JPH07316679A - Treatment of raw material containing zinc and fluorine - Google Patents
Treatment of raw material containing zinc and fluorineInfo
- Publication number
- JPH07316679A JPH07316679A JP11832394A JP11832394A JPH07316679A JP H07316679 A JPH07316679 A JP H07316679A JP 11832394 A JP11832394 A JP 11832394A JP 11832394 A JP11832394 A JP 11832394A JP H07316679 A JPH07316679 A JP H07316679A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- zinc
- raw material
- sulfuric acid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、亜鉛及びフッ素を含有
する原料からフッ素を湿式法により分離し、亜鉛を有価
金属として回収可能にする方法に関するものである。特
に、本発明は、湿式法による製鋼ダストからの有価金属
の回収方法において、製鋼ダスト中のフッ素を効率的に
亜鉛等の有価金属から分離する処理方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating fluorine from a raw material containing zinc and fluorine by a wet method so that zinc can be recovered as a valuable metal. In particular, the present invention relates to a method for recovering valuable metals from steelmaking dust by a wet method, in which fluorine in steelmaking dust is efficiently separated from valuable metals such as zinc.
【0002】[0002]
【従来の技術】製鋼ダストをそのまま亜鉛乾式製錬所で
処理すると、塩素とフッ素が工程に濃縮し、ボイラー、
電気集塵機などの廃棄ガス処理設備を腐食する。また、
製鋼ダストの湿式処理として硫酸浸出を行うと、塩素と
フッ素が浸出液中に入り、電解精練工程の電極を侵す。2. Description of the Related Art When steelmaking dust is directly processed in a zinc dry smelter, chlorine and fluorine are concentrated in the process, and the boiler,
Corrosion of waste gas treatment equipment such as electric dust collectors. Also,
When sulfuric acid leaching is carried out as a wet treatment of steelmaking dust, chlorine and fluorine enter the leachate and attack the electrode in the electrolytic refining process.
【0003】このような背景があるために、例えば、特
公昭53−29122号公報の平電炉製鋼ダスト等から
の有価金属回収方法が提案された。この方法では、平電
炉製鋼ダストを水洗し、塩素、ナトリウム、カリウムを
除去する工程と、その工程で得られ、亜鉛、鉛、カドミ
ウム、鉄等を含有する水洗ダストにコークスを加えて造
粒し、亜鉛及び鉛等を含む焼結鉄鉱を得る工程と、さら
にその工程からの焼結ガスを除塵して得たダストをアル
カリ性の水で洗浄してフッ素を除き、鉛とカドミウム等
を含む非鉄金属滓を得る工程からなる。最初の水洗で塩
素は95%以上が除かれる。この方法は、最初の水洗工
程と、後工程のフッ素除去は湿式処理であるが、中間工
程は乾式処理である。Due to such a background, for example, a method for recovering valuable metals from steel dust for steel making of a flat electric furnace has been proposed in Japanese Patent Publication No. 53-29122. In this method, a step of washing Hiraden furnace steel-making dust with water and removing chlorine, sodium, and potassium, and granulating by adding coke to the washing dust containing zinc, lead, cadmium, iron, etc. obtained in the step , A step of obtaining sintered iron ore containing zinc and lead, etc., and a dust obtained by removing the sintering gas from the step is washed with alkaline water to remove fluorine, and a non-ferrous metal containing lead and cadmium. It consists of the process of obtaining slag. The first water wash removes more than 95% of chlorine. In this method, the first step of washing with water and the subsequent step of removing fluorine are wet treatments, while the intermediate step is dry treatment.
【0004】また、特開昭55−104434号公報で
は含亜鉛製鉄ダストの処理方法も提案されている。この
方法では、製鉄ダストの還元焼成時に発生する2次ダス
トを水でリパルプした後湿式磁選機にかけ、引き続き固
液分離することにより、鉄及び亜鉛含有率の高い非磁着
物ハロゲン化合物類を分離回収している。この方法も最
初と最後だけが湿式処理による。Further, JP-A-55-104434 proposes a method for treating zinc-containing iron dust. In this method, the secondary dust generated during reduction firing of iron-making dust is repulped with water, then subjected to a wet magnetic separator, and then solid-liquid separated to separate and collect non-magnetic halogen compounds with high iron and zinc contents. is doing. This method is also wet processing only at the beginning and the end.
【0005】さらに、ウェルツ法により、製鋼ダストと
コークス、石灰石を混合し、還元キルンにて1200℃
程度で処理すると、製鋼ダスト中の酸化亜鉛が還元され
亜鉛蒸気となり揮発する。この亜鉛蒸気は排ガス中で酸
化され酸化亜鉛となり集塵設備で回収される。塩素とフ
ッ素も還元キルンで揮発し酸化亜鉛に入る。酸化亜鉛は
アルカリ洗浄し、塩素とフッ素を除去し、亜鉛精練原料
とする。この方法では塩素、フッ素を除去する最後の工
程だけが湿式処理である。Further, steelmaking dust, coke, and limestone are mixed by the Weltz method, and the mixture is heated in a reduction kiln at 1200 ° C.
When treated in a moderate amount, zinc oxide in steelmaking dust is reduced to become zinc vapor and volatilize. This zinc vapor is oxidized in the exhaust gas to become zinc oxide, which is collected in the dust collection facility. Chlorine and fluorine also volatilize in the reduction kiln and enter zinc oxide. Zinc oxide is washed with alkali to remove chlorine and fluorine and used as a zinc scouring material. In this method, only the final step of removing chlorine and fluorine is wet processing.
【0006】[0006]
【発明が解決しようとする課題】前掲特公昭53−29
122号公報より、平電炉製鋼ダストを水洗すると、塩
素、ナトリウム、カリウムが溶出することは知られてい
るが、浸出残渣に含まれる亜鉛等とフッ素を除去するた
めには高温での焼結工程が必要であるとされており、湿
式法によりこれらを相互に分離することは知られていな
かった。[Problems to be Solved by the Invention] Japanese Patent Publication No. 53-29
It is known from Japanese Patent Publication No. 122 that the Hiraden furnace steel dust is washed out with water, but chlorine, sodium and potassium are eluted, but in order to remove zinc and the like and fluorine contained in the leaching residue, a sintering process at a high temperature is performed. Are required, and it has not been known to separate them from each other by a wet method.
【0007】また、特開昭55−104434号公報に
よると、製鉄ダストの還元焼成時に発生する2次ダスト
を水でリパルプすると、塩化物等の可溶性の塩が溶解す
ること、また残渣は磁性物の主として鉄と非磁性の主と
して亜鉛を含むのでこれらを磁選し、亜鉛を亜鉛製錬に
原料とすることが知られている。しかしながらこの方法
で処理されている製鉄ダストのフッ素含有量は1%未満
であるので、特に、フッ素の除去は開示されていない。Further, according to JP-A-55-104434, when repulping secondary dust generated during reduction firing of iron making dust with water, soluble salts such as chlorides are dissolved, and the residue is a magnetic substance. Since it mainly contains iron and non-magnetic mainly zinc, it is known that these are magnetically selected and zinc is used as a raw material for zinc smelting. However, since the fluorine content of the iron-making dust treated by this method is less than 1%, the removal of fluorine is not disclosed in particular.
【0008】さらに、ウェルツ法による高温処理を経た
酸化亜鉛をアルカリ処理すると、フッ素と塩素が同時に
溶出するのでこれらの分離には別途の処理法を必要とす
る。Further, when zinc oxide which has been subjected to the high temperature treatment by the Welts method is treated with an alkali, fluorine and chlorine are simultaneously eluted, so that a separate treatment method is required for their separation.
