JPH07317642A - Phase modification operation method for pumped storage power generator - Google Patents

Phase modification operation method for pumped storage power generator

Info

Publication number
JPH07317642A
JPH07317642A JP6108107A JP10810794A JPH07317642A JP H07317642 A JPH07317642 A JP H07317642A JP 6108107 A JP6108107 A JP 6108107A JP 10810794 A JP10810794 A JP 10810794A JP H07317642 A JPH07317642 A JP H07317642A
Authority
JP
Japan
Prior art keywords
runner
air
automatic valve
water level
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6108107A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
正博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6108107A priority Critical patent/JPH07317642A/en
Publication of JPH07317642A publication Critical patent/JPH07317642A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To reduce the air quantity required for pushing the water surface down and simplify the determination of the opening/closing control time of the first automatic valve and the second automatic valve by utilizing the priming hydraulic characteristic diagram and draft hydraulic characteristic diagram, and preventing the fountain in a lower pond with the compressed air at the time of phase modification. CONSTITUTION:Air is fed from the first air feed pipe 16A and the =second air feed pipe 19A to a runner chamber 15 and a suction pipe 13 at Tl when the closing of a guide vane 3 is completed after the opening/closing is started or at T1 when the priming hydraulic pressure in a runner chamber is the maximum. The second air feed pipe 19A is closed at T2 when the water surface is separated from the runner 2 and the effect of the pressure fluctuation by the rotation of the runner 2 is reduced after the water level in the runner chamber starts to be lowered and the pressure fluctuation of the hydraulic pressure is started by the rotation of the runner 2. The first air feed pipe 16A is closed at T3 located nearly at the center between T1 when the priming hydraulic pressure is the maximum and the time at the minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フランシス型ポンプ水
車に係り、特に、ポンプ水車を停止することなく揚水運
転状態または発電運転状態からランナを空中回転運転さ
せる運転状態、すなわち待機運転または調相運転への運
転切替えを行う揚水発電装置の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Francis type pump turbine, and more particularly to an operating state in which a runner is rotated in the air from a pumping operation state or a power generating operation state without stopping the pump turbine, that is, a standby operation or a phase adjustment. The present invention relates to a method for controlling a pumped storage power generation device that switches operation to operation.

【0002】[0002]

【従来の技術】特公昭60−42357号公報の明細書 第3頁
コラム5の第29行から同コラム6の第12行に記載さ
れた水車又はポンプ水車の運転方法によれば、水車もし
くはポンプ水車のように同期発電機に直結される水力機
械においては、電力系統の力率が低下した場合、これを
改善するために調相運転が行われる。
2. Description of the Related Art According to the method of operating a water turbine or a pump water turbine described in JP-B-60-42357, page 3, column 5, line 29 to column 6, line 12, the turbine or pump is operated. In a hydraulic machine such as a water turbine directly connected to a synchronous generator, when the power factor of a power system decreases, a phase-shift operation is performed to improve it.

【0003】調相運転指令と共に、入口弁が開放され、
ケーシング内の圧力を高め、続いてガイドベーンを開放
し、ケーシング内の高圧水がランナを回転させる。ラン
ナ及びランナに直結されている回転電機例えば発電機が
定格速度に達すると、電力系統に並入される。並入され
ると、ガイドベーンの開度を全閉し給気弁を開放してラ
ンナ室内に圧縮空気を送り込んで、ランナ室の水面を押
し下げると共に、入口弁を閉じ始め、ランナを空中回転
させる所謂調相運転が行われる。
With the phasing operation command, the inlet valve is opened,
The pressure in the casing is increased, subsequently the guide vanes are opened and the high pressure water in the casing causes the runner to rotate. When the runner and the rotary electric machine directly connected to the runner, such as a generator, reach the rated speed, they are put in parallel with the power system. When they are inserted in parallel, the guide vane opening is fully closed, the air supply valve is opened, and compressed air is sent into the runner chamber to push down the water surface in the runner chamber and start closing the inlet valve to rotate the runner in the air. So-called phase-matching operation is performed.

【0004】調相運転において、ランナ外周部のプライ
ミング水圧は十分に低下しない現象があり、この現象は
ランナを回転しながら水面を押し下げるため、ランナの
遠心作用によってランナ外周側に水が残存したまま、ラ
ンナ中心部のみが空気で満たされることが原因で、ラン
ナ内の水の空気への置換が遅れるためである。
There is a phenomenon in which the priming water pressure on the outer peripheral portion of the runner does not sufficiently decrease in the phase-adjustment operation. This phenomenon pushes down the water surface while rotating the runner, so that the centrifugal action of the runner causes water to remain on the outer peripheral side of the runner. This is because the replacement of water in the runner with air is delayed because only the center of the runner is filled with air.

【0005】この水面押下げ時にランナ外周部に残存す
る水の空気への置換を円滑に行う方法として、例えば特
公昭60−42357 号では、ランナの下方に水位を押下げ
て、給気弁を閉鎖し、さらにその後入口弁を全閉し、ラ
ンナ外周圧力がドラフト水圧近傍に低下後、漏水排水弁
を開放する方法を、また特公昭46−39172 号では、圧縮
空気を注入しランナ室の水面をランナ下端より下方に押
し下げると共に、ランナ外周部の水をランナ外周部近傍
の下カバーに開口して吸出し管に連通する排出管によっ
て吸出し管へ排出してランナを空転させる方法が紹介さ
れている。
As a method for smoothly replacing the water remaining on the outer periphery of the runner with air when pushing down the water surface, for example, in Japanese Examined Patent Publication No. 60-42357, the water level is pushed down below the runner and the air supply valve is turned on. After closing the inlet valve and then closing the inlet valve completely, the leaker drainage valve is opened after the outer peripheral pressure of the runner drops to near the draft water pressure.In Japanese Patent Publication No. 46-39172, the air level in the runner chamber is reduced by injecting compressed air. Is pushed down from the lower end of the runner, and the water in the outer periphery of the runner is opened to the lower cover near the outer periphery of the runner and discharged to the suction pipe by the discharge pipe communicating with the suction pipe, and the runner is idled. .

