しかも、比較的深い溝の場合は圧力が瞬時に変化しずら
いため、溝部分における流入質量流量の変化は殆どな
く、結局総合的に流入質量流量の変化分は更に小さくな
る。
That is, the inflow mass flow rate is inversely proportional to the pressure in the bearing clearance. Therefore, in the case of the conventional shallow and wide pocket, the change in pressure is large, and therefore the change in the inflow mass flow rate is also large (the inflow mass flow rate remarkably decreases as the pressure in the bearing clearance increases). In the deep and narrow groove of the present invention, the change in the inflow mass flow rate is small because the change in pressure is smaller than that in the conventional pocket.
Moreover, in the case of a relatively deep groove, the pressure hardly changes instantaneously, so there is almost no change in the inflow mass flow rate in the groove portion, and as a result, the change in the inflow mass flow rate becomes smaller overall.

【0009】このことは、軸受すきま内にポケットや溝
をもたない軸受(後述する比較品3)と比較しても、本
発明の溝部分への流入する流量分が、軸受すきま内の圧
力の増加にともなう流入減少変化分を相殺して、結果的
にトータルの流入分の変化分を小さくすることにおいて
は有利である。一方、流出質量流量についてみると、従
来のポケットの場合は、軸受すきまが外力等により狭く
なって軸受すきま内の圧力が高くなると、大気圧との差
圧が大きくなることから流出質量流量が多くなる。ま
た、ポケットが大きい(幅が広い)ことから軸受すきま
が狭くなっても軸受すきま内の流れ抵抗は小さく、その
ため流出質量流量の変化分は大きくなる。しかして、本
発明の深く幅の狭い溝にあっては、軸受すきまが狭くな
って軸受すきま内の圧力が高くなると、流出質量流量は
従来のポケットの場合程ではないが増加しようとするの
に対し、軸受すきまが狭くなると軸受すきま内の流れ抵
抗は増大するため、結局圧力増大による流量増大が軸受
すきま内の流れ抵抗の増大で相殺されて、結果的に流出
質量流量の変化分は小さくなる。また、このことは、軸
受すきま内にポケットや溝をもたない軸受(後述する比
較品3)と比較しても、本発明の溝幅が狭いことから、
軸受すきま内にお流れ抵抗もポケットや溝をもたない軸
受と略同じであり、結果的に、流出する質量流量の変化
分は、軸受すきま内にポケットや溝をもたない軸受と同
等である。このため、本発明の方は従来の場合より流入
質量流量と軸受すきま内の質量流量と流出質量流量とが
平衡状態に近づき易く、自励振動が抑制される。
This means that, even when compared with a bearing having no pockets or grooves in the bearing clearance (Comparative Product 3 described later), the flow rate flowing into the groove portion of the present invention is equal to the pressure in the bearing clearance. It is advantageous in offsetting the inflow decrease change amount due to the increase of the flow rate and consequently reducing the total inflow change amount. On the other hand, regarding the outflow mass flow rate, in the case of the conventional pocket, if the bearing clearance becomes narrower due to external force etc. and the pressure inside the bearing clearance increases, the outflow mass flow rate increases because the differential pressure from the atmospheric pressure increases. Become. Further, since the pocket is large (wide), even if the bearing clearance is narrow, the flow resistance in the bearing clearance is small, and therefore the change in the mass flow rate of outflow is large. Therefore, in the deep and narrow groove of the present invention, when the bearing clearance becomes narrow and the pressure in the bearing clearance becomes high, the outflow mass flow rate tries to increase, though not so much as in the case of the conventional pocket. On the other hand, when the bearing clearance becomes narrower, the flow resistance in the bearing clearance increases, so the increase in flow rate due to the increase in pressure is offset by the increase in flow resistance in the bearing clearance, resulting in a smaller change in the outflow mass flow rate. . Further, this is because the groove width of the present invention is narrower than that of a bearing having no pockets or grooves in the bearing clearance (Comparative Product 3 described later).
The flow resistance in the bearing clearance is almost the same as that of a bearing without pockets or grooves, and as a result, the amount of change in the mass flow rate is the same as that of a bearing without pockets or grooves in the bearing clearance. is there. Therefore, in the present invention, the inflow mass flow rate, the mass flow rate in the bearing clearance, and the outflow mass flow rate are more likely to approach an equilibrium state than in the conventional case, and self-excited vibration is suppressed.