【0009】したがって、本発明は、上記した従来技術
の問題点を克服し、亜鉛とフッ素を含有する原料からこ
れらの成分を高い分離率で分離することができる湿式法
を提供することを目的とする。また、本発明は、亜鉛と
フッ素を含有する製鋼ダスト中のフッ素を高率で亜鉛等
の有価金属から分離することができる全湿式プロセスを
提供することを目的とする。特に、本発明は、亜鉛品位
が高く、亜鉛リサイクル原料として重要であるが、フッ
素を多く含有するため従来法では処理が困難な製鋼ダス
トからフッ素を効率的に除去することを目的とする。さ
らに、本発明は、全湿式プロセスにより有価金属から分
離された塩素及びフッ素をさらに分離する方法を提供す
ることも目的とする。Therefore, an object of the present invention is to provide a wet method capable of overcoming the above-mentioned problems of the prior art and separating these components from a raw material containing zinc and fluorine at a high separation rate. To do. Another object of the present invention is to provide an all-wet process capable of separating fluorine in steelmaking dust containing zinc and fluorine from valuable metals such as zinc at a high rate. In particular, the present invention has a high zinc quality and is important as a zinc recycling raw material, but an object thereof is to efficiently remove fluorine from steelmaking dust that is difficult to process by the conventional method because it contains a large amount of fluorine. A further object of the present invention is to provide a method for further separating chlorine and fluorine separated from valuable metals by an all wet process.
【0010】[0010]
【課題を解決するための手段】本発明に係る方法は、亜
鉛及びフッ素を含有する原料から亜鉛とフッ素を湿式法
で分離する方法であって、前記原料を硫酸浸出し、その
後硫酸浸出液のpHを3.5〜5の範囲に調整すること
により浸出液中に溶出された亜鉛を液中に保ちながらフ
ッ素を晶出除去する方法である。すなわち、本発明は上
記原料を硫酸浸出すると亜鉛のほぼ全量、具体的には8
0〜90%が溶出し、フッ素もある程度、具体的には2
0〜40%溶出する。このようにして得られた浸出液の
pHを3.5〜5に調整するとフッ素成分がほぼ全量析
出するが、亜鉛の晶出は予想外に小さいので、これらの
分離が可能であるとの新しい知見に基づくものである。
ここで、pH調整が3.5未満であるとフッ化物が晶出
せず、一方pHが5を超えると亜鉛晶出傾向が激しくな
る。本発明において、亜鉛及びフッ素含有原料とは、典
型的には製鋼ダストであるが、水浸出処理された製鋼ダ
ストや粗酸化亜鉛などを含むものである。The method according to the present invention is a method of separating zinc and fluorine from a raw material containing zinc and fluorine by a wet method, wherein the raw material is leached with sulfuric acid and then the pH of the sulfuric acid leaching solution is leached. Is adjusted to be in the range of 3.5 to 5, and fluorine is crystallized and removed while keeping zinc eluted in the leachate in the liquid. That is, according to the present invention, when the above raw material is leached with sulfuric acid, almost all zinc, specifically 8
0 to 90% elutes, fluorine to some extent, specifically 2
Elute 0-40%. When the pH of the leachate thus obtained is adjusted to 3.5 to 5, almost all of the fluorine component is precipitated, but since the crystallization of zinc is unexpectedly small, it is possible to separate them. It is based on.
Here, if the pH adjustment is less than 3.5, the fluoride does not crystallize, while if the pH exceeds 5, the zinc crystallization tendency becomes severe. In the present invention, the zinc- and fluorine-containing raw material is typically steelmaking dust, but it contains water-leaching steelmaking dust, crude zinc oxide and the like.
【0011】本発明に係る湿式法による亜鉛等の有価金
属を回収する好ましい方法は、一旦水浸出をしたもしく
は浸出しない製鋼ダストを硫酸浸出し、その後硫酸浸出
液のpHを3.5〜5の範囲に調整することを特徴とす
る方法である。A preferred method for recovering valuable metals such as zinc by the wet method according to the present invention is to leaching steelmaking dust once leached with water or not leached with sulfuric acid, and then the pH of the sulfuric acid leaching solution is in the range of 3.5 to 5. The method is characterized by adjusting to.
【0012】以下、図1に示すフローシートに基づい
て、従属請求項3〜9に係る本発明を説明する。The present invention according to dependent claims 3 to 9 will be described below with reference to the flow sheet shown in FIG.
【0013】本発明の処理に適する製鋼ダストは、焼結
炉、平炉、電気炉等の製鋼工程から発生するものであ
り、特にZn:20〜70%、Fe:1〜30%、F:
0.5〜6%、Cl:4〜20%を含有するものであ
る。その他の成分は総量で0〜50%のPb,Cd,C
r,Ca,SiO2 ,Al2 O3 ,MgO,S等であ
る。フッ素除去効率が高い本発明方法を適用するのに特
に好ましい製鋼ダストは4%以上のフッ素を含有するも
のである。また製鋼ダストの粒度は特に制限がなく、製
鋼工場から排出されるダストの粒度のままでよい。The steel-making dust suitable for the treatment of the present invention is generated from a steel-making process such as a sintering furnace, an open furnace, an electric furnace, etc., and particularly Zn: 20 to 70%, Fe: 1 to 30%, F:
It contains 0.5 to 6% and Cl: 4 to 20%. The total amount of other components is 0 to 50% of Pb, Cd, C
r, Ca, SiO2, Al2 O3, MgO, S and the like. Particularly preferred steelmaking dust for applying the method of the present invention having high fluorine removal efficiency contains 4% or more of fluorine. The grain size of the steelmaking dust is not particularly limited, and the grain size of the dust discharged from the steelmaking factory may be the same.
【0014】(1)水浸出工程 製鋼ダストと水をプロペラ撹拌機などの混合機を用いて
混合し攪拌する。製鋼ダストと水の混合割合は浸出効率
と水の処理量を考慮して適宜定めればよく、一般に製鋼
ダスト1重量部に対して3〜10重量部が好ましい。水
浸出は室温でも十分に塩素、フッ素が溶出するので、特
に水を加温する必要はない。攪拌後、1時間程度静置し
上澄液(pH6程度)を分離する。上澄液に塩素がほぼ
100%、フッ素が10〜30%、Cdが50%、Zn
が5%程度移行する。(1) Water Leaching Step Steelmaking dust and water are mixed and stirred using a mixer such as a propeller stirrer. The mixing ratio of the steelmaking dust and water may be appropriately determined in consideration of the leaching efficiency and the water treatment amount, and generally 3 to 10 parts by weight is preferable to 1 part by weight of the steelmaking dust. In the water leaching, chlorine and fluorine are sufficiently eluted even at room temperature, so it is not necessary to heat the water. After stirring, the mixture is allowed to stand for about 1 hour to separate the supernatant (pH about 6). Almost 100% chlorine, 10-30% fluorine, 50% Cd, Zn in the supernatant
Is about 5%.
【0015】水浸出の沈降物にはZn,Fe,Pb等の
金属元素が含まれ、さらにフッ素が70〜90%残存し
ている。この沈降物製鋼ダストに2回目の水浸出を1回
目と同様の条件で施し、フッ素をできるだけ製鋼ダスト
から除去することが好ましい。水浸出後のろ液を1回目
の水浸出工程に循環することが好ましい。The water-leached sediment contains metallic elements such as Zn, Fe and Pb, and 70 to 90% of fluorine remains. It is preferable that the sediment steelmaking dust is subjected to a second water leaching under the same conditions as in the first time to remove fluorine as much as possible from the steelmaking dust. It is preferable to circulate the filtrate after water leaching in the first water leaching step.
【0016】(2)硫酸浸出工程 水浸出残渣に硫酸と必要により水も加えることにより亜
鉛、フッ素を浸出する。浸出液のpHを2〜3に調節し
ながら攪拌すると、液中に亜鉛の80〜90%が移行す
る。pHを下げ過ぎると製鋼ダスト中のFeの溶解が始
まるのでpHは2以上が好ましい。またpHが3を超え
ると亜鉛浸出率が低くなるので好ましくない。この硫酸
浸出工程ではフッ素も25%程度溶解する。(2) Sulfuric acid leaching step Zinc and fluorine are leached by adding sulfuric acid and optionally water to the water leaching residue. If the leachate is stirred while adjusting the pH to 2-3, 80 to 90% of zinc is transferred into the solution. If the pH is lowered too much, the dissolution of Fe in the steelmaking dust will start, so the pH is preferably 2 or more. Further, if the pH exceeds 3, the zinc leaching rate becomes low, which is not preferable. In this sulfuric acid leaching step, about 25% of fluorine is also dissolved.