【0006】他方、ポンプ水車の高落差及び大容量化に
伴う、設備吸出し高さの深化及びランナ出口周速の高速
化により、ランナの誘起する吸出し管内の旋回流が激し
くなってきている。この吸出し管内の旋回流の激化は、
例えば日本機械学会講演論文集No.740−6「ポンプ水
車揚水運転からの空転移行に関する模型実験」81頁に
示される吸出し管内の下降流を強める作用があり、下池
側へ流れさる気泡の量を増大させる。これより、高落差
及び大容量ポンプ水車においては、水面押下げに大流量
の空気を必要とし、空気供給配管の口径または本数を増
大する必要がある。しかし、上カバー側からの給気流量
を増大させると、給気開始時にランナ背圧室に充満して
いる水を短時間で排除することとなり、給気開始直後に
背圧室の圧力を一時的に急上昇させることとなり、ラン
ナに瞬時の下向きの過大なスラストを発生させるおそれ
があった。
On the other hand, the swirling flow in the suction pipe, which is induced by the runner, has become more intense due to the deeper suction height of the equipment and the higher peripheral speed of the runner outlet, which are accompanied by the high head and large capacity of the pump turbine. The intensification of the swirling flow in this suction pipe is
For example, the Japan Society of Mechanical Engineers Proceedings No. 740-6 “Model test on empty transition from pump-turbine pumping operation” has the effect of strengthening the downward flow in the suction pipe as shown on page 81, and determines the amount of bubbles flowing to the lower pond side. Increase. Therefore, in a high-head and large-capacity pump turbine, a large amount of air is required to push down the water surface, and it is necessary to increase the diameter or number of air supply pipes. However, if the air supply flow rate from the upper cover side is increased, the water filling the runner back pressure chamber will be removed in a short time at the start of air supply, and the pressure in the back pressure chamber will be temporarily reduced immediately after the start of air supply. There was a risk that the runner would momentarily generate an excessive downward thrust.

【0007】従って、空気供給配管をランナ室上部の上
カバー及び上部吸出し管の双方に設け、ランナを回転し
ながら水面を押し下げる場合には、両者より圧縮空気を
供給する方法が採用されていた。
Therefore, when the air supply pipes are provided on both the upper cover and the upper suction pipe in the upper part of the runner chamber, and when the water surface is pushed down while rotating the runner, a method of supplying compressed air from both has been adopted.

【0008】[0008]

【発明が解決しようとする課題】一方、ランナを回転し
ながら水面を押し下げる場合には、空気流量は大気圧換
算にて数十立法メートル毎秒に達し、その30%から5
0%が下池側への漏気となっていると考えられる。ま
た、前記の日本機械学会講演論文集No.740−6「ポ
ンプ水車揚水運転からの空転移行に関する模型実験」8
3頁から84頁における図7に関する記述によれば、水
面押下げに要する空気量は、上カバーからボスを経由し
て給気した場合が、吸出し管より給気した場合よりも少
なく、両者から給気した場合はその中間の量とされてい
る。
On the other hand, when pushing down the water surface while rotating the runner, the air flow rate reaches several tens of cubic meters per second in terms of atmospheric pressure, and from 30% to 5
It is considered that 0% is leaked to the Shimoike side. In addition, the above-mentioned Proceedings of the Japan Society of Mechanical Engineers, No. 740-6, "Model Experiments on Empty Transition from Pumped Pumping Operation" 8
According to the description of FIG. 7 on pages 3 to 84, the amount of air required to push down the water surface is smaller when air is supplied from the upper cover via the boss than when air is supplied from the suction pipe. If you notice, it is said to be an intermediate amount.

【0009】従って、上部吸出し管側からの給気は、上
カバー側からの給気に比べて、全般的に下池側への漏気
となる割合が大きい。かつ、水面がランナ下端以下とな
った時点においては、ランナから吸出し管への旋回を伴
った水の流入がなくなり、上カバー側からの給気は漏気
となる割合が低減されるのに対し、上部吸出し管側から
の給気は、水面がランナ下端以下となっても水中に給気
されているため漏気となる割合は変化しない。
Therefore, the air supplied from the upper suction pipe side has a larger rate of air leakage to the lower pond side in general than the air supplied from the upper cover side. At the time when the water surface is below the lower end of the runner, the flow of water from the runner to the suction pipe is prevented from flowing, and the rate of air leakage from the upper cover is reduced. As for the air supply from the upper suction pipe side, even if the water surface is below the lower end of the runner, the air leakage rate does not change because it is supplied into the water.

【0010】これよりランナを回転しながら水面を押し
下げる調相運転への切換時に、上部吸出し管側からだけ
の給気または上部吸出し管側からの給気を水面押下げ完
了水位まで行った場合には、ポンプ水車の高落差大容量
化に伴い放水路を通り、下池側への空気が漏出量が過大
となることがあり、放水路ゲート他の開口部より多量の
水を伴って噴出するおそれがあった。
Therefore, when switching to the phase-shifting operation of pushing down the water surface while rotating the runner, when air is supplied only from the upper suction pipe side or air is supplied from the upper suction pipe side to the water level depression completion water level. May pass through the discharge channel with an increase in the capacity of the pump turbine, and the amount of air leaked to the lower pond side may be excessive, causing a large amount of water to gush out from the discharge channel gate and other openings. was there.