【0010】軸受剛性,負荷容量等の軸受性能について
は、軸受すきま内に設けた溝が気体の圧力溜めとして作
用し、溝内の静的圧力は軸受すきま内の圧力より高くな
り、その結果、軸受すきま内にポケットや溝等を設けな
い軸受に比べて軸受剛性,負荷容量が大きくなる。
Regarding the bearing performance such as bearing rigidity and load capacity, the groove provided in the bearing clearance acts as a pressure reservoir for gas, and the static pressure in the groove becomes higher than the pressure in the bearing clearance. Bearing rigidity and load capacity are greater than those of bearings that do not have pockets or grooves in the bearing clearance.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明を適用した軸受構造の断面図であ
る。一方の軸受部材である円筒形状又は角形状のハウジ
ング10は不図示の固定部材に固定して支持されてい
る。そのハウジング10の内側に、他方の軸受部材であ
る回転部材20が回転中心軸をXとして回転自在に支持
されている。回転部材20の円筒部の両軸端には、フラ
ンジ状の鍔部21,21が固設してある。そのうち少な
くとも一方の鍔部21は、ハウジング10への回転部材
20の組付けを考慮して、着脱可能にネジ止めされてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a bearing structure to which the present invention is applied. The cylindrical or angular housing 10, which is one bearing member, is fixed and supported by a fixing member (not shown). A rotating member 20, which is the other bearing member, is rotatably supported inside the housing 10 with the center axis of rotation as X. Flange-shaped flange portions 21 and 21 are fixedly provided on both axial ends of the cylindrical portion of the rotating member 20. At least one of the collar portions 21 is detachably screwed in consideration of the assembling of the rotary member 20 to the housing 10.

【0012】ハウジング10の内周面には、2個の短円
筒状の多孔質部材30,30が軸方向に若干の間隔をお
いて固定されている。またハウジング10には、その外
周面から各多孔質部材30,30に圧縮空気を送り込む
ために給気孔11,11とこれに続く環状の給気室1
2,12がそれぞれに設けられるとともに、左右の多孔
質部材30,30の間に位置してハウジング内面から外
周面に至る排気孔13が設けられている。
Two short cylindrical porous members 30, 30 are fixed to the inner peripheral surface of the housing 10 at some intervals in the axial direction. Further, the housing 10 is provided with air supply holes 11 and 11 and an annular air supply chamber 1 following the air supply holes 11 and 11 for sending compressed air from the outer peripheral surface to the porous members 30 and 30.
2 and 12 are provided respectively, and an exhaust hole 13 that is located between the left and right porous members 30 and 30 and extends from the inner surface of the housing to the outer surface thereof is provided.

【0013】この実施例の多孔質部材30は、空孔を有
するグラファイト素材からなり、選択された空気透過率
を有する芯部31と、その芯部31の外周表層に例えば
フェノール樹脂を含浸して目づまりさせることにより素
材空孔を減少させてなる表面絞り層32とを備えてい
る。その多孔質部材30の内周面は一方の軸受面である
ラジアル軸受面33を構成し、ラジアル軸受すきま34
(直径方向の片側で7〜13μm)を介して他方の軸受
面である回転部材20の外周面のラジアル受面22に対
向している。
The porous member 30 of this embodiment is made of a graphite material having pores, has a core portion 31 having a selected air permeability, and the outer peripheral surface layer of the core portion 31 is impregnated with, for example, phenol resin. The surface stop layer 32 is formed by reducing material holes by clogging. The inner peripheral surface of the porous member 30 constitutes a radial bearing surface 33 which is one bearing surface, and the radial bearing clearance 34
(7 to 13 μm on one side in the diameter direction) is opposed to the radial bearing surface 22 on the outer peripheral surface of the rotary member 20 which is the other bearing surface.