【0017】(3)脱フッ素工程 次に硫酸浸出液中のフッ素を残渣に固定するためCaC
O3 、Ca(OH)2 及び/又はNaOHを添加しpH
3.5〜5に調整すると、フッ素は90〜98%再晶出
するが亜鉛は再晶出せず80〜85%が液中に留まる。
この場合コーナンフロック等の高分子凝集剤を添加する
とフッ化物のフロックを凝集、沈降を促進することがで
きる。脱フッ素された硫酸浸出液は亜鉛電解製錬で処理
し、亜鉛を回収し、一方主として鉄、フッ素を含む残渣
は水洗して付着物を除去した後廃棄する。(3) Defluorination step Next, CaC is used to fix the fluorine in the sulfuric acid leachate to the residue.
Add O3, Ca (OH) 2 and / or NaOH to adjust pH
When adjusted to 3.5 to 5, 90 to 98% of fluorine is recrystallized, but zinc is not recrystallized and 80 to 85% remains in the liquid.
In this case, if a polymer flocculant such as Konan floc is added, floc of fluoride can be flocculated and settling can be promoted. The defluorinated sulfuric acid leachate is treated by zinc electrolytic smelting to recover zinc, while the residue containing mainly iron and fluorine is washed with water to remove deposits and then discarded.
【0018】(4)水浸出液の脱フッ素・塩素工程 水浸出液(上澄液)はCl、Fの他に若干のZn,Cd
を含むので、Cl,Fを晶出・除去させた後、Ca(O
H)2 で中和し、中和滓中にZn,Cdを水酸化物とし
て回収する。これを亜鉛製錬工程に送る。(4) Defluorination / Chlorine Process of Water Leachate The water leachate (supernatant) contains Cl, F, and some Zn and Cd.
Therefore, after crystallization and removal of Cl and F, Ca (O
H) 2 is neutralized, and Zn and Cd are recovered as hydroxides in the neutralized slag. This is sent to the zinc smelting process.
【0019】水浸出液(上澄液)に含まれるFの除去
は、一旦硫酸添加をした後前掲(3)脱フッ素工程と同
様にpH調整をすることにより、可能となる。このpH
調整により生成したフッ化物固形物に随伴して沈降する
過剰のCaCO3 等を脱フッ素工程に戻して再使用す
る。フッ化物固形物を水洗、ろ過し、CaF2 残渣とし
てフッ素を固定する。ろ液中ににはZn,Cd,Clが
若干含まれるので、これを脱フッ素工程のろ液と一緒に
し中和処理して中和滓を生成すると、Clは液中に留ま
り、Zn,Cdより分離される。この中和滓は乾式亜鉛
製錬工程に送り製錬する。以下、上記工程(1)〜
(3)を本発明者の実験結果に基づいて説明する。The removal of F contained in the water leachate (supernatant) can be carried out by once adding sulfuric acid and then adjusting the pH in the same manner as in the above (3) Defluorination step. This pH
Excess CaCO3 or the like that precipitates along with the fluoride solids produced by the adjustment is returned to the defluorination step and reused. The fluoride solid is washed with water and filtered to fix fluorine as a CaF2 residue. Since the filtrate contains a small amount of Zn, Cd, and Cl, when this is combined with the filtrate in the defluorination step and subjected to a neutralization treatment to form a neutralized slag, Cl remains in the solution and Zn, Cd and More separated. This neutralized slag is sent to the dry zinc smelting process for smelting. Hereinafter, the above steps (1) to
(3) will be described based on the experimental results of the present inventor.
【0020】[0020]
(1)水浸出 製鋼ダスト50gを水500mlに装入し60分攪拌す
る。静置後、上澄液を350ml除き、水を350ml
加え60分攪拌する。次にろ過しろ液と残渣を分離す
る。この時の浸出率は次表のとおりであり、塩素はほと
んど全量浸出液中に移行し、またカドミウムとフッ素も
かなりの両浸出液中に移行していることが分かる。水浸
出を行うと亜鉛はある程度浸出液中に移行するので、亜
鉛の回収を該浸出液で行う必要が生じるが、塩素をほぼ
完全に浸出液中に移行させる利点がある。(1) Water leaching 50 g of steelmaking dust is charged into 500 ml of water and stirred for 60 minutes. After standing, remove 350 ml of supernatant and 350 ml of water.
Add and stir for 60 minutes. Then, the filtrate and the residue are separated by filtration. The leaching rate at this time is as shown in the following table, and it can be seen that almost all chlorine migrates into the leachate, and cadmium and fluorine also migrate into both leachates considerably. Since zinc is transferred to the leachate to some extent when water leaching is performed, it is necessary to recover zinc in the leachate, but there is an advantage that chlorine is almost completely transferred to the leachate.
【0021】[0021]
【表1】 水浸出率(%) Zn Fe Pb Cd F Cl 試験1 6.4 0 0 56.3 32.4 96.7 試験2 6.4 0 0 54.1 30.4 99.9 Table 1 Water leaching rate (%) Zn Fe Pb Cd F Cl Test 1 6.4 0 0 56.3 32.4 96.7 Test 2 6.4 0 0 54.1 30.4 99.9
【0022】(2)硫酸浸出 製鋼ダストを水浸出した残渣30gに水300mlに加
え、60分攪拌しながら硫酸を添加し、pH2に調整す
る。次にろ過しろ液と残渣を分離する。この時の浸出率
は次表のとおりであり、鉄及び鉛はほとんど溶出せず、
またフッ素はかなり亜鉛とともに溶出することが分か
る。(2) Sulfuric acid leaching To 30 g of the residue from which steelmaking dust has been leached in water, 300 ml of water is added, and sulfuric acid is added while stirring for 60 minutes to adjust the pH to 2. Then, the filtrate and the residue are separated by filtration. The leaching rate at this time is as shown in the following table, iron and lead were hardly eluted,
Also, it can be seen that fluorine is considerably eluted with zinc.
【0023】[0023]
【表2】 硫酸浸出率(%) Zn Fe Pb Cd F Cl 試験3 84.8 0.4 1.4 83.9 26.0 100 試験4 87.7 0.5 1.4 87.7 24.0 100 Table 2 Sulfuric acid leaching rate (%) Zn Fe Pb Cd F Cl test 3 84.8 0.4 1.4 83.9 36.0 4.0 test 4 87.7 0.5 1.4 1.4 87.7 24. 0 100
【0024】(3)硫酸浸出液からの脱フッ素 製鋼ダスト30gを水300mlに装入し攪拌しながら
硫酸を添加しpH2に調整する。次にCaCO3 を添加
しpH3.5〜5に調整後ろ過しろ液と残渣を分離す
る。この時の浸出率は次のとおりであり、フッ素はほぼ
全量残渣中に留まり、亜鉛及びカドミウムはほぼ全量ろ
液に移行することが分かる。(3) Defluorination from sulfuric acid leaching solution 30 g of steel-making dust is charged into 300 ml of water, and sulfuric acid is added with stirring to adjust the pH to 2. Next, CaCO3 is added to adjust the pH to 3.5-5 and then filtered to separate the filtrate and the residue. The leaching rate at this time is as follows, and it can be seen that almost all the amount of fluorine remains in the residue and almost all the amount of zinc and cadmium moves to the filtrate.
【0025】[0025]
【表3】 脱フッ素浸出率(%) Zn Fe Pb Cd F Cl 試験5 84.8 0.0 0.0 93.8 1.7 100 試験6 92.2 0.4 0.0 99.3 1.0 100 [Table 3] Defluoridation leaching rate (%) Zn Fe Pb Cd F Cl Test 5 84.8 0.0 0.0 93.8 1.7 100 100 Test 6 92.2 0.4 0.0 99.3 1 0.0 100
【0026】(4)製鋼ダスト中のZn,Fe,F,C
lの浸出率と浸出液のpHの関係 上記実験の(1),(2),(3)のpHを種々変えて
浸出率を求めた結果を図2及び3に示す。これらの図よ
りpHが3.5以下ではZnの再晶出を防止しながらフ
ッ素の析出割合を高くできることが明瞭である。また、
pHが4未満でも5を超えてもフッ素の浸出率は高くな
っている。(4) Zn, Fe, F, C in steelmaking dust
Relationship between the leachability of 1 and the pH of the leachate The results of obtaining the leachability by varying the pH in (1), (2) and (3) of the above experiment are shown in FIGS. 2 and 3. From these figures, it is clear that when the pH is 3.5 or less, the precipitation ratio of fluorine can be increased while preventing recrystallization of Zn. Also,
The leaching rate of fluorine is high when the pH is below 4 or above 5.