【0011】本発明の目的は、調相時の圧縮空気を下池
側への空気の漏出を防止し、水面押下げに要する空気量
を低減すると共に、第1自動弁16及び第2自動弁19
の開閉制御時間の決定を簡単に出来る揚水発電装置の調
相運転方法を提供することにある。
The object of the present invention is to prevent compressed air from leaking to the lower pond side during phase adjustment, to reduce the amount of air required to push down the water surface, and to control the first automatic valve 16 and the second automatic valve 19.
An object of the present invention is to provide a phased operation method for a pumped storage power generation device, which can easily determine the opening / closing control time of

【0012】[0012]

【課題を解決するための手段】本発明の揚水発電装置の
調相運転方法は、ランナ室内のガイドベーンを閉じて、
ランナ室及びランナ室下流側の吸出し管に設けた第1供
給配管及び第2供給配管より空気を注入して、ランナの
水位を下げて、ランナを回転する調相運転において、ガ
イドベーンを閉開始時から閉完了時T1又はランナ室内
のプライミング水圧が最大時T1に第1供給配管及び第
2供給配管より空気をランナ室及び吸出し管に供給し、
ランナ室内の水位を下げ始め、ランナの回転により水圧
の圧力変動が開始し、水面がランナより離れ且つランナ
の回転により圧力変動の影響が少なくなった時T2に第
2供給配管を閉じた後、プライミング水圧が最大時T1
と最少時との略中間時T3に第1供給配管を閉じること
にある。
SUMMARY OF THE INVENTION A phase-shifting operation method for a pumped-storage power plant according to the present invention comprises closing a guide vane in a runner chamber,
Air is injected from the first supply pipe and the second supply pipe provided in the runner chamber and the suction pipe on the downstream side of the runner chamber to lower the water level of the runner and start closing the guide vanes in the phase-adjusting operation of rotating the runner. From the time of completion of closing T1 or when the priming water pressure in the runner chamber is maximum T1, air is supplied to the runner chamber and the suction pipe from the first supply pipe and the second supply pipe,
After lowering the water level in the runner chamber, the pressure fluctuation of the water pressure starts due to the rotation of the runner, the water surface is separated from the runner, and the influence of the pressure fluctuation becomes small due to the rotation of the runner, after closing the second supply pipe at T2, Maximum priming pressure T1
The first supply pipe is closed at a time T3 approximately midway between the time and the minimum time.

【0013】[0013]

【作用】このように、本発明では、時間T2及び時間T
2時に第2供給配管を閉じた後、第1供給配管を閉じる
ようにしたので、第1供給配管及び第2供給配管を開閉
制御が容易になると共に、圧縮空気を下池側へ漏出する
のを防止できるようになり、水面押下げに要する空気量
を低減することが出来るようになった。
As described above, according to the present invention, the time T2 and the time T
Since the first supply pipe is closed after the second supply pipe is closed at 2 o'clock, opening / closing control of the first supply pipe and the second supply pipe is facilitated, and compressed air is prevented from leaking to the lower pond side. This has made it possible to reduce the amount of air required to push down the water surface.

【0014】[0014]

【実施例】以下、図1乃至図4を参照して本発明の実施
例を説明する。ポンプ水車の全体は図3であり、フラン
シス型ポンプ水車は図1の概略側断面図で示す構成であ
り、このポンプ水車の全体は図3の構成である。
Embodiments of the present invention will be described below with reference to FIGS. The entire pump turbine has the configuration shown in FIG. 3, the Francis type pump turbine has the configuration shown in the schematic side sectional view of FIG. 1, and the entire pump turbine has the configuration shown in FIG.

【0015】主軸1は上部側に図示していない回転電機
例えば発電電動機を装着し、主軸の下部フランジに遠心
型ランナ2をボルトにて接続し軸回りに回転する。主軸
1は、下部フランジに水面押下げの給排気時に空気の通
過する透孔1Aが設けられている。ランナ2の高圧側に
円形翼列状に配置されスピンドル回りにガイドベーン3
を回動可能に取付けている。
A rotating electric machine (not shown) such as a generator motor is mounted on the upper side of the main shaft 1, and a centrifugal runner 2 is connected to the lower flange of the main shaft with bolts to rotate about the shaft. The main shaft 1 has a lower flange provided with a through hole 1A through which air passes during air supply / exhaust to push down the water surface. Circular blade rows are arranged on the high pressure side of the runner 2 and guide vanes 3 are provided around the spindle.
Is rotatably attached.

【0016】ガイドベーン3は上カバー4および下カバ
ー5に回動可能に支持し、上カバー4および下カバー5
は上下で互いに平行に向き合い、ガイドベーン3の外周
側に円形翼列状に配置されるステーベーン6とステーベ
ーン6に2枚のフランジからなる上下スピードリング7
A,7Bを溶接接合している。ケーシング8はステーベ
ーン6の外側に渦巻状に配置され、上下スピードリング
7A,7Bに断面両端が溶接接合されている。
The guide vane 3 is rotatably supported by the upper cover 4 and the lower cover 5, and the upper cover 4 and the lower cover 5 are supported.
Are upper and lower speed rings 7 that are parallel to each other and are arranged on the outer peripheral side of the guide vane 3 in a circular blade row, and the stay vane 6 includes two flanges.
A and 7B are welded and joined. The casing 8 is arranged in a spiral shape outside the stay vane 6, and both ends of the cross section are welded to the upper and lower speed rings 7A and 7B.

【0017】ケーシング8の渦巻上流側に鉄管9を設
け、入口弁10は鉄管9とケーシング8とを接続する。
入口弁10が全閉時に鉄管9内圧力とケーシング8内圧
力を均圧するために、鉄管9とケーシング8に配管11
Aを接続し、側弁11は配管11Aに接続されている。
An iron pipe 9 is provided on the spirally upstream side of the casing 8, and an inlet valve 10 connects the iron pipe 9 and the casing 8.
In order to equalize the internal pressure of the iron pipe 9 and the internal pressure of the casing 8 when the inlet valve 10 is fully closed, the pipe 11 is connected to the iron pipe 9 and the casing 8.
A is connected, and the side valve 11 is connected to the pipe 11A.

【0018】上部吸出し管13はランナ2下側に下向き
に広がる円錐形状であり、水面押下げ完了および水面押
下げ完了後の水位監視を行う水位検出器12は上部吸出
し管13に取付けられ、上部吸出し管13の下側に接続
された下部吸出し管14は出口が水平方向に屈曲されて
いる。
The upper suction pipe 13 has a conical shape that spreads downward to the lower side of the runner 2. A water level detector 12 for monitoring the water level after completion of the water surface depression and the water surface depression is attached to the upper suction pipe 13 and The outlet of the lower suction pipe 14 connected to the lower side of the suction pipe 13 is bent in the horizontal direction.