【0014】また、各多孔質部材30の円環状の外側端
面は、一方の軸受面であるスラスト軸受面35を構成し
ている。これに対して、回転部材20の各鍔部21の内
側面は他方の軸受面であるスラスト受面23とされ、前
記スラスト軸受面35とスラスト軸受すきま36を介し
て対向している。図2(a)は、本発明を図1に示す軸
受のスラスト軸受部に採用した第1実施例を示し、
(b)は溝部の詳細を示す。
The annular outer end surface of each porous member 30 constitutes a thrust bearing surface 35 which is one bearing surface. On the other hand, the inner surface of each flange 21 of the rotary member 20 is a thrust bearing surface 23 which is the other bearing surface, and faces the thrust bearing surface 35 with a thrust bearing clearance 36. FIG. 2A shows a first embodiment in which the present invention is applied to the thrust bearing portion of the bearing shown in FIG.
(B) shows the details of the groove.

【0015】そして、他方の軸受面として回転部材の鍔
部21の内側面に設けられた円環状のスラスト受面23
に、V字形断面を有する細い(幅の狭い)溝40が外周
寄りに一本、円環状に形成してある。この実施例の溝4
0は深さ70μm(0.07mm)とされ、スラスト軸受す
きま36の間隔5〜10μmに対し7〜14倍になって
いる。溝幅は約250μm(0.25mm)、溝直径は89
mmである。
An annular thrust receiving surface 23 provided on the inner side surface of the collar portion 21 of the rotary member as the other bearing surface.
In addition, a thin (narrow) groove 40 having a V-shaped cross section is formed in an annular shape near the outer circumference. Groove 4 of this embodiment
The depth 0 is 70 μm (0.07 mm), which is 7 to 14 times the interval 5 to 10 μm between the thrust bearing clearances 36. Groove width is about 250 μm (0.25 mm), groove diameter is 89
mm.

【0016】なお、ハウジング10の内周面には、2個
の短円筒状の多孔質部材30,30が軸方向に若干の間
隔をおいて固定されている。またハウジング10には、
図示されてはいないがその外周面から各多孔質部材3
0,30に圧縮空気を送り込むために給気孔とこれに続
く環状の給気室がそれぞれに設けられるとともに、左右
の多孔質部材30,30の間に位置してハウジング10
内面から外周面に至る排気孔が設けられている。
Two short cylindrical porous members 30, 30 are fixed to the inner peripheral surface of the housing 10 at a slight interval in the axial direction. Also, the housing 10
Although not shown, each porous member 3 is
An air supply hole and an annular air supply chamber subsequent to the air supply hole are provided to feed compressed air into the housings 0 and 30, respectively, and the housing 10 is located between the left and right porous members 30 and 30.
Exhaust holes are provided from the inner surface to the outer surface.

【0017】次に作用を述べる。ハウジング10の給気
孔11から圧縮空気を供給すると、その圧縮空気は給気
室12を経て多孔質部材30内に入り、そこを通って多
孔質部材の内周面のラジアル軸受面33及び外側端面の
スラスト軸受面35から均一に噴出する。これにより、
ラジアル軸受すきま34及びスラスト軸受すきま36に
圧力の高い空気層が形成されて、回転部材20はハウジ
ング10に非接触に浮上支持される。ラジアル軸受面3
3から噴出した圧縮空気はラジアル軸受すきま34に空
気膜を形成して回転部材20をラジアル方向に支持しな
がら排気孔13から大気中へ連続して流出する。また、
スラスト軸受面35から噴出した圧縮空気はスラスト軸
受すきま36に空気膜を形成して回転部材20をスラス
ト方向に支持しながら矢符号Aに示すように排出され
る。
Next, the operation will be described. When compressed air is supplied from the air supply hole 11 of the housing 10, the compressed air enters the porous member 30 through the air supply chamber 12, and passes therethrough to the radial bearing surface 33 and the outer end surface of the inner peripheral surface of the porous member. From the thrust bearing surface 35. This allows
An air layer having a high pressure is formed in the radial bearing clearance 34 and the thrust bearing clearance 36, and the rotating member 20 is supported by the housing 10 so as to float in a non-contact manner. Radial bearing surface 3
The compressed air ejected from 3 continuously forms an air film in the radial bearing clearance 34 to support the rotary member 20 in the radial direction and continuously flows from the exhaust hole 13 into the atmosphere. Also,
The compressed air jetted from the thrust bearing surface 35 forms an air film in the thrust bearing clearance 36 to support the rotary member 20 in the thrust direction and is discharged as indicated by arrow A.

