JPH07316568A - Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration - Google Patents

Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration

Info

Publication number
JPH07316568A
JPH07316568A JP11709894A JP11709894A JPH07316568A JP H07316568 A JPH07316568 A JP H07316568A JP 11709894 A JP11709894 A JP 11709894A JP 11709894 A JP11709894 A JP 11709894A JP H07316568 A JPH07316568 A JP H07316568A
Authority
JP
Japan
Prior art keywords
carbon monoxide
flow rate
gas
raw material
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11709894A
Other languages
Japanese (ja)
Inventor
Minoru Seto
実 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP11709894A priority Critical patent/JPH07316568A/en
Publication of JPH07316568A publication Critical patent/JPH07316568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To provide a facility for continuously reducing and controlling carbon monoxide concentration in city gas and a method for reducing and controlling carbon monoxide gas concentration. CONSTITUTION:This facility is provided with a gas reformer 1 to perform the catalytic decomposition of a raw material such as LPG or naphtha and a carbon monoxide converter 2 to produce carbon monoxide from the produced gas. The value of selected control parameter is determined from the concentration signal of a carbon monoxide concentration meter 19 by a control parameter setter 20 based on (1) the ratio of gasification raw material to added steam, (2) the preset temperature of gasification reaction and (3) the flow rate of gas during the reaction. A raw material flow control valve 4, a steam flow control valve 8 or a fuel control valve 12 is controlled based on the obtained parameter value to reduce and control the concentration of carbon monoxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガス中の一酸化炭
素濃度を連続的に計測し、その濃度を規定の値以下とす
るための都市ガス中の一酸化炭素低減制御機構および一
酸化炭素低減制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention continuously measures the concentration of carbon monoxide in city gas and reduces the concentration of carbon monoxide in the city gas to a specified value or less, and a carbon monoxide reduction control mechanism. The present invention relates to a carbon reduction control method.

【0002】[0002]

【従来の技術】周知のように、一酸化炭素は毒性が強
く、都市ガス中に含まれる濃度は、極力低い値に制限す
ることが望ましい。そのために、ガスの製造装置には一
酸化炭素を炭酸ガス等に変えるための変成装置が併設さ
れることが多い。ところで、ガス製造プロセスのうち、
触媒の存在下に反応温度300〜1000℃で炭化水素
と水蒸気とを反応させ、CH4、H2、CO、CO2に変
換する接触分解プロセス(水蒸気改質プロセス)は、次
の一般式のように表すことができる(都市ガス工業概要
■)。 A(CmHn)+B(H2O)→C(H2)+D(CO)
+E(CO2)+F(CH4)+G(C)+H(H2O) 生成ガスの組成は、反応温度によって著しい影響を受
け、図2、図3に示すように、反応温度と平衡ガス組成
との関係において、反応温度を上昇させると、CH4
CO2が少なく、CO、H2の多い低発熱量のガスが生成
され、反応温度を下げれば、CH4、CO2が多く、C
O、H2の少ない高発熱量のガスが生成されることがわ
かる。
As is well known, carbon monoxide is highly toxic, and it is desirable to limit the concentration contained in city gas to a value as low as possible. Therefore, a gas production apparatus is often equipped with a shift device for converting carbon monoxide into carbon dioxide gas or the like. By the way, of the gas production process,
A catalytic cracking process (steam reforming process) of reacting a hydrocarbon with steam at a reaction temperature of 300 to 1000 ° C. in the presence of a catalyst to convert into CH 4 , H 2 , CO, and CO 2 is represented by the following general formula: Can be expressed as follows (Outline of city gas industry ■). A (CmHn) + B (H 2 O) → C (H 2 ) + D (CO)
+ E (CO 2 ) + F (CH 4 ) + G (C) + H (H 2 O) The composition of the product gas is significantly affected by the reaction temperature, and as shown in FIGS. 2 and 3, the reaction temperature and the equilibrium gas composition In relation to, when the reaction temperature is raised, CH 4 ,
CO 2 is small, CO, with much H 2 low calorific value gas is generated, by lowering the reaction temperature, CH 4, CO 2 much, C
It can be seen that a gas with a high calorific value containing less O and H 2 is generated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現時点
では、一酸化炭素の低減を制御上の条件とした自動制御
は、行われていない。その理由として、 一酸化炭素の濃度を測定する一酸化炭素濃度計が高価
である。 一酸化炭素の低減が必ずしも経済的な運転条件と合致
しない。 ガス製造装置の運転条件が複雑となる。 このために、現状では、間歇的にガスを分析し、その結
果一酸化炭素が一定濃度を越えるおそれがある場合にの
み運転条件を変更するようにしている。本発明は、以上
のような課題を改善するためになされたものであって、
連続して一酸化炭素濃度の低減制御を行うことができる
ようにした、都市ガス中の一酸化炭素低減制御機構およ
び一酸化炭素低減制御方法を提供することを目的とす
る。
However, at the present time, automatic control under the control condition of reducing carbon monoxide is not performed. The reason is that a carbon monoxide concentration meter that measures the concentration of carbon monoxide is expensive. Carbon monoxide reduction does not always match economical operating conditions. The operating conditions of the gas production device are complicated. For this reason, at present, the gas is intermittently analyzed, and the operating condition is changed only when there is a possibility that carbon monoxide may exceed a certain concentration as a result. The present invention has been made to improve the above problems,
An object of the present invention is to provide a carbon monoxide reduction control mechanism and a carbon monoxide reduction control method capable of continuously controlling the carbon monoxide concentration reduction.

