JPH07316518A - Adhesive member for forming adhesive layer capable of detecting internal defect - Google Patents

Adhesive member for forming adhesive layer capable of detecting internal defect

Info

Publication number
JPH07316518A
JPH07316518A JP10998594A JP10998594A JPH07316518A JP H07316518 A JPH07316518 A JP H07316518A JP 10998594 A JP10998594 A JP 10998594A JP 10998594 A JP10998594 A JP 10998594A JP H07316518 A JPH07316518 A JP H07316518A
Authority
JP
Japan
Prior art keywords
soft magnetic
main body
adhesive
adhesive layer
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10998594A
Other languages
Japanese (ja)
Inventor
Hajime Goto
肇 後藤
Jun Sasahara
潤 笹原
Tadahiro Kubota
忠弘 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10998594A priority Critical patent/JPH07316518A/en
Priority to DE69520608T priority patent/DE69520608T2/en
Priority to US08/381,687 priority patent/US5640088A/en
Priority to EP95300469A priority patent/EP0666470B1/en
Publication of JPH07316518A publication Critical patent/JPH07316518A/en
Priority to US08/815,471 priority patent/US6127822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Adhesive Tapes (AREA)

Abstract

PURPOSE:To provide an adhesive member for forming an adhesive layer capable of detecting internal defect in high sensitivity, composed of an uncured adhesive main body and a specific soft magnet embedded in the main body, by precisely measuring stress of soft magnet in a non-destructive state and readily detecting the internal defect. CONSTITUTION:This adhesive member 1 is used for forming an adhesive layer B bonding either member 41 to be bonded to the other member 42 to be bonded and capable of detecting internal defect by utilizing stress-magnetic characteristics of soft magnet. The adhesive member 1 is composed of a main body 2 comprising an uncured adhesive agent and plural soft magnets 3 embedded in the main body 2 and constrained in a state in which outer force is applied after curing of the main body 2. Furthermore, preferably, the soft magnet 3 is fibrous and arranged at definite intervals in the main body 2 or composed of an amorphous metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内部欠陥検知可能な接着
層形成用接着部材、特に、一方の被接着部材と他方の被
接着部材とを接着し、且つ軟磁性体の応力−磁気特性を
利用して内部欠陥を検知し得るようにした接着層を形成
するための接着部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adhesive member for forming an adhesive layer capable of detecting internal defects, in particular, one member to be adhered and the other member to be adhered are bonded to each other, and the stress-magnetic characteristics of a soft magnetic material are measured. The present invention relates to an adhesive member for forming an adhesive layer that can detect internal defects by utilizing the adhesive member.

【0002】[0002]

【従来の技術】従来、接着層の評価方法としては、JI
S−K−6860に規定されているような耐候性試験方
法通則等に則った性能試験法や超音波探傷法、X線法等
の非破壊検査法が知られている。
2. Description of the Related Art Conventionally, JI has been used as a method for evaluating an adhesive layer.
A performance test method according to the general rule of weather resistance test method as defined in SK-6860, and a nondestructive inspection method such as an ultrasonic flaw detection method and an X-ray method are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記性能
試験法は試験片にのみ適用される方法であるから両被接
着部材間の接着層を評価することは非常に困難であり、
一方、非破壊検査法は試験片に対して適用した場合には
それなりの評価が得られるが、前記のような接着層につ
いては、その形状、大きさ等に関する制約が多く、不向
きである。
However, it is very difficult to evaluate the adhesive layer between both members to be adhered because the performance test method is a method applied only to a test piece,
On the other hand, although the non-destructive inspection method can obtain a certain degree of evaluation when applied to a test piece, the adhesive layer as described above is not suitable because there are many restrictions on its shape, size, and the like.

【0004】本発明は前記に鑑み、各種被接着部材にお
いて、非破壊状態にて内部欠陥を容易に検知することが
可能な接着層を形成することのできる前記接着部材を提
供することを目的とする。
In view of the above, it is an object of the present invention to provide an adhesive member capable of forming an adhesive layer capable of easily detecting an internal defect in a non-destructive state in various adherend members. To do.