【0018】しかして、このように空気噴出により静圧
を生じさせて回転部材20をラジアル方向及びスラスト
方向に支持するにあたって、スラスト受面23にある溝
40はスラスト軸受すきま36の間隔に比べて深さが1
0倍程度と比較的深いために、スラスト軸受すきま36
において全周にわたり一定で高い空気圧を形成すること
となり、これにより静圧多孔質軸受のスラスト負荷容量
と剛性とを増大させることができる。
However, in supporting the rotating member 20 in the radial direction and the thrust direction by thus generating the static pressure by the air jet, the groove 40 on the thrust receiving surface 23 is smaller than the gap of the thrust bearing clearance 36. Depth 1
Thrust bearing clearance 36
Since a constant high air pressure is formed over the entire circumference, the thrust load capacity and rigidity of the hydrostatic porous bearing can be increased.

【0019】また、自励振動に関しても、前記溝40
の溝幅が約0.25mmと細いためスラスト軸受すきま36
内を流れる気体の抵抗に殆ど影響せず、従って流出質量
流量の変化分は小さく(軸受すきま内にポケット等をも
たない軸受と同等)でき、かつ前記溝40の深さがス
ラスト軸受すきま36の間隔に比べて約10倍と比較的
深いため瞬時の圧力変化が小さく、したがって溝部分へ
の流入質量流量の変化は殆どなく(軸受すきま内にポケ
ット等をもたない軸受よりも有利)、結局流入質量流量
の変化分も小さくできることから自励振動が抑制され
る。
Regarding the self-excited vibration, the groove 40 is also used.
Since the groove width of is as small as about 0.25 mm, the thrust bearing clearance 36
There is almost no effect on the resistance of the gas flowing therein, and therefore the amount of change in the mass flow rate of the outflow can be small (equivalent to a bearing having no pockets in the bearing clearance), and the depth of the groove 40 is the thrust bearing clearance 36. Since it is about 10 times as deep as the distance of, the instantaneous pressure change is small, so there is almost no change in the mass flow rate flowing into the groove portion (advantageous compared to a bearing having no pockets in the bearing clearance). Eventually, the amount of change in the mass flow rate of the inflow can be reduced, so that self-excited vibration is suppressed.

【0020】図3に他の実施例を示す。この実施例は、
回転部材20のスラスト受面23に円環状の二本の溝4
1,42を設けた点が上記第1の実施例と異なってい
る。外側の溝41は、深さ50μm(0.05mm)とさ
れ、溝幅は約173 μm(0.17mm)、溝直径は89mm
である。内側の溝42は、深さ35μm(0.035 mm)
とされ、溝幅は約100 μm(0.10mm)、溝直径は62
mmである。
FIG. 3 shows another embodiment. This example
Two circular grooves 4 are formed on the thrust receiving surface 23 of the rotating member 20.
1 and 42 is different from the first embodiment. The depth of the outer groove 41 is 50 μm (0.05 mm), the groove width is about 173 μm (0.17 mm), and the groove diameter is 89 mm.
Is. The inner groove 42 has a depth of 35 μm (0.035 mm)
The groove width is about 100 μm (0.10 mm) and the groove diameter is 62.
mm.