【0019】ガイドベーン3と上カバー4と下カバー5
と上部吸出し管13とで囲まれるランナ室15は、上カ
バー4に第1空気供給管16Aを設けている。第1空気
供給管16Aは主軸1の下部フランジと上カバー4とで
囲まれる主軸背圧室17と主軸1に設けられた透孔1A
とを通りランナ2の下部に空気を供給してランナ室15
内の水面を水位検出器12位置まで押下げる。
Guide vanes 3, upper cover 4 and lower cover 5
The runner chamber 15 surrounded by the upper suction pipe 13 and the upper suction pipe 13 is provided with the first air supply pipe 16A on the upper cover 4. The first air supply pipe 16A is a main shaft back pressure chamber 17 surrounded by the lower flange of the main shaft 1 and the upper cover 4, and a through hole 1A provided in the main shaft 1.
Air is supplied to the lower portion of the runner 2 through the runner chamber 15
The water surface inside is pushed down to the position of the water level detector 12.

【0020】第1自動弁16を設け、第1空気供給管1
6Aの空気を制御する。第2自動弁19を有する第2空
気供給管19Aは上部吸出し管13に接続すると共に、
第1空気供給管16Aと同様にランナ室15内に空気を
供給する働きをする。
The first automatic valve 16 is provided and the first air supply pipe 1
Control 6A air. The second air supply pipe 19A having the second automatic valve 19 is connected to the upper suction pipe 13 and
Like the first air supply pipe 16A, it functions to supply air into the runner chamber 15.

【0021】ランナ室15には水面押下げ中においてラ
ンナ室15内の水面がランナ2下端面以下となったこと
を検知する手段として、上部吸出し管13のランナ2直
下部に設けられた水位計または圧力検出計20A、また
はランナ室15の外周部の上カバー4又は下カバー5に
設けられた圧力検出計20Bを有し、水位計または圧力
検出計20Aまたは圧力検出計20Bの検出信号より演
算制御装置23にてランナ室15内の水面がランナ2下
端面以下となったことを検知し、第2空気供給管19A
に設けられた第2自動弁19の図2に示す操作用電磁弁
24を閉操作信号を出力する。
As a means for detecting that the water surface inside the runner chamber 15 is below the lower end surface of the runner 2 while the water surface is being pushed down, the water level gauge provided directly below the runner 2 of the upper suction pipe 13 is installed in the runner chamber 15. Alternatively, the pressure detector 20A or the pressure detector 20B provided on the upper cover 4 or the lower cover 5 of the outer peripheral portion of the runner chamber 15 is provided, and is calculated from the detection signal of the water level gauge or the pressure detector 20A or the pressure detector 20B. The control device 23 detects that the water surface in the runner chamber 15 has become lower than or equal to the lower end surface of the runner 2, and the second air supply pipe 19A
2 outputs the closing operation signal of the operation solenoid valve 24 of the second automatic valve 19 provided in FIG.

【0022】第2自動弁19の操作用電磁弁24は、閉
操作信号を受け、図示していない圧油源から油圧配管2
5を通して供給された圧油を第2自動弁19を閉操作側
の油圧管26に供給して、第1空気供給管19Aからの
ランナ室15への給気を止める。
The solenoid valve 24 for operation of the second automatic valve 19 receives a closing operation signal, and a hydraulic oil pipe 2 is supplied from a pressure oil source (not shown).
The pressure oil supplied through No. 5 is supplied to the hydraulic pipe 26 on the closing operation side of the second automatic valve 19 to stop the supply of air from the first air supply pipe 19A to the runner chamber 15.

【0023】ランナ2と下カバー5とで囲まれる側圧室
18と上部吸出し管13または下部吸出し管14との間
に設けた排水配管21Aは、第3自動弁21により側圧
室内部の水を吸出し管13または14に排出する。また
ランナ2外周とガイドベーン3との中間部と上部吸出し
管13または下部吸出し管14との間に設けた排水配管
22Aは、ランナ2及びガイドベーン3内の水を第4自
動弁22により吸出し管13または14に排出する。
The drainage pipe 21A provided between the side pressure chamber 18 surrounded by the runner 2 and the lower cover 5 and the upper suction pipe 13 or the lower suction pipe 14 sucks water in the side pressure chamber by the third automatic valve 21. Discharge to tube 13 or 14. Further, the drainage pipe 22A provided between the middle portion between the outer periphery of the runner 2 and the guide vane 3 and the upper suction pipe 13 or the lower suction pipe 14 sucks the water in the runner 2 and the guide vane 3 by the fourth automatic valve 22. Discharge to tube 13 or 14.

【0024】揚水運転においては、発電電動機により主
軸1を介してランナ2が運転されている状態にて、入口
弁10及びガイドベーン3が開かれ、水が下池より下部
吸出し管13及び上部吸出し管14を通してランナ2に
流入する。ランナ2に流入した水は、ランナ2の回転に
よる遠心力で昇圧されて、それぞれガイドベーン3およ
びステーベーン6間の流路を通り、ケーシング8へ流入
する。ケーシング8へ流入した水は、入口弁10及び鉄
管9を介して、上池に揚水される。
In the pumping operation, the inlet valve 10 and the guide vane 3 are opened while the runner 2 is operated by the generator motor via the main shaft 1, and the water is drawn from the lower pond into the lower suction pipe 13 and the upper suction pipe. It flows into the runner 2 through 14. The water flowing into the runner 2 is pressurized by centrifugal force due to the rotation of the runner 2, passes through the flow passages between the guide vanes 3 and the stay vanes 6, and flows into the casing 8. The water flowing into the casing 8 is pumped to the upper pond via the inlet valve 10 and the iron pipe 9.

【0025】また、発電運転の場合には、上述の流れる
方向は逆になり、且つ水の持つ動力がランナ2にて回転
エネルギに変換されて主軸1を介して発電電動機に伝達
される。
In the case of power generation operation, the above-mentioned flow direction is reversed, and the power of water is converted into rotational energy by the runner 2 and transmitted to the generator motor via the main shaft 1.