【0005】[0005]

【課題を解決するための手段】本発明は、一方の被接着
部材と他方の被接着部材とを接着し、且つ軟磁性体の応
力−磁気特性を利用して内部欠陥を検知し得るようにし
た接着層を形成するための接着部材であって、未硬化の
接着剤よりなる主体と、前記主体内に埋設され、且つ主
体硬化後には外力を付与された状態に拘束される複数の
前記軟磁性体とより構成されることを特徴とする。
According to the present invention, one member to be bonded and the other member to be bonded are bonded to each other, and the internal defect can be detected by utilizing the stress-magnetic property of the soft magnetic material. An adhesive member for forming an adhesive layer, comprising a main body made of an uncured adhesive, and a plurality of the soft members embedded in the main body and constrained to an external force after the main body is cured. It is characterized by being composed of a magnetic material.

【0006】[0006]

【作用】前記接着部材を用いて、一方の被接着部材と他
方の被接着部材とを接着した場合、その接着層内には複
数の軟磁性体が所定の応力を以て埋設されているので、
何れか一方の被接着部材表面側より軟磁性体の応力をそ
の応力−磁気特性を利用して精度良く測定することがで
きる。
When one of the adhered members and the other adhered member are adhered to each other using the adhesive member, a plurality of soft magnetic bodies are embedded in the adhesive layer with a predetermined stress.
The stress of the soft magnetic material can be accurately measured from the surface side of either one of the adherends by utilizing the stress-magnetic characteristics.

【0007】一方、接着層の硬化した主体にクラック等
の内部欠陥が生じると、その軟磁性体に対する拘束力、
したがって当初付与された外力が低下するので、それに
伴い軟磁性体の応力も低下し、これにより接着層の内部
欠陥を非破壊状態にて容易に検知することができる。
On the other hand, when internal defects such as cracks occur in the hardened main body of the adhesive layer, the binding force to the soft magnetic material,
Therefore, since the external force initially applied is reduced, the stress of the soft magnetic material is also reduced accordingly, whereby the internal defect of the adhesive layer can be easily detected in a non-destructive state.

【0008】また両被接着部材を接着した直後におい
て、何れか一方の被接着部材の表面に沿って軟磁性体の
応力を検知し、このとき応力値が異常である部分があれ
ば、その部分は接着不良箇所と見做される。このように
前記接着部材は、それから形成された接着層が健全か、
不健全かについての判定にも用いられる。
Immediately after the two adhered members are adhered, the stress of the soft magnetic material is detected along the surface of one of the adhered members, and if there is an abnormal stress value at that time, that part is detected. Are considered to be defective adhesion points. In this way, the adhesive member, whether the adhesive layer formed from it is sound,
It is also used to judge whether it is unhealthy.

【0009】例えば、主体が未硬化の熱硬化性合成樹脂
接着剤よりなり、且つその厚さが極めて薄く、また両被
接着部材が軟磁性体と異なる熱膨脹率を有する場合、軟
磁性体への外力の付与は、主体の加熱硬化時における軟
磁性体と両被接着部材との熱膨脹率差により容易に実現
されるが、軟磁性体に張力を与えた状態で主体を硬化さ
せる、といった手段を採用してもよい。
For example, when the main body is made of an uncured thermosetting synthetic resin adhesive and the thickness thereof is extremely thin, and both members to be adhered have a coefficient of thermal expansion different from that of the soft magnetic material, the soft magnetic material is applied to the soft magnetic material. The application of external force is easily realized by the difference in the coefficient of thermal expansion between the soft magnetic material and the members to be adhered when the main body is heated and hardened, but means for hardening the main body while applying tension to the soft magnetic material is used. May be adopted.

【0010】[0010]

【実施例】図1,2において、内部欠陥検知可能な接着
層形成用接着部材1は長方形で、且つ均一厚さのフィル
ム状をなし、未硬化の接着剤よりなる主体2と、その主
体2内に埋設された複数の軟磁性体3とより構成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIGS. 1 and 2, an adhesive member 1 for forming an adhesive layer capable of detecting an internal defect is a main body 2 made of an uncured adhesive, which has a rectangular shape and is in the form of a film having a uniform thickness. It is composed of a plurality of soft magnetic bodies 3 embedded inside.