【0027】[0027]
【実施例】 実施例1 この実施例では製鋼ダストを予め水浸出しないで湿式処
理を行った。まず、下記品位の製鋼ダスト200tに水
2000m3 (100g/l),硫酸136t(680
kg/t)を添加し1時間攪拌を行った。なおpHは2
〜3であり、また表4に示した成分の残部は主として酸
素であった。Example 1 In this example, the steelmaking dust was wet-treated without previously leaching water. First, 200 m of steelmaking dust of the following grade was added with 2000 m3 of water (100 g / l) and 136 t of sulfuric acid (680 g).
(kg / t) was added and the mixture was stirred for 1 hour. The pH is 2
.About.3, and the balance of the components shown in Table 4 was mainly oxygen.
【0028】[0028]
【表4】 原料品位 Zn Fe Pb Cd Cr F Cl 品位(%) 41.7 6.51 0.68 0.26 0.59 4.5 6.18 量(t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 [Table 4] Raw material quality Zn Fe Pb Cd Cr F Cl Quality (%) 41.7 6.51 0.68 0.26 0.59 4.5 6.18 Amount (t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20
【0029】上記硫酸浸出の結果製鋼ダスト全量が溶解
し、ろ液(2136m3 )のろ液が得られた。その品
位、量及び分配率(%)を表5に示す。As a result of the leaching with sulfuric acid, the entire amount of steelmaking dust was dissolved, and a filtrate (2136 m3) was obtained. Table 5 shows the quality, amount and distribution rate (%).
【0030】[0030]
【表5】 硫酸浸出ろ液(2136m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 量(t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 分配(%) 100 100 100 100 100 100 100 [Table 5] Sulfuric acid leaching filtrate (2136 m3) Zn Fe Pb Cd Cr F Cl Quality (g / l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 Amount (t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 Distribution (%) 100 100 100 100 100 100 100
【0031】続いてCaCO3 を16.0t(7.5k
g/m3 硫酸浸出ろ液)添加してpHを3.5〜5とし
フッ素を析出させる脱フッ素の処理を行った。その結果
を示す表6、7より、亜鉛、カドミウム、塩素等と鉄、
鉛、クロム、フッ素等とは相互に分離されていることが
分かる。Subsequently, CaCO3 was added to 16.0 t (7.5 k).
g / m3 sulfuric acid leaching filtrate) was added to adjust the pH to 3.5 to 5, and defluorination treatment was performed to precipitate fluorine. From Tables 6 and 7 showing the results, zinc, cadmium, chlorine, etc. and iron,
It can be seen that lead, chromium, and fluorine are separated from each other.
【0032】[0032]
【表6】 脱フッ素処理ろ液(2065m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 35.13 0.00 0.00 0.26 0.00 0.044 6.07 量(t) 72.56 0.00 0.00 0.53 0.00 0.09 12.54 分配(%) 87 0 0 95 0 0 95 [Table 6] Defluorination treatment filtrate (2065 m3) Zn Fe Pb Cd Cr F Cl Grade (g / l) 35.13 0.00 0.00 0.26 0.00 0.044 6.07 Volume (t) 72.56 0.00 0.00 0.53 0.00 0.09 12.54 Distribution (%) 87 0 0 95 0 0 95
【0033】[0033]
【表7】 脱フッ素処理残渣(106D.t, 177W.t,水分60%) Zn Fe Pb Cd Cr F Cl 品位(%) 10.23 12.28 1.28 0.03 1.19 8.41 0.62 量(t) 10.84 13.02 1.36 0.03 1.26 8.91 0.66 分配(%) 13 100 100 5 100 99 5 [Table 7] Defluorination residue (106 Dt, 177 W.t, moisture 60%) Zn Fe Pb Cd Cr F Cl Quality (%) 10.23 12.28 1.28 0.03 1.19 8.41 0.62 Amount (t) 10.84 13.02 1.36 0.03 1.26 8.91 0.66 Distribution (%) 13 100 100 5 100 99 5
【0034】続いて脱フッ素工程のろ液にCa(OH)
2 とCaCO3 を合計で81t添加してpHを10〜1
1とし、亜鉛を晶出させる脱亜鉛処理を行った。その結
果を示す表8、9より、亜鉛が水酸化亜鉛として晶出
し、塩素はろ液中に留まってこれらが分離されることが
分かる。また亜鉛に付随する少量の金属も析出してい
る。Subsequently, Ca (OH) was added to the filtrate in the defluorination step.
2 and CaCO3 are added in a total of 81t to adjust the pH to 10-1.
Then, dezincification treatment for crystallizing zinc was performed. From Tables 8 and 9 showing the results, it can be seen that zinc crystallizes as zinc hydroxide and chlorine remains in the filtrate and is separated. In addition, a small amount of metal accompanying zinc is also deposited.
【0035】[0035]
【表8】 脱亜鉛ろ液(1955m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.371 0 0 0.003 0 0.023 6.35 量(t) 0.73 0.00 0.00 0.01 0.00 0.05 12.41 分配(%) 1 0.5 1 1 1 50 99 [Table 8] Dezincification filtrate (1955 m3) Zn Fe Pb Cd Cr F Cl Quality (g / l) 0.371 0 0 0.003 0 0.023 6.35 Volume (t) 0.73 0.00 0.00 0.01 0.00 0.05 12.41 Distribution (%) 1 0.5 1 1 1 50 99
【0036】[0036]
【表9】 水酸化亜鉛(110D.t 221W.t 水分50%) Zn Fe Pb Cd Cr F Cl 品位(%) 65.13 0 0 0.478 0 0.041 0.114 量(t) 71.83 0.00 0.00 0.53 0.00 0.05 0.13 分配(%) 99 99.5 99 99 99 50 1 [Table 9] Zinc hydroxide (110 D.t 221 W.t water content 50%) Zn Fe Pb Cd Cr F Cl Grade (%) 65.13 0 0 0.478 0 0.041 0.114 Amount (t) 71.83 0.00 0.00 0.53 0.00 0.05 0.13 Distribution (%) ) 99 99.5 99 99 99 50 1
【0037】最後に、脱亜鉛工程のろ液にCa(OH)
2 とCaCO3 を合計で1t添加してpHを10〜11
とし、亜鉛を晶出させる脱亜鉛処理を行った。その結果
を示す表10及び11より、全工程と同様の分配率が得
られていることが分かる。Finally, Ca (OH) was added to the filtrate of the dezincification process.
2 and CaCO3 are added in total of 1t to adjust pH to 10-11
Then, dezincification treatment for crystallizing zinc was performed. From Tables 10 and 11 showing the results, it can be seen that the distribution rate similar to that of all the steps was obtained.
【0038】[0038]
【表10】 排水処理ろ液(27000m3 /3日) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.134 0.000 0.000 0.002 0.000 0.8 459.8 量(t) 0.00 0.00 0.00 0.00 0.00 0.02 12.41 分配(%) 0.5 0.5 1 1 1 50 100 [Table 10] Wastewater treatment filtrate (27,000 m3 / 3 days) Zn Fe Pb Cd Cr F Cl Grade (g / l) 0.134 0.000 0.000 0.002 0.000 0.8 459.8 Volume (t) 0.00 0.00 0.00 0.00 0.00 0.02 12.41 Distribution (%) 0.5 0.5 1 1 1 50 100
【0039】[0039]
【表11】 水酸化亜鉛(1.2D.t 2.5W.t 水分50%) Zn Fe Pb Cd Cr F Cl 品位(%) 58.62 0.00 0.00 0.43 0.00 1.83 0.00 量(t) 0.72 0.00 0.00 0.00 0.00 0.02 0.00 分配(%) 99.5 99.5 99 99 99 50 0 [Table 11] Zinc hydroxide (1.2 Dt 2.5 Wt 50% moisture) Zn Fe Pb Cd Cr F Cl Grade (%) 58.62 0.00 0.00 0.43 0.00 1.83 0.00 Amount (t) 0.72 0.00 0.00 0.00 0.00 0.02 0.00 distribution (%) 99.5 99.5 99 99 99 50 0
【0040】実施例2 製鋼ダストを最初に水浸出した他は実施例1と同一の工
程かつ同一の条件(ただし、脱亜鉛工程で添加したCa
CO3 とCa(OH)2 は86t)にて処理を行った。
その結果を表12〜18に示す。これらの結果より良好
な脱亜鉛と脱フッ素が実現されたことが明らかである。
また、水浸出を経るとその影響は硫酸浸出後の脱フッ素
工程まで残り、亜鉛と塩素の浸出率が高くなるという興
味深い結果が得られている。Example 2 The same process and the same conditions as in Example 1 except that the steelmaking dust was first leached with water (however, Ca added in the dezincification process was used).