【0004】[0004]

【課題を解決するための手段】前記した課題を解決する
ために、本発明は、LPG、ナフサ等の原料に水蒸気を
接触させると共に、燃料を供給して接触分解を行わしめ
るガス改質装置と、一酸化炭素変成装置とを備え、原料
の流入量を調節するための原料流量調節弁および原料流
量調節計と、水蒸気導入量を調節するための水蒸気流量
調節弁および水蒸気流量調節計と、燃料導入量を調節す
るための燃料調節弁および燃料調節計と、ガス改質装置
の下流側に温度調節計と、一酸化炭素変成装置の下流側
に、連続測定式の一酸化炭素濃度計とを備える一方、複
数の制御パラメータから、ガス製造方式に対応して選択
された制御パラメータの値を求める制御パラメータ設定
器を備え、前記一酸化炭素濃度計の濃度信号により、制
御パラメータ設定器において選択された制御パラメータ
の値を求めて、このパラメータ値に基づいて原料流量調
節弁、水蒸気流量調節弁または燃料調節弁の流量調節を
することで、一酸化炭素濃度の低減制御を行うことを特
徴とする。また、本発明は、ガスの製造方式に応じて制
御パラメータを選択し、生成されたガス中の一酸化炭素
濃度を検出して、この一酸化炭素濃度信号に基づいて、
前記選択された制御パラメータの値を求めて原料流量、
水蒸気流量または燃料流量を調節し、一酸化炭素濃度の
低減制御を行うことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a gas reforming apparatus for bringing steam into contact with a raw material such as LPG or naphtha, and supplying fuel to perform catalytic cracking. , A carbon monoxide shift converter, a raw material flow rate control valve and a raw material flow rate controller for controlling the inflow rate of the raw material, a steam flow rate control valve and a steam flow rate controller for controlling the amount of introduced steam, and a fuel A fuel control valve and a fuel control meter for controlling the introduction amount, a temperature controller on the downstream side of the gas reformer, and a continuous measurement type carbon monoxide concentration meter on the downstream side of the carbon monoxide shift converter. On the other hand, a control parameter setting device for determining the value of the control parameter selected according to the gas production method from a plurality of control parameters is provided, and the control parameter setting is performed by the concentration signal of the carbon monoxide concentration meter. In order to reduce the carbon monoxide concentration by obtaining the value of the control parameter selected in step 1 and adjusting the flow rate of the raw material flow rate control valve, the steam flow rate control valve or the fuel control valve based on this parameter value. Characterize. Further, the present invention selects the control parameter according to the gas production method, detects the carbon monoxide concentration in the generated gas, and based on this carbon monoxide concentration signal,
The raw material flow rate is obtained by obtaining the value of the selected control parameter,
It is characterized in that the flow rate of water vapor or the flow rate of fuel is adjusted to control the reduction of the carbon monoxide concentration.

【0005】[0005]

【作用】そのガスの製造方式に対応した制御パラメータ
を選択し、連続的な一酸化炭素濃度信号に基づいて、前
記制御パラメータの値を求めて原料流量、水蒸気流量ま
たは燃料流量の調節を行うことで一酸化炭素濃度の低減
制御を行う。
The control parameter corresponding to the gas production method is selected, the value of the control parameter is determined based on the continuous carbon monoxide concentration signal, and the raw material flow rate, steam flow rate or fuel flow rate is adjusted. To control the reduction of carbon monoxide concentration.