【0021】なお、この実施例では、第1の実施例の溝
40の容積と上記二本の溝41,42の合計溝容積とが
同じ程度になるように、各溝41,42の深さを設定し
てある。作用・効果については、上記第1の実施例のも
のと同様である。図4に更に他の実施例を示す。これは
本発明をラジアル軸受に適用したものである。すなわ
ち、図1の静圧多孔質軸受の回転部材20の他方の軸受
面であるラジアル受面22に、周面を一周する溝45を
設けたものである。この実施例の場合、溝45を各多孔
質部材30のラジアル軸受面33毎に二本づつ設けてあ
り、溝深さは40μm(0.04mm)、溝幅は約138μ
m(0.14mm)にしている。なお、溝をラジアル軸受部
に形成する場合には、回転部材20の中心軸Xの偏心に
対して圧縮空気の周方向のまわり込み(導通効果)を防
止するために、溝深さはラジアル軸受すきま34の5倍
程度としている。
In this embodiment, the depths of the grooves 41 and 42 are set so that the volume of the groove 40 of the first embodiment and the total groove volume of the two grooves 41 and 42 are approximately the same. Has been set. The operation and effect are similar to those of the first embodiment. FIG. 4 shows still another embodiment. This is an application of the present invention to a radial bearing. That is, the radial receiving surface 22 which is the other bearing surface of the rotary member 20 of the hydrostatic porous bearing shown in FIG. 1 is provided with a groove 45 that goes around the circumferential surface. In this embodiment, two grooves 45 are provided for each radial bearing surface 33 of each porous member 30, the groove depth is 40 μm (0.04 mm) and the groove width is about 138 μ.
m (0.14 mm). When the groove is formed in the radial bearing portion, the groove depth is set to the radial bearing in order to prevent the compressed air from wrapping around the eccentricity of the central axis X of the rotating member 20 in the circumferential direction (conduction effect). It is about 5 times the clearance 34.

【0022】この実施例の作用・効果は第1の実施例の
場合と略同様である。なお、本第3の実施例の溝45は
円周方向に連続する周溝としてあるが、これに限らず、
円周方向の溝を断続させて形成しても良い。図5に、本
発明の発明品とポケットを有する比較品1とポケットを
有する比較品2とポケットも溝も設けていない比較品3
のそれぞれの回転部材について、三個の試験体(No.
1〜No.3、本実験では同仕様の多孔質部材を入れた
ハウジング三台)を用いて行ったアキシアル剛性測定の
結果を比較してグラフに示す。図6は従来例であるポケ
ットを有する比較品1、図7は従来例であるポケットを
有する比較品2の断面図である。
The operation and effect of this embodiment are substantially the same as those of the first embodiment. Although the groove 45 of the third embodiment is a circumferential groove continuous in the circumferential direction, the present invention is not limited to this, and
It may be formed by intermittently forming grooves in the circumferential direction. FIG. 5 shows the invention product of the present invention, the comparative product 1 having a pocket, the comparative product 2 having a pocket, and the comparative product 3 having no pocket or groove.
For each rotating member of No. 3, three test bodies (No.
1-No. 3. In this experiment, the results of axial rigidity measurement performed using three housings containing porous members of the same specifications) are shown in a graph for comparison. FIG. 6 is a sectional view of a comparative product 1 having a conventional pocket and FIG. 7 is a sectional view of a comparative product 2 having a conventional pocket.

【0023】図5の結果から、アキシアル剛性について
は、幅広のポケットPを有する比較品2が最も高剛性で
あり、発明品と幅がより狭いポケットPを有する比較品
1とが略同程度の剛性を示して比較品2につぎ、ポケッ
トも溝も設けていない比較品3は最もアキシアル剛性が
低いといえる。すなわち、この発明の静圧多孔質軸受
は、ポケットも溝も設けていない静圧多孔質軸受に比べ
てアキシアル剛性が10〜15%高くなる。
From the results of FIG. 5, regarding the axial rigidity, the comparative product 2 having the wide pocket P has the highest rigidity, and the invention product and the comparative product 1 having the narrower pocket P have substantially the same axial rigidity. It can be said that the comparative product 3, which has rigidity and is next to the comparative product 2 in which neither pocket nor groove is provided, has the lowest axial rigidity. That is, the hydrostatic porous bearing of the present invention has an axial rigidity 10 to 15% higher than that of the hydrostatic porous bearing having neither pockets nor grooves.