CO3 and Ca (OH) 2 were treated with 86t).
The results are shown in Tables 12-18. From these results, it is clear that good dezincification and defluorination were realized.
In addition, the interesting result is that the effect of water leaching remains until the defluorination step after sulfuric acid leaching, and the leaching rate of zinc and chlorine increases.
【0041】[0041]
【表12】 硫酸浸出ろ液(2136m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 量(t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 分配(%) 100 100 100 100 100 100 100 [Table 12] Sulfuric acid leachate (2136 m3) Zn Fe Pb Cd Cr F Cl Grade (g / l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 Amount (t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 Distribution (%) 100 100 100 100 100 100 100
【0042】[0042]
【表13】 脱フッ素処理ろ液(2072m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 37.02 0.00 0.00 0.27 0.00 0.043 6.37 量(t) 76.73 0.00 0.00 0.56 0.00 0.09 13.20 分配(%) 92 0 0 100 100 1 100 [Table 13] Defluorination treatment filtrate (2072m3) Zn Fe Pb Cd Cr F Cl Quality (g / l) 37.02 0.00 0.00 0.27 0.00 0.043 6.37 Volume (t) 76.73 0.00 0.00 0.56 0.00 0.09 13.20 Distribution (%) 92 0 0 100 100 1 100
【0043】[0043]
【表14】 脱フッ素処理残渣(95D.t 159W.t 水分60%) Zn Fe Pb Cd Cr F Cl 品位(%) 6.99 13.56 1.43 0.00 1.32 9.34 0.00 量(t) 6.67 13.02 1.36 0.00 1.26 8.91 0.00 分配(%) 8 100 100 0 100 99 0 [Table 14] Defluorination treatment residue (95 Dt 159 Wt t water content 60%) Zn Fe Pb Cd Cr F Cl Quality (%) 6.99 13.56 1.43 0.00 1.32 9.34 0.00 Amount (t) 6.67 13.02 1.36 0.00 1.26 8.91 0.00 Distribution ( %) 8 100 100 0 100 99 0
【0044】[0044]
【表15】 脱亜鉛ろ液(1956m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.392 0 0 0.003 0 0.023 6.682 量(t) 0.77 0.00 0.00 0.01 0.00 0.05 13.07 分配(%) 1 0.5 1 1 1 50 99 [Table 15] Dezincification filtrate (1956 m 3) Zn Fe Pb Cd Cr F Cl Grade (g / l) 0.392 0 0 0.003 0 0.023 6.682 Volume (t) 0.77 0.00 0.00 0.01 0.00 0.05 13.07 Partition (%) 1 0.5 1 1 1 50 99
【0045】[0045]
【表16】 水酸化亜鉛(117D.t 233W.t 水分50%) Zn Fe Pb Cd Cr F Cl 品位(%) 65.13 0 0 0.475 0 0.039 0.113 量(t) 75.96 0.00 0.00 0.55 0.00 0.05 0.13 分配(%) 99 99.5 99 99 99 50 1 [Table 16] Zinc hydroxide (117D.t 233W.t water content 50%) Zn Fe Pb Cd Cr F Cl Quality (%) 65.13 0 0 0.475 0 0.039 0.113 Amount (t) 75.96 0.00 0.00 0.55 0.00 0.05 0.13 Distribution (%) ) 99 99.5 99 99 99 50 1
【0046】[0046]
【表17】 排水処理ろ液(27000m3 /3日) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.142 0.000 0.000 0.002 0.000 0.8 484.0 量(t) 0.00 0.00 0.00 0.00 0.00 0.02 13.07 分配(%) 0.5 0.5 1 1 1 50 100 [Table 17] Wastewater treatment filtrate (27,000 m3 / 3 days) Zn Fe Pb Cd Cr F Cl Grade (g / l) 0.142 0.000 0.000 0.002 0.000 0.8 484.0 Volume (t) 0.00 0.00 0.00 0.00 0.00 0.02 13.07 Distribution (%) 0.5 0.5 1 1 1 50 100
【0047】[0047]
【表18】 水酸化亜鉛(1.3D.t 2.6W.t 水分50%) Zn Fe Pb Cd Cr F Cl 品位(%) 58.62 0.00 0.00 0.43 0.00 1.73 0.00 量(t) 0.76 0.00 0.00 0.00 0.00 0.02 0.00 分配(%) 99.5 99.5 99 99 99 50 0 [Table 18] Zinc hydroxide (1.3 Dt 2.6 Wt 50% moisture) Zn Fe Pb Cd Cr F Cl Quality (%) 58.62 0.00 0.00 0.43 0.00 1.73 0.00 Amount (t) 0.76 0.00 0.00 0.00 0.00 0.02 0.00 distribution (%) 99.5 99.5 99 99 99 50 0
【0049】[0049]
【発明の効果】以上説明したように本発明は、全湿式処
理により亜鉛・フッ素含有材料から亜鉛を回収すること
ができるので、省エネルギ及び省資源に大きく貢献する
ものである。又、本願請求項1の方法は硫酸浸出とフッ
素除去の僅か二工程から構成され工程数が短いため、処
理能率が非常に高い。次に1回以上の水浸出工程を、硫
酸浸出とフッ素除去の前に置くと原料中の塩素量を少な
くすることができ、フッ素を請求項1の方法で除去後直
ちにろ液を亜鉛の電解工程に送ることができる(請求項
2)。水浸出液中に移行するフッ素もpHを所定範囲に
調節する簡単な操作で除去することができる(請求項
5)。その後中和を行うことにより、塩素と亜鉛等の有
価金属を分離することができる(請求項8)ので、この
方法は製鋼ダスト(請求項7、9)を処理して亜鉛製錬
原料を得るとともに塩素、フッ素の妨害を除去する方法
に好適である。INDUSTRIAL APPLICABILITY As described above, according to the present invention, zinc can be recovered from a zinc / fluorine-containing material by a total wet treatment, which greatly contributes to energy saving and resource saving. Further, the method of claim 1 of the present application is composed of only two steps of sulfuric acid leaching and fluorine removal, and the number of steps is short, so that the treatment efficiency is very high. Next, if one or more water leaching steps are performed before the sulfuric acid leaching and the fluorine removal, it is possible to reduce the amount of chlorine in the raw material, and immediately after removing the fluorine by the method of claim 1, the filtrate is subjected to zinc electrolysis. It can be sent to the process (claim 2). Fluorine that migrates into the water leachate can also be removed by a simple operation of adjusting the pH within a predetermined range (claim 5). By performing neutralization after that, valuable metals such as chlorine and zinc can be separated (Claim 8). Therefore, in this method, steelmaking dust (Claims 7 and 9) is processed to obtain a zinc smelting raw material. In addition, it is suitable for a method of removing the interference of chlorine and fluorine.
【図1】本発明法を説明する工程図である。FIG. 1 is a process diagram illustrating a method of the present invention.
【図2】pHとFe、Zn浸出率の関係を示すグラフで
ある。FIG. 2 is a graph showing the relationship between pH and the leaching rate of Fe and Zn.