【0006】[0006]

【実施例】次に、本発明にかかる都市ガス中の一酸化炭
素低減制御機構および一酸化炭素低減制御方法の一例を
挙げ、以下詳細に説明する。図1に一酸化炭素低減制御
機構を適用した水蒸気改質プロセスの一例を示し、この
水蒸気改質プロセスは、LPG、ナフサ等の原料に水蒸
気を接触させると共に、燃料を供給して触媒の存在下に
反応温度300〜1000℃で接触分解を行わしめるガ
ス改質装置1と、生成ガス中から一酸化炭素を変成する
ための一酸化炭素変成装置2とを有する。前記ガス改質
装置1に至る流路3には、原料流量調節弁4が介在さ
れ、流量検出信号を原料流量発信器5を介して原料流量
調節計6に取り込み、原料流量調節計6からの制御信号
により、原料(LPGまたはナフサ等)の流入量を調節
する構成であり、その流路3の下流に水蒸気を導入する
ための水蒸気導入路7が合流接続されている。かかる水
蒸気導入路7には、水蒸気流量調節弁8が介在され、水
蒸気流量発信器9を介して取り込まれた流量検出信号に
基づいて水蒸気流量調節計10により、水蒸気導入量を
調節する構成である。また、前記ガス改質装置1には、
燃料導入路11が設けられ、燃料調節弁12が介在され
ている。燃料調節弁12は、燃料流量発信器13からの
流量検出信号に基づいて燃料調節計14により、燃料導
入量を調節する構成としている。また、ガス改質装置1
から一酸化炭素変成装置2に至る生成ガス流路15中に
おける温度検出手段(図示せず)による温度検出信号
を、温度発信器16を介して温度調節計17に与え、温
度調節計17から前記燃料調節計14に制御信号を与え
る構成である。
EXAMPLES Next, an example of a carbon monoxide reduction control mechanism and a carbon monoxide reduction control method in city gas according to the present invention will be described in detail below. FIG. 1 shows an example of a steam reforming process to which a carbon monoxide reduction control mechanism is applied. In this steam reforming process, steam is brought into contact with a raw material such as LPG or naphtha, and fuel is supplied to the raw material in the presence of a catalyst. Further, it has a gas reforming apparatus 1 for performing catalytic cracking at a reaction temperature of 300 to 1000 ° C. and a carbon monoxide shift apparatus 2 for transforming carbon monoxide from the produced gas. A raw material flow rate control valve 4 is interposed in the flow path 3 leading to the gas reforming apparatus 1, and a flow rate detection signal is taken into a raw material flow rate controller 6 via a raw material flow rate transmitter 5 so that the raw material flow rate controller 6 outputs the signal. A control signal is used to adjust the inflow amount of the raw material (LPG, naphtha, or the like), and a steam introduction path 7 for introducing steam to the downstream side of the flow path 3 is joined and connected. A steam flow rate adjusting valve 8 is interposed in the steam introducing path 7, and the steam introducing rate is adjusted by a steam flow rate controller 10 based on a flow rate detection signal taken in via a steam flow rate transmitter 9. . In addition, the gas reformer 1 includes
A fuel introduction path 11 is provided and a fuel control valve 12 is interposed. The fuel control valve 12 is configured to control the amount of fuel introduced by the fuel controller 14 based on the flow rate detection signal from the fuel flow rate transmitter 13. In addition, the gas reformer 1
To the carbon monoxide shift converter 2 through the temperature transmitter 16 a temperature detection signal by a temperature detection means (not shown) in the generated gas flow path 15 is supplied to the temperature controller 17 from the temperature controller 17. This is a configuration for giving a control signal to the fuel controller 14.