【0024】また、図8には、上記四種類の静圧多孔質
軸受について行った自励振動抑制効果の測定結果を比較
してグラフに示す。試験は、各静圧多孔質軸受のフラン
ジ状の鍔部に荷重を順次搭載し、そのとき自励振動が発
生する給気圧力を測定して行った。(なお、本試験にお
ける給気圧力は、最大10kgf/cm2 (G)までと
した。) 図8の結果から、自励振動が発生するに至る給気圧力に
ついては、本実施例の場合、搭載荷重の増加に関係な
く、高給気圧力下で発生することなく安定しており、自
励振動抑制効果の大きいことが明らかである。これに対
して、その他のものはいずれも、搭載荷重の増加に伴い
自励振動が発生し易くなっている。つまり、搭載荷重7
0kgにおいて、ポケットも溝も設けていない静圧多孔
質軸受では給気圧力約7kgf/cm2 (G)から自励
振動が発生し、比較品1,2ではそれぞれ給気圧力約5
kgf/cm2 (G),4.0 kgf/cm2 (G)で早
くも発生している。これに対して、この発明の静圧多孔
質軸受の場合には、給気圧力約9.5 kgf/cm
2 (G)まで自励振動の発生を抑制している。
FIG. 8 is a graph showing a comparison of the measurement results of the self-excited vibration suppression effect performed on the above four types of static pressure porous bearings. The test was carried out by sequentially mounting a load on the flange-shaped collar portion of each static pressure porous bearing and measuring the supply pressure at which self-excited vibration occurred at that time. (Note that the supply pressure in this test was set to a maximum of 10 kgf / cm 2 (G).) From the results in FIG. 8, regarding the supply pressure at which self-excited vibration occurs, in the case of this example, It is clear that regardless of the increase of the loading load, it is stable and does not occur under high supply pressure, and the self-excited vibration suppression effect is great. On the other hand, in all the other cases, self-excited vibration is likely to occur as the mounting load increases. In other words, the payload 7
At 0 kg, self-excited vibration occurs from a supply pressure of about 7 kgf / cm 2 (G) in a static pressure porous bearing with no pockets or grooves, and in comparison products 1 and 2 each supply pressure is about 5
It occurred as early as kgf / cm 2 (G) and 4.0 kgf / cm 2 (G). On the other hand, in the case of the hydrostatic porous bearing of the present invention, the supply pressure is about 9.5 kgf / cm.
The occurrence of self-excited vibration is suppressed up to 2 (G).

【0025】なお、上記各実施例では、多孔質部材とし
てグラファイトを用いた場合を説明したが、この発明は
これに限定されるものではなく、その他の多孔質部材、
例えばカーボン,金属の多孔質部材やセラミックス多孔
質部材等でも良い。また、溝深さは、軸受すきまの5〜
10倍がこの発明の効果を得るためには好ましい。しか
しこの範囲から外れても、この発明の範囲には含まれ、
そして、この発明の効果が得られる。
In each of the above embodiments, the case where graphite is used as the porous member has been described, but the present invention is not limited to this, and other porous members,
For example, a carbon or metal porous member or a ceramic porous member may be used. The groove depth is 5 to the bearing clearance.
10 times is preferable for obtaining the effect of the present invention. However, even if it deviates from this range, it is still included in the scope of the present invention.
And the effect of this invention is acquired.