【図3】pHとF、Cl浸出率の関係を示すグラフであ
る。FIG. 3 is a graph showing the relationship between pH and the leaching rate of F and Cl.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年6月2日[Submission date] June 2, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】本発明の処理に適する製鋼ダストは、焼結
炉、平炉、電気炉等の製鋼工程から発生するものであ
り、特にZn:20〜70%、Fe:1〜30%、F:
0.5〜6%、Cl:4〜20%を含有するものであ
る。その他の成分は総量で0〜50%のPb,Cd,C
r,Ca,SiO2 ,Al2 O3 ,MgO,S等であ
る。フッ素除去効率が高い本発明方法を適用するのに特
に好ましい製鋼ダストは4%以上のフッ素を含有するも
のである。また製鋼ダストの粒度は特に制限がなく、製
鋼工場から排出されるダストの粒度のままでよい。The steel-making dust suitable for the treatment of the present invention is generated from a steel-making process such as a sintering furnace, an open furnace, an electric furnace, etc., and particularly Zn: 20 to 70%, Fe: 1 to 30%, F:
It contains 0.5 to 6% and Cl: 4 to 20%. The total amount of other components is 0 to 50% of Pb, Cd, C
r, Ca, SiO 2 , Al 2 O 3 , MgO, S and the like. Particularly preferred steelmaking dust for applying the method of the present invention having high fluorine removal efficiency contains 4% or more of fluorine. The grain size of the steelmaking dust is not particularly limited, and the grain size of the dust discharged from the steelmaking factory may be the same.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】(3)脱フッ素工程 次に硫酸浸出液中のフッ素を残渣に固定するためCaC
O3 、Ca(OH)2 及び/又はNaOHを添加しpH
3.5〜5に調整すると、フッ素は90〜98%再晶出
するが亜鉛は再晶出せず80〜85%が液中に留まる。
この場合コーナンフロック等の高分子凝集剤を添加する
とフッ化物のフロックを凝集、沈降を促進することがで
きる。脱フッ素された硫酸浸出液は亜鉛電解製錬で処理
し、亜鉛を回収し、一方主として鉄、フッ素を含む残渣
は水洗して付着物を除去した後廃棄する。(3) Defluorination step Next, CaC is used to fix the fluorine in the sulfuric acid leachate to the residue.
Addition of O 3 , Ca (OH) 2 and / or NaOH for pH
When adjusted to 3.5 to 5, 90 to 98% of fluorine is recrystallized, but zinc is not recrystallized and 80 to 85% remains in the liquid.
In this case, if a polymer flocculant such as Konan floc is added, floc of fluoride can be flocculated and settling can be promoted. The defluorinated sulfuric acid leachate is treated by zinc electrolytic smelting to recover zinc, while the residue containing mainly iron and fluorine is washed with water to remove deposits and then discarded.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0018[Correction target item name] 0018
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0018】(4)水浸出液の脱フッ素・塩素工程 水浸出液(上澄液)はCl、Fの他に若干のZn,Cd
を含むので、Cl,Fを晶出・除去させた後、Ca(O
H)2 で中和し、中和滓中にZn,Cdを水酸化物とし
て回収する。これを亜鉛製錬工程に送る。(4) Defluorination / Chlorine Process of Water Leachate The water leachate (supernatant) contains Cl, F, and some Zn and Cd.
Therefore, after crystallization and removal of Cl and F, Ca (O
H) 2 is neutralized, and Zn and Cd are recovered as hydroxides in the neutralized slag. This is sent to the zinc smelting process.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0019[Correction target item name] 0019
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0019】水浸出液(上澄液)に含まれるFの除去
は、一旦硫酸添加をした後前掲(3)脱フッ素工程と同
様にpH調整をすることにより、可能となる。このpH
調整により生成したフッ化物固形物に随伴して沈降する
過剰のCaCO3 等を脱フッ素工程に戻して再使用す
る。フッ化物固形物を水洗、ろ過し、CaF2 残渣とし
てフッ素を固定する。ろ液中ににはZn,Cd,Clが
若干含まれるので、これを脱フッ素工程のろ液と一緒に
し中和処理して中和滓を生成すると、Clは液中に留ま
り、Zn,Cdより分離される。この中和滓は乾式亜鉛
製錬工程に送り製錬する。以下、上記工程(1)〜
(3)を本発明者の実験結果に基づいて説明する。The removal of F contained in the water leachate (supernatant) can be carried out by once adding sulfuric acid and then adjusting the pH in the same manner as in the above (3) Defluorination step. This pH
Excess CaCO 3 and the like that settles with the fluoride solids produced by the adjustment are returned to the defluorination step and reused. The fluoride solid is washed with water and filtered to fix fluorine as a CaF 2 residue. Since the filtrate contains a small amount of Zn, Cd, and Cl, when this is combined with the filtrate in the defluorination step and subjected to a neutralization treatment to form a neutralized slag, Cl remains in the solution and Zn, Cd and More separated. This neutralized slag is sent to the dry zinc smelting process for smelting. Hereinafter, the above steps (1) to
(3) will be described based on the experimental results of the present inventor.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0024[Name of item to be corrected] 0024
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0024】(3)硫酸浸出液からの脱フッ素 製鋼ダスト30gを水300mlに装入し攪拌しながら
硫酸を添加しpH2に調整する。次にCaCO3 を添加
しpH3.5〜5に調整後ろ過しろ液と残渣を分離す
る。この時の浸出率は次のとおりであり、フッ素はほぼ
全量残渣中に留まり、亜鉛及びカドミウムはほぼ全量ろ
液に移行することが分かる。(3) Defluorination from sulfuric acid leaching solution 30 g of steel-making dust is charged into 300 ml of water, and sulfuric acid is added with stirring to adjust the pH to 2. Next, CaCO 3 is added to adjust the pH to 3.5 to 5 and then filtered to separate the filtrate and the residue. The leaching rate at this time is as follows, and it can be seen that almost all the amount of fluorine remains in the residue and almost all the amount of zinc and cadmium moves to the filtrate.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Name of item to be corrected] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0027】[0027]
【実施例】 実施例1 この実施例では製鋼ダストを予め水浸出しないで湿式処
理を行った。まず、下記品位の製鋼ダスト200tに水
2000m3 (100g/l),硫酸136t(680
kg/t)を添加し1時間攪拌を行った。なおpHは2
〜3であり、また表4に示した成分の残部は主として酸
素であった。Example 1 In this example, the steelmaking dust was wet-treated without previously leaching water. First, 200 m of steel dust of the following grade was added to 2000 m 3 of water (100 g / l) and 136 t of sulfuric acid (680 g).
(kg / t) was added and the mixture was stirred for 1 hour. The pH is 2
.About.3, and the balance of the components shown in Table 4 was mainly oxygen.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0029[Name of item to be corrected] 0029
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0029】上記硫酸浸出の結果製鋼ダスト全量が溶解
し、ろ液(2136m3 )のろ液が得られた。その品
位、量及び分配率(%)を表5に示す。As a result of the leaching with sulfuric acid, the entire amount of steelmaking dust was dissolved, and a filtrate (2136 m 3 ) was obtained. Table 5 shows the quality, amount and distribution rate (%).
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0030[Name of item to be corrected] 0030
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0030】[0030]
【表5】 硫酸浸出ろ液(2136m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 量(t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 分配(%) 100 100 100 100 100 100 100 [Table 5] Sulfuric acid leaching filtrate (2136 m 3 ) Zn Fe Pb Cd Cr F Cl Quality (g / l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 Amount (t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 Distribution (%) 100 100 100 100 100 100 100
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0031[Correction target item name] 0031
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0031】続いてCaCO3 を16.0t(7.5k
g/m3 硫酸浸出ろ液)添加してpHを3.5〜5とし
フッ素を析出させる脱フッ素の処理を行った。その結果
を示す表6、7より、亜鉛、カドミウム、塩素等と鉄、
鉛、クロム、フッ素等とは相互に分離されていることが
分かる。Subsequently, CaCO 3 was added to 16.0 t (7.5 k).
g / m 3 sulfuric acid leaching filtrate) was added to adjust the pH to 3.5 to 5, and defluorination treatment was performed to precipitate fluorine. From Tables 6 and 7 showing the results, zinc, cadmium, chlorine, etc. and iron,
It can be seen that lead, chromium, and fluorine are separated from each other.
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0032[Name of item to be corrected] 0032
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0032】[0032]
【表6】 脱フッ素処理ろ液(2065m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 35.13 0.00 0.00 0.26 0.00 0.044 6.07 量(t) 72.56 0.00 0.00 0.53 0.00 0.09 12.54 分配(%) 87 0 0 95 0 0 95 [Table 6] Defluorination treatment filtrate (2065 m 3 ) Zn Fe Pb Cd Cr F Cl Grade (g / l) 35.13 0.00 0.00 0.26 0.00 0.044 6.07 Volume (t) 72.56 0.00 0.00 0.53 0.00 0.09 12.54 Distribution (%) 87 0 0 95 0 0 95
【手続補正10】[Procedure Amendment 10]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0034[Correction target item name] 0034
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0034】続いて脱フッ素工程のろ液にCa(OH)
2 とCaCO3 を合計で81t添加してpHを10〜1
1とし、亜鉛を晶出させる脱亜鉛処理を行った。その結
果を示す表8、9より、亜鉛が水酸化亜鉛として晶出
し、塩素はろ液中に留まってこれらが分離されることが
分かる。また亜鉛に付随する少量の金属も析出してい
る。Subsequently, Ca (OH) was added to the filtrate in the defluorination step.