【0026】他方、同期発電機に直結される水力機械に
おいては、電力系統の力率が低下した場合、これを改善
するためにランナ室15の水面を押下げ、ランナ2を空
中回転させる所謂調相運転が行われる。
On the other hand, in the hydraulic machine directly connected to the synchronous generator, when the power factor of the electric power system is lowered, the water surface of the runner chamber 15 is pushed down to improve the power factor, so that the runner 2 is rotated in the air. Phase operation is performed.

【0027】次に、ポンプ水車を停止することなく揚水
運転又は発電運転から調相運転に切替える場合を図1乃
至図4により説明する。
Next, the case where the pumping operation or the power generation operation is switched to the phase-shifting operation without stopping the pump turbine will be described with reference to FIGS. 1 to 4.

【0028】ポンプ水車を運転状態で、ガイドベーン3
を全閉後、入口弁10を閉鎖開始し、自動弁22を開放
してランナ2外周部から上部吸出し管13に排水すると
共に、第1自動弁16,第2自動弁19を開動作し、第
1及び第2空気供給管16A及び19Aよりランナ室1
5内に圧縮空気を供給して水面を押下げを行う。
With the pump turbine operating, the guide vanes 3
After fully closing, the inlet valve 10 is started to be closed, the automatic valve 22 is opened to drain the outer peripheral portion of the runner 2 to the upper suction pipe 13, and the first automatic valve 16 and the second automatic valve 19 are opened. From the first and second air supply pipes 16A and 19A to the runner chamber 1
Compressed air is supplied to the inside of 5 to push down the water surface.

【0029】ランナ室15内の水位が下がり、水面がラ
ンナ下端以下となったことを上部吸出し管13に設けた
水位計または圧力検出計20A、または上カバー4又は
下カバー5に設けられた圧力検出計20Bの検出信号よ
り、演算制御装置23にてランナ室15内の水面がラン
ナ2下端面以下となったことを検知し、第2空気供給管
19Aに設けられた第2自動弁19の操作用電磁弁24
を閉操作信号を出力し、第2自動弁19を閉じて、第2
空気供給管19Aからのランナ室15への給気を止め
る。第2自動弁19の閉時間T2は後述する。
The fact that the water level in the runner chamber 15 has dropped and the water level has become below the runner lower end indicates that the water level gauge or pressure detector 20A provided in the upper suction pipe 13 or the pressure provided in the upper cover 4 or the lower cover 5 From the detection signal of the detector 20B, the arithmetic and control unit 23 detects that the water surface in the runner chamber 15 is below the lower end surface of the runner 2, and detects the second automatic valve 19 provided in the second air supply pipe 19A. Solenoid valve 24 for operation
To output a closing operation signal to close the second automatic valve 19,
The air supply from the air supply pipe 19A to the runner chamber 15 is stopped. The closing time T2 of the second automatic valve 19 will be described later.

【0030】第1空気供給管16Aからの給気により更
にランナ室15内の水面は下がり、水位検出器12によ
り水面押下げ完了の水位検出信号により、第1自動弁1
6を閉した後、側圧室18内の水を上部吸出し管13ま
たは下部吸出し管14に排出するために、下カバー5に
設けた第3自動弁21を開することで、調相運転への移
行が完了する。尚、側弁11は、入口弁全閉後に閉操作
される。
The water level in the runner chamber 15 is further lowered by the air supply from the first air supply pipe 16A, and the first automatic valve 1 is activated by the water level detection signal by the water level detector 12 to indicate that the water level has been pushed down.
After closing 6, the third automatic valve 21 provided on the lower cover 5 is opened in order to discharge the water in the side pressure chamber 18 to the upper suction pipe 13 or the lower suction pipe 14, and thereby the phase-adjustment operation is started. The migration is complete. The side valve 11 is closed after the inlet valve is fully closed.

【0031】以後は、ランナ室15内の空気が、ポンプ
水車の外部へ漏れ出ることによる水位上昇を水位検出器
12の図示していない空気補給開始の水位検出信号によ
り、第1自動弁16を開してランナ室15内に空気を補
給して水位を押し下げ、水位検出器12により水面押下
げ完了の水位検出信号により、第1自動弁16を再度閉
することで、調相運転状態を安定的に継続する。
After that, the first automatic valve 16 is turned on by the water level detection signal (not shown) of the water level detector 12, which indicates the rise of the water level due to the air in the runner chamber 15 leaking out of the pump turbine. By opening and replenishing air in the runner chamber 15 to push down the water level, the water level detector 12 closes the first automatic valve 16 again by the water level detection signal indicating that the water level has been pushed down, thereby stabilizing the phased operation state. Continue.

【0032】次に、本発明の実施例に係る水面押下げ時
のランナ室15内の水面の変化、ランナ室15内の圧力
変化と第1自動弁16及び第2自動弁19の制御の関係
を図1及び図4を用いて説明する。
Next, the relationship between the change of the water surface in the runner chamber 15 and the pressure change in the runner chamber 15 and the control of the first automatic valve 16 and the second automatic valve 19 when the water surface is pushed down according to the embodiment of the present invention. Will be described with reference to FIGS. 1 and 4.

【0033】ガイドベーン3を時間T0から閉鎖し始め
時間T1で閉鎖が完了する。この間ランナ室内のプライ
ミング水圧特性は、圧力検出計20Bにより水圧を検出
する。発電または揚水運転の閉鎖開始時T0の圧力零開
始から上昇し始め、全閉完了時間T1に最高圧力値とな
り、その後、プライミング水圧は減少して時間T4で最
低値になる。
The guide vane 3 starts to be closed at time T0 and is completely closed at time T1. During this time, as for the priming water pressure characteristic in the runner chamber, the water pressure is detected by the pressure detector 20B. The pressure starts to rise from the zero pressure start at T0 at the start of closing of power generation or pumping operation, reaches the maximum pressure value at the time T1 of complete closing, and then the priming water pressure decreases and reaches the minimum value at time T4.