【0011】主体2を構成する接着剤としては、主とし
て熱硬化性合成樹脂接着剤が用いられ、その熱硬化性合
成樹脂接着剤には、フィルム状に成形し易い、という観
点からフェノール樹脂系接着剤、エポキシ樹脂系接着
剤、フェノールエポキシ樹脂系接着剤等が該当する。た
だし、熱可塑性合成樹脂接着剤を用いることも可能であ
る。
A thermosetting synthetic resin adhesive is mainly used as an adhesive constituting the main body 2. The thermosetting synthetic resin adhesive is a phenol resin adhesive from the viewpoint that it can be easily formed into a film. Agents, epoxy resin adhesives, phenol epoxy resin adhesives, etc. However, it is also possible to use a thermoplastic synthetic resin adhesive.

【0012】軟磁性体3は繊維状をなし、本実施例では
非晶質金属より構成される。複数の繊維状軟磁性体3は
主体2の長手方向aと平行に一定ピッチbで並列してい
る。
The soft magnetic material 3 has a fibrous shape and is made of an amorphous metal in this embodiment. The plurality of fibrous soft magnetic bodies 3 are arranged in parallel with the longitudinal direction a of the main body 2 at a constant pitch b.

【0013】接着部材1の厚さcは0.03mm≦c≦
1.0mmが適当であり、また繊維状軟磁性体3の直径d
は30μm≦d≦200μmが適当である。これらの点
に基づいて、繊維状軟磁性体3のピッチbは、その直径
dとの関係において2d≦b≦10dに設定される。
The thickness c of the adhesive member 1 is 0.03 mm≤c≤
1.0 mm is suitable, and the diameter d of the fibrous soft magnetic material 3 is
Is preferably 30 μm ≦ d ≦ 200 μm. Based on these points, the pitch b of the fibrous soft magnetic material 3 is set to 2d ≦ b ≦ 10d in relation to the diameter d thereof.

【0014】このようにピッチbを設定すると、主体2
の量、したがって接着剤量が適当となるので十分な接着
強度を得ることができ、また繊維状軟磁性体3の分布状
態が適当となるので、その応力検知感度が良好となる。
ただし、b<2dでは、接着層における繊維状軟磁性体
3の体積分率Vfが、前記接着部材1の厚さcとの関係
から、Vf≒40%となるため、接着強度不足を招来
し、また接着作業中に繊維状軟磁性体3が相互に絡み合
い易くなって接着層の厚さを均一化することが難しい。
一方、b>10dでは繊維状軟磁性体3の分布状態がま
ばらになるため、その応力検知感度が低下する。
When the pitch b is set in this way, the main body 2
Is sufficient, and thus the amount of adhesive is appropriate, sufficient adhesive strength can be obtained, and the distribution state of the fibrous soft magnetic material 3 is appropriate, so that its stress detection sensitivity is good.
However, when b <2d, the volume fraction Vf of the fibrous soft magnetic material 3 in the adhesive layer is Vf≈40% because of the relationship with the thickness c of the adhesive member 1, resulting in insufficient adhesive strength. Further, the fibrous soft magnetic bodies 3 are easily entangled with each other during the bonding work, and it is difficult to make the thickness of the bonding layer uniform.
On the other hand, when b> 10d, the distribution state of the fibrous soft magnetic material 3 becomes sparse, and the stress detection sensitivity thereof decreases.

【0015】表1は接着部材1の具体例における寸法等
を示す。表1において、繊維状軟磁性体3の体積分率V
fは、接着部材1における値を示す。
Table 1 shows dimensions and the like of specific examples of the adhesive member 1. In Table 1, the volume fraction V of the fibrous soft magnetic material 3
f shows the value in the adhesive member 1.