【0007】そして、一酸化炭素変成装置2の下流側の
製造ガス流路18には、連続測定式の一酸化炭素濃度計
19が設けられ、この一酸化炭素濃度計19による濃度
信号が、制御パラメータ設定器20に与えられる構成で
ある。制御パラメータ設定器20は、ガスの製造方式に
対応して予め制御パラメータを設定変更する機能を有し
ている。制御パラメータとしては、 ガス化原料対添加水蒸気の比率 ガス化反応の温度設定値 反応中のガスの流速 がある。これら制御パラメータから、ガス化原料対添
加水蒸気の比率が設定されたときは、制御パラメータ設
定器20は、一酸化炭素濃度計19の濃度信号に対応し
たガス化原料対添加水蒸気の比率を求め、原料流量調節
計6および水蒸気流量調節計10に制御信号を与えるよ
うになっている。また、制御パラメータから、ガス化
反応の温度設定値が設定された場合は、制御パラメータ
設定器20は、一酸化炭素濃度計19の濃度信号に対応
してガス化反応の温度設定値を求め、前記温度調節計1
7に制御信号を与えるようになっている。そして、制御
パラメータから、反応中のガスの流速が設定された場
合は、制御パラメータ設定器20は、一酸化炭素濃度計
19の濃度信号に対応して反応中のガスの流速を求め、
原料流量調節計6に制御信号を与えるようになってい
る。
A continuous measurement type carbon monoxide concentration meter 19 is provided in the production gas passage 18 on the downstream side of the carbon monoxide shift converter 2, and the concentration signal by the carbon monoxide concentration meter 19 is controlled. This is a configuration given to the parameter setter 20. The control parameter setting device 20 has a function of changing the setting of control parameters in advance according to the gas manufacturing method. The control parameter is the ratio of the gasification raw material to the added steam, the temperature setting value of the gasification reaction, and the flow rate of the gas during the reaction. When the ratio of the gasification raw material to the added steam is set from these control parameters, the control parameter setting device 20 obtains the ratio of the gasification raw material to the added steam corresponding to the concentration signal of the carbon monoxide concentration meter 19, A control signal is supplied to the raw material flow rate controller 6 and the steam flow rate controller 10. In addition, when the temperature set value of the gasification reaction is set from the control parameter, the control parameter setter 20 obtains the temperature set value of the gasification reaction corresponding to the concentration signal of the carbon monoxide concentration meter 19. The temperature controller 1
A control signal is given to 7. Then, when the flow rate of the gas during the reaction is set from the control parameter, the control parameter setter 20 obtains the flow rate of the gas during the reaction corresponding to the concentration signal of the carbon monoxide concentration meter 19,
A control signal is supplied to the raw material flow rate controller 6.

【0008】以上のような一酸化炭素低減制御機構を備
えた水蒸気改質プロセスにおいて、制御パラメータ設定
器20の制御パラメータである、ガス化原料対添加水
蒸気の比率、ガス化反応の温度設定値、反応中のガ
スの流速から、製造方法に対応したパラメータを設定
し、原料(LPG、ナフサ)を、原料流量調節弁4を介
して流路3に送り込むと共に、水蒸気を水蒸気流量調節
弁8を介して水蒸気導入路7に送り込んで、前記流路3
を流れる原料に合流させ、ガス改質装置1に導入する。
その一方でガス改質装置1には、燃料調節弁12、燃料
導入路11を介して燃料が導入され、触媒の存在下に反
応温度300〜1000℃で接触分解を行わしめ、生成
ガス(CH4、H2、CO、CO2)に変換することがで
きる。そして、かかる変換された生成ガスを、生成ガス
流路15を介して一酸化炭素変成装置2に送り込まれ、
生成ガス中のCOがCO2に変成され、一定の割合に抑
制されたCOを含んだ製造ガスが製造ガス流路18を介
して取り出すことができる。
In the steam reforming process having the carbon monoxide reduction control mechanism as described above, the ratio of the gasification raw material to the added steam, which is the control parameter of the control parameter setting device 20, the temperature setting value of the gasification reaction, Parameters corresponding to the manufacturing method are set from the flow rate of the gas during the reaction, the raw materials (LPG, naphtha) are fed into the flow path 3 via the raw material flow rate control valve 4, and steam is passed through the steam flow rate control valve 8. And sends it to the water vapor introduction path 7,
Is introduced into the gas reforming device 1.
On the other hand, the fuel is introduced into the gas reforming apparatus 1 through the fuel control valve 12 and the fuel introducing passage 11, and catalytic cracking is performed at a reaction temperature of 300 to 1000 ° C. in the presence of a catalyst to generate a product gas (CH 4 , H 2 , CO, CO 2 ). Then, the converted product gas is sent to the carbon monoxide shift converter 2 through the product gas flow path 15,
The CO in the generated gas is converted to CO 2 , and the manufacturing gas containing CO suppressed to a certain ratio can be taken out through the manufacturing gas passage 18.