81t of 2 and CaCO 3 are added to adjust pH to 10-1.
Then, dezincification treatment for crystallizing zinc was performed. From Tables 8 and 9 showing the results, it can be seen that zinc crystallizes as zinc hydroxide and chlorine remains in the filtrate and is separated. In addition, a small amount of metal accompanying zinc is also deposited.
【手続補正11】[Procedure Amendment 11]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0035[Correction target item name] 0035
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0035】[0035]
【表8】 脱亜鉛ろ液(1955m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.371 0 0 0.003 0 0.023 6.35 量(t) 0.73 0.00 0.00 0.01 0.00 0.05 12.41 分配(%) 1 0.5 1 1 1 50 99 [Table 8] Dezincification filtrate (1955 m 3 ) Zn Fe Pb Cd Cr F Cl Quality (g / l) 0.371 0 0 0.003 0 0.023 6.35 Volume (t) 0.73 0.00 0.00 0.01 0.00 0.05 12.41 Distribution (%) 1 0.5 1 1 1 50 99
【手続補正12】[Procedure Amendment 12]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0037[Name of item to be corrected] 0037
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0037】最後に、脱亜鉛工程のろ液にCa(OH)
2 とCaCO3 を合計で1t添加してpHを10〜11
とし、亜鉛を晶出させる脱亜鉛処理を行った。その結果
を示す表10及び11より、全工程と同様の分配率が得
られていることが分かる。Finally, Ca (OH) was added to the filtrate of the dezincification process.
2 and CaCO 3 are added in a total amount of 1 t to adjust the pH to 10-11.
Then, dezincification treatment for crystallizing zinc was performed. From Tables 10 and 11 showing the results, it can be seen that the distribution rate similar to that of all the steps was obtained.
【手続補正13】[Procedure Amendment 13]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0038[Correction target item name] 0038
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0038】[0038]
【表10】 排水処理ろ液(27000m3 /3日) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.134 0.000 0.000 0.002 0.000 0.8 459.8 量(t) 0.00 0.00 0.00 0.00 0.00 0.02 12.41 分配(%) 0.5 0.5 1 1 1 50 100 TABLE 10 wastewater treatment filtrate (27000m 3/3 days) Zn Fe Pb Cd Cr F Cl grade (g / l) 0.134 0.000 0.000 0.002 0.000 0.8 459.8 amount (t) 0.00 0.00 0.00 0.00 0.00 0.02 12.41 Distribution (%) 0.5 0.5 1 1 1 50 100
【手続補正14】[Procedure Amendment 14]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0040[Correction target item name] 0040
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0040】実施例2 製鋼ダストを最初に水浸出した他は実施例1と同一の工
程かつ同一の条件(ただし、脱亜鉛工程で添加したCa
CO3 とCa(OH)2 は86t)にて処理を行った。
その結果を表12〜18に示す。これらの結果より良好
な脱亜鉛と脱フッ素が実現されたことが明らかである。
また、水浸出を経るとその影響は硫酸浸出後の脱フッ素
工程まで残り、亜鉛と塩素の浸出率が高くなるという興
味深い結果が得られている。Example 2 The same process and the same conditions as in Example 1 except that the steelmaking dust was first leached with water (however, Ca added in the dezincification process was used).
CO 3 and Ca (OH) 2 were treated with 86 t).
The results are shown in Tables 12-18. From these results, it is clear that good dezincification and defluorination were realized.
In addition, the interesting result is that the effect of water leaching remains until the defluorination step after sulfuric acid leaching, and the leaching rate of zinc and chlorine increases.
【手続補正15】[Procedure Amendment 15]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0041[Correction target item name] 0041
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0041】[0041]
【表12】 硫酸浸出ろ液(2136m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 量(t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 分配(%) 100 100 100 100 100 100 100 [Table 12] Sulfuric acid leaching filtrate (2136 m 3 ) Zn Fe Pb Cd Cr F Cl Quality (g / l) 39.04 6.10 0.64 0.26 0.59 4.21 6.18 Amount (t) 83.40 13.02 1.36 0.56 1.26 9.00 13.20 Distribution (%) 100 100 100 100 100 100 100
【手続補正16】[Procedure Amendment 16]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0042[Correction target item name] 0042
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0042】[0042]
【表13】 脱フッ素処理ろ液(2072m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 37.02 0.00 0.00 0.27 0.00 0.043 6.37 量(t) 76.73 0.00 0.00 0.56 0.00 0.09 13.20 分配(%) 92 0 0 100 100 1 100 [Table 13] Defluorination treatment filtrate (2072 m 3 ) Zn Fe Pb Cd Cr F Cl Grade (g / l) 37.02 0.00 0.00 0.27 0.00 0.043 6.37 Volume (t) 76.73 0.00 0.00 0.56 0.00 0.09 13.20 Distribution (%) 92 0 0 100 100 1 100
【手続補正17】[Procedure Amendment 17]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0043[Correction target item name] 0043
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0043】[0043]
【表14】 脱フッ素処理残渣(95D.t 159W.t 水分60%) Zn Fe Pb Cd Cr F Cl 品位(%) 6.99 13.56 1.43 0.00 1.32 9.34 0.00 量(t) 6.67 13.02 1.36 0.00 1.26 8.91 0.00 分配(%) 8 100 100 0 100 99 0 [Table 14] Defluorination treatment residue (95 Dt 159 Wt t water content 60%) Zn Fe Pb Cd Cr F Cl Quality (%) 6.99 13.56 1.43 0.00 1.32 9.34 0.00 Amount (t) 6.67 13.02 1.36 0.00 1.26 8.91 0.00 Distribution ( %) 8 100 100 0 100 99 0
【手続補正18】[Procedure 18]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0044[Correction target item name] 0044
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0044】[0044]
【表15】 脱亜鉛ろ液(1956m3 ) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.392 0 0 0.003 0 0.023 6.682 量(t) 0.77 0.00 0.00 0.01 0.00 0.05 13.07 分配(%) 1 0.5 1 1 1 50 99 [Table 15] Dezincification filtrate (1956 m 3 ) Zn Fe Pb Cd Cr F Cl Quality (g / l) 0.392 0 0 0.003 0 0.023 6.682 Volume (t) 0.77 0.00 0.00 0.01 0.00 0.05 13.07 Distribution (%) 1 0.5 1 1 1 50 99
【手続補正19】[Procedure Amendment 19]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0045[Name of item to be corrected] 0045
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0045】[0045]
【表16】 水酸化亜鉛(117D.t 233W.t 水分50%) Zn Fe Pb Cd Cr F Cl 品位(%) 65.13 0 0 0.475 0 0.039 0.113 量(t) 75.96 0.00 0.00 0.55 0.00 0.05 0.13 分配(%) 99 99.5 99 99 99 50 1 [Table 16] Zinc hydroxide (117D.t 233W.t water content 50%) Zn Fe Pb Cd Cr F Cl Quality (%) 65.13 0 0 0.475 0 0.039 0.113 Amount (t) 75.96 0.00 0.00 0.55 0.00 0.05 0.13 Distribution (%) ) 99 99.5 99 99 99 50 1
【手続補正20】[Procedure amendment 20]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0046[Correction target item name] 0046
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0046】[0046]
【表17】 排水処理ろ液(27000m3 /3日) Zn Fe Pb Cd Cr F Cl 品位(g/l) 0.142 0.000 0.000 0.002 0.000 0.8 484.0 量(t) 0.00 0.00 0.00 0.00 0.00 0.02 13.07 分配(%) 0.5 0.5 1 1 1 50 100 Table 17 wastewater treatment filtrate (27000m 3/3 days) Zn Fe Pb Cd Cr F Cl grade (g / l) 0.142 0.000 0.000 0.002 0.000 0.8 484.0 amount (t) 0.00 0.00 0.00 0.00 0.00 0.02 13.07 Distribution (%) 0.5 0.5 1 1 1 50 100
Claims (9)
とフッ素を湿式法により分離する方法であって、前記原
料を硫酸浸出し、その後硫酸浸出液のpHを3.5〜5
の範囲に調整してフッ素を晶出除去することを特徴とす
る亜鉛及びフッ素含有原料の処理方法。1. A method for separating zinc and fluorine from a raw material containing zinc and fluorine by a wet method, wherein the raw material is leached with sulfuric acid, and then the pH of the sulfuric acid leaching solution is 3.5 to 5.