【0016】[0016]

【表1】 図3に示すように、被接着部材である同一構造で同一寸
法の2枚のFRP板(長さg:155mm、幅h:25m
m、厚さk:1.6mm、熱膨脹率:3.5×10 -6
℃)41 ,42 の接着に当っては、両FRP板41 ,4
2 の各一端部間で接着部材1全体を、その長手方向aを
両FRP板41 ,42 の長手方向mに合致させて挟着
し、次いでその接着部材1を、180℃、1時間、3.
2気圧の条件下で硬化させる。これにより接着層Bが形
成され、その接着層Bを介して両FRP板41 ,42
接着される。このときの接着代は10cm2 である。
[Table 1]As shown in FIG. 3, the same structure and the same size of the members to be adhered
Two FRP plates of the method (length g: 155 mm, width h: 25 m
m, thickness k: 1.6 mm, coefficient of thermal expansion: 3.5 × 10 -6/
℃) 41, 42Both FRP plates 4 for bonding1, 4
2Of the entire adhesive member 1 between each one end of the
Both FRP plates 41, 42Aligned with the longitudinal direction m of the
Then, the adhesive member 1 was heated at 180 ° C. for 1 hour, and 3.
It is cured under the condition of 2 atm. As a result, the adhesive layer B is shaped
Both FRP plates 4 are formed through the adhesive layer B.1, 42But
To be glued. Adhesion allowance at this time is 10 cm2Is.

【0017】この場合、繊維状軟磁性体3の熱膨脹率は
7.3×10-6/℃であり、一方、両FRP板41 ,4
2 のそれは3.5×10-6/℃であるから主体2の加熱
硬化後、したがって接着層B形成後常温においては、繊
維状軟磁性体3は引張り荷重を付与された状態に拘束さ
れる。
In this case, the coefficient of thermal expansion of the fibrous soft magnetic material 3 is 7.3 × 10 -6 / ° C., while both FRP plates 4 1 , 4
Since that of No. 2 is 3.5 × 10 −6 / ° C., the fibrous soft magnetic body 3 is restrained in a state in which a tensile load is applied after the heat curing of the main body 2, and thus at room temperature after the formation of the adhesive layer B. .

【0018】接着層Bにおける繊維状軟磁性体3の応力
測定を行う場合には、励磁コイルを用いて測定対象であ
る繊維状軟磁性体3に、その軟磁性体3の保磁力を超え
る交流磁界を付与して、検知コイルに繊維状軟磁性体3
を介し交流起電力を誘起させ、その交流起電力の波形に
おいて、繊維状軟磁性体3の応力情報を含む1つ以上の
高調波成分の実効値と基本波成分の実効値とから算出さ
れるひずみ率K(以下、単にひずみ率Kと言う)を測定
量とする、といった方法が採用される。
When the stress of the fibrous soft magnetic material 3 in the adhesive layer B is measured, an alternating current exceeding the coercive force of the soft magnetic material 3 is applied to the fibrous soft magnetic material 3 to be measured by using an exciting coil. By applying a magnetic field, the fibrous soft magnetic material 3 is applied to the detection coil.
An AC electromotive force is induced via the, and in the waveform of the AC electromotive force, it is calculated from the effective value of one or more harmonic components including the stress information of the fibrous soft magnetic body 3 and the effective value of the fundamental wave component. A method in which the strain rate K (hereinafter, simply referred to as the strain rate K) is used as the measurement amount is adopted.

【0019】このように、ひずみ率Kを測定量とする、
即ち、前記高調波成分を量として捕らえると、繊維状軟
磁性体3の応力を高精度で測定することができ、したが
って微小応力変化を正確に検知することができる。
In this way, the strain rate K is used as the measured quantity,
That is, if the harmonic component is captured as an amount, the stress of the fibrous soft magnetic material 3 can be measured with high accuracy, and thus the minute stress change can be accurately detected.

【0020】次に、前記応力測定方法の原理について説
明する。
Next, the principle of the stress measuring method will be described.

【0021】図4において、発振器5に接続された励磁
コイル6と、検知コイル7とに繊維状軟磁性体3が挿通
され、その軟磁性体3には所定の引張り荷重が付与され
る。
In FIG. 4, the fibrous soft magnetic material 3 is inserted into the exciting coil 6 and the detection coil 7 connected to the oscillator 5, and a predetermined tensile load is applied to the soft magnetic material 3.