【0034】又、上部吸出し管13内のドラフト水圧は
圧力検出計20A部により検出する。ドラフト水圧特性
は、ランナ2の回転による上部吸出し管13内の水の撹
拌作用が強まることにより、ガイドベーン3を閉鎖し始
め小開度となる時間T0と時間T1との略中間より水圧
の変動成分が除々に増大し、ランナ2の撹拌作用が弱ま
った後、時間T2で減少してほぼ一定値となる。
The draft water pressure in the upper suction pipe 13 is detected by the pressure detector 20A. The draft water pressure characteristic is that the fluctuation of the water pressure is generated from approximately the middle of the time T0 and the time T1 when the guide vane 3 starts to close and the opening degree becomes small due to the stronger stirring action of the water in the upper suction pipe 13 due to the rotation of the runner 2. After the components gradually increase and the stirring effect of the runner 2 weakens, the components decrease at time T2 and become almost constant.

【0035】これらの特性図において、ガイドベーン3
を全閉後(時間T1)すると、図示していないガイドベ
ーンスイッチにより信号を演算制御装置に入力し、演算
制御装置より第1自動弁16及び第2自動弁19に開信
号を与え、第1及び第2空気供給管16A,19Aより
ランナ室15内に空気を供給し始めると、ランナ2下部
の回転中心付近部にまず空気が溜り、以後空気の供給に
伴い空気溜りが順次大きくなる。従って、この空気溜り
分の水の旋回流の遠心力によるランナ2外周部の昇圧効
果が減少することとなり、圧力検出計20Bのプライミ
ング水圧が、時間T1から時間T4のように空気溜りの
成長に伴い緩やかに減少する。
In these characteristic diagrams, the guide vanes 3
After the valve is fully closed (time T1), a signal is input to the arithmetic and control unit by a guide vane switch (not shown), and the arithmetic and control unit gives an open signal to the first automatic valve 16 and the second automatic valve 19. When the air is started to be supplied into the runner chamber 15 from the second air supply pipes 16A and 19A, the air is first accumulated in the lower portion of the runner 2 near the center of rotation, and thereafter, the air reservoir is gradually increased as the air is supplied. Therefore, the pressure increasing effect of the outer peripheral portion of the runner 2 due to the centrifugal force of the swirling flow of the water in the air pool is reduced, and the priming water pressure of the pressure detector 20B causes the growth of the air pool from time T1 to time T4. Along with this, it gradually decreases.

【0036】一方、ランナ室15内の水位がランナ2下
端相当となると、この空気溜り外周部がランナ2のバン
ド2B内周面に接触し、上部吸出し管13内外周部でラ
ンナ2内の水と上部吸出し管13内の水を繋げていた水
膜がなくなり、上部吸出し管13内からこの水膜を通し
てランナ2内への水の供給及びランナ2による上部吸出
し管13内の水の撹拌作用が時間T2で無くなる。
On the other hand, when the water level in the runner chamber 15 is equivalent to the lower end of the runner 2, the outer peripheral portion of this air reservoir comes into contact with the inner peripheral surface of the band 2B of the runner 2, and the water inside the runner 2 at the inner peripheral portion of the upper suction pipe 13 is contacted. The water film connecting water in the upper suction pipe 13 disappears, and the water supply from the inside of the upper suction pipe 13 into the runner 2 through this water film and the stirring action of the water in the upper suction pipe 13 by the runner 2 are eliminated. It disappears at time T2.

【0037】時間T2になると、第2自動弁19を閉じ
る。また時間T1と時間T4との略中間時間T3になる
と、第1自動弁16をとじる。尚、時間T0乃至時間T
4は演算制御装置に予め入力してある。
At time T2, the second automatic valve 19 is closed. When the time T3, which is approximately halfway between the time T1 and the time T4, is reached, the first automatic valve 16 is closed. Incidentally, time T0 to time T
Reference numeral 4 is input in advance to the arithmetic and control unit.

【0038】このように、時間T2で第2自動弁19を
閉じ、時間T3で第1自動弁16を閉じるようにしたの
で、調相時の圧縮空気は下池での噴水による放水を防止
出来ると共に、水面押下げに必要な空気量を低減するよ
うになった。またプライミング水圧特性図及びドラフト
水圧特性図を利用して、第1自動弁16及び第2自動弁
19の開閉制御時間を決定出来るようになったので、複
雑な計算をすることなく、制御時間を簡単に決定出来る
ようになった。
As described above, since the second automatic valve 19 is closed at time T2 and the first automatic valve 16 is closed at time T3, the compressed air at the time of phase adjustment can be prevented from being discharged by the fountain in the lower pond. , The amount of air required to push down the water surface has been reduced. Further, since the opening / closing control time of the first automatic valve 16 and the second automatic valve 19 can be determined by using the priming hydraulic pressure characteristic diagram and the draft hydraulic pressure characteristic diagram, the control time can be calculated without complicated calculation. It's easy to decide.

【0039】更に、他の実施例を図2を用いて説明す
る。
Further, another embodiment will be described with reference to FIG.

【0040】図4において、第1及び第2自動弁16,
19開動作後、ランナ室15内に圧縮空気を供給して水
面を押下げし、ランナ室15内の水位が下がり水面がラ
ンナ下端以下となるまでの所要時間は、同一のポンプ水
車においては運転条件での大幅な変化はないので、ラン
ナ室15内容積と給気量から算出またはより確実には現
地試験によって定めることが出来る。
In FIG. 4, the first and second automatic valves 16,
19 After opening operation, compressed air is supplied into the runner chamber 15 to push down the water surface, and the time required for the water level in the runner chamber 15 to drop and the water surface to be below the runner lower end is the same pump water turbine. Since there is no significant change in the conditions, it can be calculated from the internal volume of the runner chamber 15 and the air supply amount, or more reliably, can be determined by a field test.