The method for treating a zinc- and fluorine-containing raw material, which comprises removing the fluorine by crystallization by adjusting to the range of.
1回以上水浸出し、浸出残渣を硫酸浸出し、その後硫酸
浸出液のpHを3.5〜5の範囲に調整してフッ素を晶
出除去することを特徴とする請求項1記載の亜鉛及びフ
ッ素含有原料の処理方法。2. A raw material containing zinc, fluorine and chlorine is leached once or more with water, the leaching residue is leached with sulfuric acid, and then the pH of the sulfuric acid leaching solution is adjusted to a range of 3.5 to 5 to crystallize fluorine. The method for treating a zinc- and fluorine-containing raw material according to claim 1, characterized in that it is removed.
ルシウム及び水酸化カルシウムから選択された1種また
は2種以上を添加してpH調整をすることを特徴とする
請求項1又は2記載の亜鉛及びフッ素含有原料の処理方
法。3. The zinc according to claim 1 or 2, wherein one or more selected from caustic soda, calcium carbonate and calcium hydroxide is added to the sulfuric acid leaching solution to adjust the pH. Fluorine-containing raw material processing method.
整することを特徴とする請求項1又は2記載の亜鉛及び
フッ素含有原料の処理方法。4. The method for treating a zinc- and fluorine-containing raw material according to claim 1 or 2, wherein the pH is adjusted to 2-3 in the sulfuric acid leaching.
により2〜3に調整し、その後硫酸添加液のpHを3.
5〜5の範囲に調整してフッ素を晶出除去することを特
徴とする請求項2記載の亜鉛及びフッ素含有原料の処理
方法。5. The pH of the leachate after the water leaching is adjusted to 2-3 by adding sulfuric acid, and then the pH of the sulfuric acid-added liquid is adjusted to 3.
The method for treating a zinc- and fluorine-containing raw material according to claim 2, wherein fluorine is crystallized and removed in a range of 5 to 5.
ルシウム及び水酸化カルシウムから選択された1種また
は2種以上を添加してpH調整することを特徴とする請
求項5記載の亜鉛及びフッ素含有原料の処理方法。6. The zinc-containing and fluorine-containing solution according to claim 5, wherein one or more selected from caustic soda, calcium carbonate and calcium hydroxide is added to the sulfuric acid-added liquid to adjust the pH. Raw material processing method.
0〜70%、鉄を1〜30%、フッ素を0.5〜6%、
塩素を4〜20%含有する製鋼ダストである請求項5項
記載の亜鉛及びフッ素含有原料の処理方法。7. The zinc- and fluorine-containing raw material contains zinc.
0 to 70%, iron 1 to 30%, fluorine 0.5 to 6%,
The method for treating a zinc- and fluorine-containing raw material according to claim 5, which is steelmaking dust containing 4 to 20% of chlorine.
したろ液に炭酸カルシウム及び水酸化カルシウムからな
ら群の1種又は2種を添加してpHを10〜11に調整
し亜鉛を晶出させかつ塩素を液中に残すことを特徴とす
る請求項7記載のフッ素含有原料の処理方法。8. The pH is adjusted to 3.5 to 5 and one or two members of the group consisting of calcium carbonate and calcium hydroxide is added to the filtrate from which fluorine has been removed to adjust the pH to 10 to 11 and zinc. 8. The method for treating a fluorine-containing raw material according to claim 7, wherein the crystallization is performed and chlorine is left in the liquid.
ことを特徴とする請求項8記載の亜鉛及びフッ素含有原
料の処理方法。9. The method of treating a zinc- and fluorine-containing raw material according to claim 8, wherein the steelmaking dust contains 4% or more of fluorine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11832394A JPH07316679A (en) | 1994-05-31 | 1994-05-31 | Treatment of raw material containing zinc and fluorine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11832394A JPH07316679A (en) | 1994-05-31 | 1994-05-31 | Treatment of raw material containing zinc and fluorine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07316679A true JPH07316679A (en) | 1995-12-05 |
Family
ID=14733832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11832394A Pending JPH07316679A (en) | 1994-05-31 | 1994-05-31 | Treatment of raw material containing zinc and fluorine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07316679A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002326814A (en) * | 2001-05-07 | 2002-11-12 | Sumitomo Metal Mining Co Ltd | Production method of fired ore of zinc oxide or ore briquette of zinc oxide |
JP2009074132A (en) * | 2007-09-20 | 2009-04-09 | Dowa Metals & Mining Co Ltd | Method for producing electrolytic solution of zinc |
JP2017137578A (en) * | 2016-02-02 | 2017-08-10 | Jfeスチール株式会社 | Method for separating zinc, method for producing zinc material, and method for producing iron material |
CN107523689A (en) * | 2017-08-10 | 2017-12-29 | 云南龙蕴科技环保股份有限公司 | A kind of method of dechlorination in organic phase |
-
1994
- 1994-05-31 JP JP11832394A patent/JPH07316679A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002326814A (en) * | 2001-05-07 | 2002-11-12 | Sumitomo Metal Mining Co Ltd | Production method of fired ore of zinc oxide or ore briquette of zinc oxide |
JP4715022B2 (en) * | 2001-05-07 | 2011-07-06 | 住友金属鉱山株式会社 | Method for producing zinc oxide sinter or zinc oxide briquette |
JP2009074132A (en) * | 2007-09-20 | 2009-04-09 | Dowa Metals & Mining Co Ltd | Method for producing electrolytic solution of zinc |
JP2017137578A (en) * | 2016-02-02 | 2017-08-10 | Jfeスチール株式会社 | Method for separating zinc, method for producing zinc material, and method for producing iron material |
CN107523689A (en) * | 2017-08-10 | 2017-12-29 | 云南龙蕴科技环保股份有限公司 | A kind of method of dechlorination in organic phase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2188658A1 (en) | Recovery of chemical values from industrial wastes | |
US4162294A (en) | Process for working up nonferrous metal hydroxide sludge waste | |
JP3802046B1 (en) | Method for processing heavy metal-containing powder | |
JP3625270B2 (en) | Waste disposal method | |
WO2005084838A1 (en) | Method for treatment of fly ash | |
AU710302B2 (en) | Method for recovering metal and chemical values | |
JP3052535B2 (en) | Treatment of smelting intermediates | |
JPH0242886B2 (en) | ||
US4789446A (en) | Method of processing residues from the hydrometallurgical production of zinc | |
EP0783593B1 (en) | Method for recovering metal and chemical values | |
JPH07316679A (en) | Treatment of raw material containing zinc and fluorine | |
JP2003225633A (en) | Method of treating chloride-containing dust | |
JP2003236503A (en) | Treatment method of waste containing lead component | |
RU2126059C1 (en) | Process for leaching material containing zinc oxide, zinc silicate and/or zinc ferrite | |
JP3113307B2 (en) | Method for separating and recovering zinc and manganese from waste dry batteries | |
JP2000140795A (en) | Treatment of heavy metal-containing fly ash | |
CA2192084C (en) | Hydrometallurgical treatment for the purification of waelz oxides through lixiviation with sodium carbonate | |
EA005566B1 (en) | A method for the removal of calcium from a zinc process sulphate solution | |
JP5288778B2 (en) | Method for processing heavy metal-containing powder | |
JP4350262B2 (en) | Residue treatment method | |
JP3914814B2 (en) | Method for treating fly ash containing calcium | |
JPH0841555A (en) | Fractional recovery of lead and zinc from incinerated ash | |
JP2005305244A (en) | Treating method of substance containing heavy metals | |
JP2003164829A (en) | Method for treating heavy metal-containing fly ash | |
JPH09241773A (en) | Zinc recovering method from dust containing zinc |