【0009】以上のような水蒸気改質プロセスを経て取
り出された製造ガスは、製造ガス流路18において、一
酸化炭素濃度計19により、製造ガス中のCO濃度を常
時監視しており、このCO濃度信号は、制御パラメータ
設定器20に送出される。制御パラメータ設定器20に
おいて、ガス化原料対添加水蒸気の比率が設定された
ときは、制御パラメータ設定器20は、一酸化炭素濃度
計19の濃度信号に対応したガス化原料対添加水蒸気の
比率を求め、原料流量調節計6および水蒸気流量調節計
10に制御信号を与える。また、制御パラメータから、
ガス化反応の温度設定値が設定された場合は、制御パ
ラメータ設定器20は、一酸化炭素濃度計19の濃度信
号に対応してガス化反応の温度設定値を求め、前記温度
調節計17に制御信号を与える。そして、制御パラメー
タから、反応中のガスの流速が設定された場合は、制
御パラメータ設定器20は、一酸化炭素濃度計19の濃
度信号に対応して反応中のガスの流速を求め、原料流量
調節計6に制御信号を与える。
The production gas taken out through the steam reforming process as described above is constantly monitored for CO concentration in the production gas by a carbon monoxide concentration meter 19 in the production gas passage 18. The density signal is sent to the control parameter setting device 20. When the ratio of gasification raw material to added steam is set in the control parameter setting device 20, the control parameter setting device 20 sets the ratio of gasification raw material to added steam corresponding to the concentration signal of the carbon monoxide concentration meter 19. Then, a control signal is given to the raw material flow rate controller 6 and the steam flow rate controller 10. Also, from the control parameters,
When the temperature set value of the gasification reaction is set, the control parameter setter 20 obtains the temperature set value of the gasification reaction corresponding to the concentration signal of the carbon monoxide concentration meter 19, and the temperature controller 17 Give a control signal. Then, when the flow rate of the gas during the reaction is set from the control parameter, the control parameter setting device 20 obtains the flow rate of the gas during the reaction corresponding to the concentration signal of the carbon monoxide concentration meter 19, and the raw material flow rate. A control signal is given to the controller 6.

【0010】以上のようにして、一酸化炭素濃度計19
の濃度信号に基づいて、選択された制御パラメータか
ら、その濃度信号に対応した値を求めて、連続的に一酸
化炭素濃度の低減制御が可能となる。また、制御パラメ
ータ設定器20における制御パラメータを手動で設定変
更しているガスの製造装置であれば、本発明における水
蒸気改質プロセスを適用することができ、用途が広い。
なお、前述した水蒸気改質プロセスは、一般工業計器の
組合せによって構築することができるため、取り扱いが
容易であり、且つ保守も簡単である。さらに、一般工業
計器を適用するため、設備コストを抑えることができ、
燃焼性制御用にも使用可能である。
As described above, the carbon monoxide concentration meter 19
Based on the concentration signal of, the value corresponding to the concentration signal is obtained from the selected control parameter, and the carbon monoxide concentration reduction control can be continuously performed. In addition, the steam reforming process of the present invention can be applied to any gas manufacturing apparatus in which the control parameter in the control parameter setting device 20 is manually changed, and the application is wide.
Since the steam reforming process described above can be constructed by combining general industrial instruments, it is easy to handle and easy to maintain. Furthermore, because general industrial instruments are applied, equipment costs can be reduced,
It can also be used for flammability control.

【0011】[0011]

【発明の効果】以上、本発明によれば、そのガスの製造
方式に対応して設定変更した制御パラメータから、一酸
化炭素濃度信号に応じた制御パラメータ値を求めて、原
料流量調節弁または水蒸気流量調節弁または燃料調節弁
の流量調節をすることで、連続的に一酸化炭素濃度の低
減制御を行うことができる。また、制御パラメータを手
動で設定変更しているガスの製造装置であれば、本発明
における水蒸気改質プロセスを適用することができ、用
途が広い。なお、水蒸気改質プロセスは、一般工業計器
の組合せによって構築することができるため、取り扱い
が容易であり、且つ保守も簡単である。さらに、一般工
業計器を適用するため、設備コストを抑えることがで
き、燃焼性制御用にも使用可能である。
As described above, according to the present invention, the control parameter value corresponding to the carbon monoxide concentration signal is obtained from the control parameter whose setting is changed corresponding to the gas production method, and the raw material flow rate control valve or the steam is controlled. By controlling the flow rate of the flow rate control valve or the fuel control valve, the carbon monoxide concentration reduction control can be continuously performed. In addition, the steam reforming process of the present invention can be applied to any gas manufacturing apparatus in which the control parameter is manually changed, and the application is wide. Since the steam reforming process can be constructed by combining general industrial instruments, it is easy to handle and easy to maintain. Further, since general industrial instruments are applied, equipment cost can be suppressed and it can be used for flammability control.