【0041】また、図2に示す演算制御装置23の入力
信号を第1自動弁16開指令と第2自動弁19開指令と
の信号を演算制御装置23に入力し、演算制御装置23
に設けた遅延タイマは、第1自動弁16からの開指令と
第2自動弁19からの開指令とを受けると、予め算出ま
たは現地試験によって求めたプライミング水圧特性図及
びドラフト水圧特性図により第1自動弁16,第2自動
弁19開動作から水面がランナ下端以下となるまでの所
要時間を設定しておき電磁弁24にて例えば第2自動弁
19及び第1自動弁16の閉操作を行う。以後は、上記
実施例と同じである。
The input signals of the arithmetic and control unit 23 shown in FIG. 2 are inputted to the arithmetic and control unit 23 as signals of the first automatic valve 16 opening command and the second automatic valve 19 opening command, and the arithmetic and control unit 23 is inputted.
When the delay timer provided in is received an opening command from the first automatic valve 16 and an opening command from the second automatic valve 19, the delay timer is set by the priming hydraulic pressure characteristic diagram and the draft hydraulic pressure characteristic diagram calculated in advance or obtained by the field test. The required time from the opening operation of the first automatic valve 16 and the second automatic valve 19 to the water surface being below the runner lower end is set, and the electromagnetic valve 24 is used to close the second automatic valve 19 and the first automatic valve 16, for example. To do. The subsequent steps are the same as in the above embodiment.

【0042】[0042]

【発明の効果】本発明によれば、揚水または発電運転か
らの調相運転への切替えにおいて、ガイドベーン閉鎖か
ら水面押下げ完了までに時間T2で第2自動弁19を閉
じ、時間T3で第1自動弁16を閉じるようにしたの
で、調相時の圧縮空気は下池での噴水による放水を防止
出来ると共に、水面押下げに必要な空気量を低減できる
ようになった。またプライミング水圧特性図及びドラフ
ト水圧特性図を利用して、第1自動弁16及び第2自動
弁19の開閉制御時間を決定出来るようになったので、
複雑な計算をすることなく、制御時間を簡単に決定出来
るようになった。
According to the present invention, in switching from pumping or power generation operation to phase-shifting operation, the second automatic valve 19 is closed at time T2 from the closing of the guide vanes to the completion of the pressing of the water surface, and at time T3, the first automatic valve 19 is closed. Since the 1 automatic valve 16 is closed, it is possible to prevent the compressed air at the time of phase adjustment from being discharged by the fountain in the lower pond and to reduce the amount of air required for pushing down the water surface. Further, since the opening / closing control time of the first automatic valve 16 and the second automatic valve 19 can be determined using the priming hydraulic pressure characteristic diagram and the draft hydraulic pressure characteristic diagram,
It became possible to easily determine the control time without making complicated calculations.

【図面の簡単な説明】[Brief description of drawings]

【図1】図は図3で使用した本発明の実施例に係るポン
プ水車のランナ室回り詳細断面図である。
FIG. 1 is a detailed sectional view around a runner chamber of a pump turbine according to an embodiment of the present invention used in FIG.

【図2】図は図1の調相運転制御方法の自動弁の制御系
統図である。
FIG. 2 is a control system diagram of an automatic valve of the method for controlling the phase-shifting operation of FIG.

【図3】本発明の実施例に係るポンプ水車の全体を示す
概略図である。
FIG. 3 is a schematic view showing an entire pump turbine according to an embodiment of the present invention.

【図4】図1,図2で使用したポンプ水車の揚水または
発電運転から調相運転へ切替える調相運転制御方法の動
作特性図である。
FIG. 4 is an operation characteristic diagram of a phase-shifting operation control method for switching from pumping or power generation operation of the pump turbine used in FIGS. 1 and 2 to phase-shifting operation.

【符号の説明】[Explanation of symbols]