【0026】また、溝幅は1mm以下がこの発明の効果
を得るためには好ましい。しかし、この範囲から外れて
も、この発明の範囲には含まれ、そして、この発明の効
果が得られる。また、溝は一方の軸受面のみに設けても
よく、または他方の軸受面のみにもうけても良く、ある
いは一方の軸受面と他方の軸受面との両方に設けても良
い。
The groove width is preferably 1 mm or less in order to obtain the effects of the present invention. However, even if it deviates from this range, it is included in the scope of the present invention, and the effects of the present invention can be obtained. Further, the groove may be provided only on one bearing surface, may be provided only on the other bearing surface, or may be provided on both one bearing surface and the other bearing surface.

【0027】また、上記各実施例はラジアル軸受とスラ
スト軸受とが連通して併設されたものについて説明した
が、この発明はラジアル軸受単体またはスラスト軸受単
体に対しても適用可能である。また、上記実施例では回
転式の静圧多孔質軸受に適用した場合を説明したが、こ
れに限らず直動式の静圧多孔質軸受にも適用可能であ
る。
In addition, although the radial bearing and the thrust bearing are communicated and provided side by side in the above-described embodiments, the present invention is also applicable to the radial bearing alone or the thrust bearing alone. Further, in the above-described embodiment, the case where the present invention is applied to the rotary static pressure porous bearing has been described, but the present invention is not limited to this and can be applied to a direct-acting static pressure porous bearing.

【0028】また、溝の形状については、加工コストが
低いV字形状の溝としたものを示したが、幅1mm以下
の他の任意の形状の溝パターンとすることができる。
As for the shape of the groove, a V-shaped groove having a low processing cost is shown, but a groove pattern of any other shape having a width of 1 mm or less can be used.

【0029】[0029]

【発明の効果】以上、説明したように、この発明の静圧
多孔質軸受によれば、一方の軸受面と他方の軸受面との
少なくとも一方に溝を設けたため、供給気体の圧力を局
部的に高めて静的剛性,負荷容量等の軸受性能を向上で
きると同時に、かつ軸受すきまへの流入質量流量及び流
出質量流量の変化分を小さくできて、その結果自励振動
を抑制することができるという効果を奏する。
As described above, according to the hydrostatic porous bearing of the present invention, since the groove is provided on at least one of the one bearing surface and the other bearing surface, the pressure of the supply gas is locally applied. It is possible to improve the bearing performance such as static rigidity and load capacity at the same time, and at the same time, it is possible to reduce the variation of the inflow mass flow rate and the outflow mass flow rate into the bearing clearance, and as a result, it is possible to suppress self-excited vibration. Has the effect.

【0030】その溝形状をV字形状にすると、製作容易
で安価に提供できるという効果も得られる。
If the groove shape is V-shaped, it is easy to manufacture and can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を適用した軸受構造の断面図である。FIG. 1 is a sectional view of a bearing structure to which the present invention is applied.

【図2】(a)はこの発明の第1実施例の要部詳細断面
図、(b)は(a)のB部拡大図である。
FIG. 2A is a detailed cross-sectional view of a main part of the first embodiment of the present invention, and FIG. 2B is an enlarged view of part B of FIG.

【図3】この発明の他の実施例の要部詳細断面図であ
る。
FIG. 3 is a detailed cross-sectional view of the essential parts of another embodiment of the present invention.

【図4】この発明の更に他の実施例の要部詳細断面図で
ある。
FIG. 4 is a detailed cross-sectional view of a main part of still another embodiment of the present invention.

【図5】発明品のアキシアル剛性向上効果を説明するグ
ラフである。
FIG. 5 is a graph illustrating the effect of improving the axial rigidity of the invention product.

【図6】従来例(比較品1)の静圧多孔質軸受の要部詳
細断面図である。
FIG. 6 is a detailed cross-sectional view of a main part of a hydrostatic porous bearing of a conventional example (Comparative Product 1).

【図7】従来例(比較品2)の静圧多孔質軸受の要部詳
細断面図である。
FIG. 7 is a detailed cross-sectional view of a main part of a hydrostatic porous bearing of a conventional example (Comparative Product 2).

【図8】発明品の自励振動抑制効果を説明するグラフで
ある。
FIG. 8 is a graph illustrating the self-excited vibration suppression effect of the invention product.