【0012】[0012]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる都市ガス中の一酸化炭素低減制
御機構および一酸化炭素低減制御方法を採用したガスの
生成工程の一例を示す系統的説明図である。
FIG. 1 is a systematic explanatory view showing an example of a gas generation process employing a carbon monoxide reduction control mechanism and a carbon monoxide reduction control method in city gas according to the present invention.

【図2】水蒸気改質プロセスにおいて、原料にナフサを
用いた際の、反応温度と平衡ガス組成の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between reaction temperature and equilibrium gas composition when naphtha is used as a raw material in the steam reforming process.

【図3】水蒸気改質プロセスにおいて、原料にナフサを
用いた際の、反応温度と平衡ガス組成の関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between reaction temperature and equilibrium gas composition when naphtha is used as a raw material in the steam reforming process.

【符号の説明】[Explanation of symbols]

1 ガス改質装置 2 一酸化炭素変成装置 3 流路 4 原料流量調節弁 5 流量検出手段 6 原料流量調節計 7 水蒸気導入路 8 水蒸気流量調節弁 9 流量検出手段 10 水蒸気流量調節計 11 燃料導入路 12 燃料調節弁 13 検出手段 14 燃料調節計 15 生成ガス流路 16 温度検出手段 17 温度調節計 18 製造ガス流路 19 一酸化炭素濃度計 20 制御パラメータ設定
DESCRIPTION OF SYMBOLS 1 Gas reforming apparatus 2 Carbon monoxide shift conversion apparatus 3 Flow path 4 Raw material flow rate control valve 5 Flow rate detection means 6 Raw material flow rate control meter 7 Steam introduction path 8 Steam flow rate control valve 9 Flow rate detection means 10 Steam flow rate control apparatus 11 Fuel introduction path 12 Fuel Control Valve 13 Detecting Means 14 Fuel Regulator 15 Generated Gas Flow Path 16 Temperature Detection Means 17 Temperature Controller 18 Manufacturing Gas Flow Path 19 Carbon Monoxide Concentration Meter 20 Control Parameter Setter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 LPG、ナフサ等の原料に水蒸気を接
触させると共に、燃料を供給して接触分解を行わしめる
ガス改質装置と、一酸化炭素変成装置とを備え、原料の
流入量を調節するための原料流量調節弁および原料流量
調節計と、水蒸気導入量を調節するための水蒸気流量調
節弁および水蒸気流量調節計と、燃料導入量を調節する
ための燃料調節弁および燃料調節計と、ガス改質装置の
下流側に温度調節計と、一酸化炭素変成装置の下流側
に、連続測定式の一酸化炭素濃度計とを備える一方、複
数の制御パラメータから、ガス製造方式に対応して選択
された制御パラメータの値を求める制御パラメータ設定
器を備え、前記一酸化炭素濃度計の濃度信号により、制
御パラメータ設定器において選択された制御パラメータ
の値を求めて、このパラメータ値に基づいて原料流量調
節弁、水蒸気流量調節弁または燃料調節弁の流量調節を
することで、一酸化炭素濃度の低減制御を行うことを特
徴とする都市ガス中の一酸化炭素低減制御機構。
1. A gas reforming device for contacting steam with a raw material such as LPG or naphtha and supplying a fuel to perform catalytic cracking, and a carbon monoxide shift converter, and adjusting the inflow amount of the raw material. A raw material flow rate control valve and a raw material flow rate controller for adjusting the amount of steam introduced, a steam flow rate control valve and a steam flow rate controller for adjusting the amount of steam introduced, a fuel control valve and a fuel controller for adjusting the amount of fuel introduced, and a gas A temperature controller is provided on the downstream side of the reformer, and a continuous measurement type carbon monoxide concentration meter is provided on the downstream side of the carbon monoxide shift converter, while multiple control parameters are selected according to the gas production method. The control parameter setter for obtaining the value of the selected control parameter is provided, and the value of the control parameter selected by the control parameter setter is obtained by the concentration signal of the carbon monoxide concentration meter, A carbon monoxide reduction control mechanism in city gas, characterized by controlling the flow rate of a raw material flow rate control valve, a steam flow rate control valve, or a fuel control valve based on a meter value to reduce the carbon monoxide concentration. .
【請求項2】 ガスの製造方式に応じて制御パラメー
タを選択し、生成されたガス中の一酸化炭素濃度を検出
して、この一酸化炭素濃度信号に基づいて、前記選択さ
れた制御パラメータの値を求めて原料流量、水蒸気流量
または燃料流量を調節し、一酸化炭素濃度の低減制御を
行うことを特徴とする都市ガス中の一酸化炭素低減制御
方法。
2. A control parameter is selected according to a gas production method, the carbon monoxide concentration in the generated gas is detected, and the selected control parameter of the selected control parameter is detected based on the carbon monoxide concentration signal. A method for controlling carbon monoxide reduction in city gas, which comprises controlling a flow rate of a raw material, a steam flow rate, or a fuel flow rate to obtain a value to control a carbon monoxide concentration reduction.
JP11709894A 1994-05-30 1994-05-30 Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration Pending JPH07316568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11709894A JPH07316568A (en) 1994-05-30 1994-05-30 Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11709894A JPH07316568A (en) 1994-05-30 1994-05-30 Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration

Publications (1)

Publication Number Publication Date
JPH07316568A true JPH07316568A (en) 1995-12-05

Family

ID=14703356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11709894A Pending JPH07316568A (en) 1994-05-30 1994-05-30 Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration

Country Status (1)

Country Link
JP (1) JPH07316568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046542A1 (en) * 2010-10-05 2012-04-12 株式会社日立製作所 Co2 separation and recovery equipment, and a coal gasification combined power plant comprising co2 separation and recovery equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046542A1 (en) * 2010-10-05 2012-04-12 株式会社日立製作所 Co2 separation and recovery equipment, and a coal gasification combined power plant comprising co2 separation and recovery equipment
JP2012076970A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Co2 separation/recovery apparatus and coal gasification-combined power generation plant equipped with co2 separation/recovery apparatus
US9427703B2 (en) 2010-10-05 2016-08-30 Hitachi, Ltd. CO2 separation and recovery equipment, and a coal gasification combined power plant comprising CO2 separation and recovery equipment

Similar Documents

Publication Publication Date Title
US9051526B2 (en) Method for modification of a methane-containing gas stream
JP2000185904A (en) Self-heating type reformation of supplied hydrocarbon material containing higher hydrocarbon
JP5155180B2 (en) Syngas production method
ZA996183B (en) Hydrocarbon partial oxidation process.
NO20050958L (en) Hydrogen for steam reforming of natural gas to synthesis gas
ZA200001854B (en) Production of hydrogen and carbon monoxide.
NO20034284L (en) Process for producing synthesis gas
US4115862A (en) Process control method and apparatus
JPS5827202B2 (en) Kangengas no Seihou
EA001722B1 (en) Process for steam reforming of a hydrocarbon feedstock
US10207924B2 (en) Method and device for producing syngas
TW200642951A (en) High-temperature reforming
JPH07316568A (en) Facility for reducing and controlling carbon monoxide concentration in city gas and method for reducing and controlling carbon monoxide gas concentration
US2546013A (en) Means and method for producing special heat-treating gaseous atmospheres
JP4154123B2 (en) Method for automatic thermal reforming of hydrocarbon feedstocks
NO164108C (en) PROCEDURE FOR CONVERSION OF SYNTHESIC GAS TO METANRIC PRODUCT GAS.
JP2002542143A (en) Method of operating a steam reforming plant for hydrocarbons, especially methanol, and corresponding plant
JP2003146609A (en) Apparatus for producing hydrogen-containing gas using lp gas and fuel cell system
JP4162938B2 (en) Hydrogen production plant control device, hydrogen production device, and hydrogen production method
KR101484919B1 (en) System and method for transforming synthesis gas obtained from waste
US3442618A (en) Method for producing hydrogen from hydrogen-containing feedstocks
CN113498404B (en) Method for inhibiting soot formation in ATR or POX reactor
US20230017255A1 (en) Method for stable operation of a steam reforming system
CA1108971A (en) Method for minimizing carbon formation on methanation catalysts
RU2173332C2 (en) Method of automatically controlling hydrocarbon-to-oxidant molar ratio in hydrocarbon conversion process