1…主軸、2…ランナ、3…ガイドベーン、12…水位
検出器、13…上部吸出し管、15…ランナ室、16及
び19…第1及び第2自動弁、16A及び19A…第1及
び第2空気供給管、20…水位計又は圧力検出器、23
…演算制御装置、25,26,27…油圧配管。
DESCRIPTION OF SYMBOLS 1 ... Main shaft, 2 ... Runner, 3 ... Guide vane, 12 ... Water level detector, 13 ... Upper suction pipe, 15 ... Runner chamber, 16 and 19 ... 1st and 2nd automatic valve, 16A and 19A ... 1st and 1st 2 air supply pipe, 20 ... water level gauge or pressure detector, 23
... arithmetic control device, 25, 26, 27 ... hydraulic piping.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ランナ室内のガイドベーンを閉じて、ラン
ナ室及びランナ室下流側の吸出し管に設けた第1供給管
及び第2供給管より空気を注入して、第1供給管及び第
2供給管に設けた第1自動弁及び第2自動弁を開閉し、
空気供給を制御して、ランナの水位を下げて、ランナを
回転する調相運転において、ガイドベーンを閉開始時か
ら閉完了時T1又はランナ室内のプライミング水圧が最
大時T1に第1供給管及び第2供給管より空気をランナ
室及び吸出し管に供給し、ランナ室内の水位を下げ始
め、ランナの回転により水圧の圧力変動が開始し、水面
がランナより離れ且つランナの回転により圧力変動の影
響が少なくなった時T2に第2自動弁を閉じた後、プラ
イミング水圧が最大時T1と最少時との略中間時T3に
第1自動弁を閉じることを特徴とする揚水発電装置の調
相運転方法。
1. A guide vane in the runner chamber is closed, and air is injected from a first supply pipe and a second supply pipe provided in the runner chamber and a suction pipe on the downstream side of the runner chamber to supply the first supply pipe and the second supply pipe. Open and close the first automatic valve and the second automatic valve provided in the supply pipe,
In the phasing operation of controlling the air supply, lowering the water level of the runner, and rotating the runner, the guide vane is closed from the start to the completion T1 or when the priming water pressure in the runner chamber is maximum T1. Air is supplied from the second supply pipe to the runner chamber and the suction pipe, the water level in the runner chamber begins to drop, the pressure fluctuation of the water pressure starts due to the rotation of the runner, the water surface separates from the runner, and the influence of the pressure fluctuation due to the rotation of the runner. When the priming water pressure is close to the maximum T1 and the minimum when the priming water pressure is T3, the first automatic valve is closed at the time T3 when the priming water pressure is maximum. Method.
【請求項2】演算制御部に入力した時間T1乃至T4に
応じて第1及び第2自動弁の開閉を制御することを特徴
とする請求項1記載の揚水発電装置の調相運転方法。
2. The method of operating a phased operation of a pumped storage power generator according to claim 1, wherein the opening and closing of the first and second automatic valves are controlled in accordance with the times T1 to T4 input to the arithmetic control unit.
【請求項3】ランナ室内の水位がランナ下端より下側と
なったことを検出する水位検出装置と、上部吸出し管の
ランナ下端下側に圧力検出装置を設けて、圧力検出装置
で上部吸出し管内圧力が変動成分が無くなったこと又は
減少した検出値と、ランナ室内の水位がランナ下端より
下側となった検出値と演算制御部に入力し、演算制御部
監視より、ランナ室に設けた第1空気供給管の自動弁を
全閉し、上部吸出し管に設けられた第2自動弁開放を維
持し、更に水位を押下げて空中運転をすることを特徴と
する請求項1記載の揚水発電装置の運転方法。
3. A water level detecting device for detecting that the water level in the runner chamber is lower than the lower end of the runner, and a pressure detecting device is provided under the lower end of the runner of the upper suction pipe. Input the detected value that the pressure fluctuation component disappeared or decreased, and the detected value that the water level in the runner chamber was below the lower end of the runner to the arithmetic control unit, and from the arithmetic control unit monitoring, 1. Pumped storage power generation according to claim 1, wherein the automatic valve of the air supply pipe is fully closed, the second automatic valve provided in the upper suction pipe is maintained open, and further the water level is pushed down to perform air operation. How to operate the device.
【請求項4】ランナ室内の水位がランナ下端より下側と
なったことを検出する水位検出装置としてランナ室外周
部の圧力監視装置を設けて、ランナ室内の水位がランナ
下端より下側となったことを、ランナ室外周部の圧力の
急低下により圧力監視装置で検知した後に、ランナ室に
設けた第1空気供給管の第1自動弁を全閉し、上部吸出
し管に設けられた第2空気供給管を開放維持し、更に水
位を押下げて空中運転をすることを特徴とする請求項1
記載の揚水発電装置の運転方法。
4. A pressure monitoring device at the outer periphery of the runner chamber is provided as a water level detecting device for detecting that the water level in the runner chamber is below the lower end of the runner, and the water level in the runner chamber is below the lower end of the runner. After the fact is detected by the pressure monitoring device due to the sudden decrease in the pressure of the outer peripheral portion of the runner chamber, the first automatic valve of the first air supply pipe provided in the runner chamber is fully closed, and the first suction valve provided in the upper suction pipe is closed. 2. The air supply operation is performed by keeping the air supply pipe open and further pushing down the water level.
A method for operating the pumped storage power generation apparatus described.
【請求項5】ランナ室に設けた第1空気供給管の第1自
動弁とランナ室下流側の上部吸出し管に設けられた第2
空気供給管の第2自動弁とを全開して、空気をランナ室
に送入し、ランナ室内の水位がランナ下端より下側とな
る給気開始から一定時間経過後に、ランナ室の第1自動
弁を全閉し、上部吸出し管に設けられた第2空気供給管
の第2自動弁とを全開して、更に水位を押下げて空中運
転をすることを特徴とする請求項1記載の揚水発電装置
の運転方法。
5. A first automatic valve of a first air supply pipe provided in the runner chamber and a second automatic valve provided in an upper suction pipe downstream of the runner chamber.
The second automatic valve of the air supply pipe is fully opened to send air into the runner chamber, and the water level in the runner chamber is below the lower end of the runner. The pumping operation according to claim 1, wherein the valve is fully closed, the second automatic valve of the second air supply pipe provided in the upper suction pipe is fully opened, and the water level is further pushed down to perform air operation. How to operate the generator.
JP6108107A 1994-05-23 1994-05-23 Phase modification operation method for pumped storage power generator Pending JPH07317642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6108107A JPH07317642A (en) 1994-05-23 1994-05-23 Phase modification operation method for pumped storage power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6108107A JPH07317642A (en) 1994-05-23 1994-05-23 Phase modification operation method for pumped storage power generator

Publications (1)

Publication Number Publication Date
JPH07317642A true JPH07317642A (en) 1995-12-05

Family

ID=14476072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6108107A Pending JPH07317642A (en) 1994-05-23 1994-05-23 Phase modification operation method for pumped storage power generator

Country Status (1)

Country Link
JP (1) JPH07317642A (en)

Similar Documents

Publication Publication Date Title
US4158525A (en) Method of and apparatus for operating pump turbine
KR20110055354A (en) Stairs system small hydraulic generating equipment for golf courses and generating method
US3810717A (en) Starting arrangement for reversible pump-turbines
US4431370A (en) Multistage hydraulic machines having air exhausting devices
JPH07317642A (en) Phase modification operation method for pumped storage power generator
US4179237A (en) Method for controlling the operation of a fluid machine in spinning reserve
KR20200090139A (en) Method for starting a hydroelectric turbine
KR870001830B1 (en) Operation method of hydraulic turbine or reserble pump turbine
JPH07224751A (en) Phase modifying operation method of pumped storage power device and phase modifying operation control device thereof
JP4141780B2 (en) Pump turbine and its operation control method
JPH08159076A (en) Phase modifying operation method for hydraulic machinery
JP2011236866A (en) Draining device of water turbine for electric power generation
JPH03100374A (en) Starting method for water turbine
JP2003262179A (en) Pump hydraulic turbine and operating method thereof
JPH0972271A (en) Water turbine or reversible pump turbine
JPH10205427A (en) Hydraulic machine and operation control method thereof
JPS6230304B2 (en)
JPS61277874A (en) Method of preventing corrosion of water contact part of hydraulic machine
JP2008248787A (en) Method for operating hydraulic turbine
JPS57210169A (en) Sand-separator for hydroelectric power plant
JPH01244168A (en) Reversible pump-turbine
JPH09158824A (en) Horizontal shaft hydraulic machinery
JP2004360517A (en) Pump reversing water turbine type generating equipment
JPH07317643A (en) Hydraulic machine
JPH08177706A (en) Fluid friction reducing device for hydraulic machinery and method thereof