【符号の説明】[Explanation of symbols]

10 一方の軸受部材(ハウジング) 20 他方の軸受部材(回転部材) 22 他方の軸受面(ラジアル受面) 23 他方の軸受面(スラスト受面) 30 多孔質部材 33 一方の軸受面(ラジアル軸受面) 34 ラジアル軸受すきま 35 一方の軸受面(スラスト軸受面) 36 スラスト軸受すきま 40 溝 41 溝 42 溝 45 溝 10 One bearing member (housing) 20 The other bearing member (rotating member) 22 The other bearing surface (radial receiving surface) 23 The other bearing surface (thrust receiving surface) 30 Porous member 33 One bearing surface (radial bearing surface) ) 34 radial bearing clearance 35 one bearing surface (thrust bearing surface) 36 thrust bearing clearance 40 groove 41 groove 42 groove 45 groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の軸受部材に取り付けた多孔質部材
に設けた一方の軸受面が他方の軸受部材に設けた他方の
軸受面と軸受すきまを介して対向し、前記多孔質部材か
ら軸受すきまに気体を噴出する静圧多孔質軸受におい
て、前記一方の軸受面と他方の軸受面との少なくとも一
方に溝を設けたことを特徴とする静圧多孔質軸受。
1. A bearing member provided on a porous member attached to one bearing member faces one bearing surface provided on the other bearing member through a bearing clearance, and a bearing clearance from the porous member. A hydrostatic porous bearing for ejecting gas to a substrate, characterized in that a groove is provided in at least one of the one bearing surface and the other bearing surface.
JP6112935A 1994-05-26 1994-05-26 Static pressure porous bearing Pending JPH07317768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6112935A JPH07317768A (en) 1994-05-26 1994-05-26 Static pressure porous bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6112935A JPH07317768A (en) 1994-05-26 1994-05-26 Static pressure porous bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002321136A Division JP2003176821A (en) 2002-11-05 2002-11-05 Static pressure porous bearing

Publications (1)

Publication Number Publication Date
JPH07317768A true JPH07317768A (en) 1995-12-08

Family

ID=14599183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6112935A Pending JPH07317768A (en) 1994-05-26 1994-05-26 Static pressure porous bearing

Country Status (1)

Country Link
JP (1) JPH07317768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194264A (en) * 2013-03-29 2014-10-09 Abb Kk Gas bearing spindle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194264A (en) * 2013-03-29 2014-10-09 Abb Kk Gas bearing spindle

Similar Documents

Publication Publication Date Title
JP2516967B2 (en) Bearing device
US6149382A (en) Vacuum pump with shaft bearing
KR20150074036A (en) Fluid film hydrodynamic flexure pivot tilting pad semi-floating ring journal bearing with compliant dampers
JP2014035054A (en) Static pressure gas bearing unit
JP3860253B2 (en) Static pressure gas bearing
US6494620B1 (en) Fluid bearing and rotary drive apparatus using the same
KR20140066777A (en) Air bearing unit
JPH07317768A (en) Static pressure porous bearing
JP3106474B2 (en) Hydrostatic gas bearing
US3719405A (en) Gas bearing
US4013326A (en) Gas bearing roll shell assembly with preload means
JP4435848B1 (en) Shaft fixed type fluid dynamic pressure bearing device, spindle motor and recording disk device having the same
JP2003176821A (en) Static pressure porous bearing
JP3396290B2 (en) Spindle head
JPH08219159A (en) Static pressure gas bearing
JPH08261231A (en) Squeezed film dumper bearing
JPS62141309A (en) Porous static pressure gas bearing
US11655851B2 (en) Bearing device and rotating device
JPH08261232A (en) Squeezed film dumper bearing
JP3593372B2 (en) Motor with hydrodynamic bearing means
JP2711584B2 (en) Fluid bearing device
JPH04266615A (en) Static pressure porous gas bearing
JP2005331039A (en) Porous static pressure journal bearing
JPH0313614Y2 (en)
JPH10292818A (en) High-speed rotating machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627