【0022】発振器5を作動させて励磁コイル6により
繊維状軟磁性体3に、その軟磁性体3の保磁力Hcを超
える、直流磁界成分を含まない交流磁界Hを付与する
と、検知コイル7には繊維状軟磁性体3を介し正負対称
の交流起電力V2 が誘起される。
When the oscillator 5 is actuated and the exciting coil 6 applies to the fibrous soft magnetic material 3 an alternating magnetic field H that does not include a direct current magnetic field component and exceeds the coercive force Hc of the soft magnetic material 3, the detecting coil 7 is applied to the detecting coil 7. AC positive / negative symmetrical AC electromotive force V 2 is induced through the fibrous soft magnetic material 3.

【0023】ここで、交流起電力V2 は[数1]に示す
ように、
Here, the AC electromotive force V 2 is, as shown in [Equation 1],

【0024】[0024]

【数1】 と表わされる。ただし、φは磁束、tは時間、αは係
数、Iは繊維状軟磁性体3の磁化の強さ、Hは交流磁界
の強さである。
[Equation 1] Is represented. However, φ is magnetic flux, t is time, α is a coefficient, I is the strength of magnetization of the fibrous soft magnetic material 3, and H is the strength of the AC magnetic field.

【0025】また交流磁界Hは[数2]に示すように、The alternating magnetic field H is, as shown in [Equation 2],

【0026】[0026]

【数2】 と表わされる。ただし、Hmは交流磁界の振幅、f0
周波数、ψ0 は位相角である。
[Equation 2] Is represented. However, Hm is the amplitude of the alternating magnetic field, f 0 is the frequency, and ψ 0 is the phase angle.

【0027】ここで、[数2]を時間tについて微分す
ると、[数3]に示すように、
Here, when [Equation 2] is differentiated with respect to time t, as shown in [Equation 3],

【0028】[0028]

【数3】 となる。[Equation 3] Becomes

【0029】そこで、[数3]のdH/dtを[数1]
に代入すると、交流起電力V2 は[数4]に示すよう
に、
Therefore, the dH / dt of [Equation 3] is changed to [Equation 1]
Substituting into, the AC electromotive force V 2 is, as shown in [Equation 4],

【0030】[0030]

【数4】 と表わされる。[Equation 4] Is represented.

【0031】繊維状軟磁性体3の磁化過程においては、
図5、線n1 で示すような磁化曲線が得られるので、
[数4]は瞬間磁化率dI(H)/dHを用いて[数
5]に示すように、
In the magnetization process of the fibrous soft magnetic material 3,
Since the magnetization curve as shown by the line n 1 in FIG. 5 is obtained,
[Equation 4] uses the instantaneous magnetic susceptibility dI (H) / dH as shown in [Equation 5],

【0032】[0032]

【数5】 と表わされる。[Equation 5] Is represented.

【0033】この交流起電力V2 は、その波形が図6に
示すようにひずみ波であることから高調波成分を含んで
いる。この場合、交流磁界Hは前記のように直流磁界成
分を含まないので、交流起電力V2 の前記高調波成分
は、原理上、奇数調波成分のみからなり、偶数調波成分
を含むことはない。
This AC electromotive force V 2 contains a harmonic component because its waveform is a distorted wave as shown in FIG. In this case, since the AC magnetic field H does not include the DC magnetic field component as described above, the harmonic component of the AC electromotive force V 2 is, in principle, composed of only odd harmonic components and does not include even harmonic components. Absent.

【0034】前記高調波成分は瞬間磁化率dI(H)/
dHに依存し、またその瞬間磁化率dI(H)/dHは
繊維状軟磁性体3の応力に依存する。したがって高調波
成分は繊維状軟磁性体3の応力情報を含んでいる。
The harmonic component is the instantaneous magnetic susceptibility dI (H) /
It depends on dH, and its instantaneous magnetic susceptibility dI (H) / dH depends on the stress of the fibrous soft magnetic material 3. Therefore, the harmonic component includes the stress information of the fibrous soft magnetic body 3.

【0035】そこで、交流起電力V2 の波形をスペクト
ルアナライザを用い周波数解析して基本波成分と高調波
成分とに分け、前記のようにひずみ率Kを繊維状軟磁性
体3の応力測定量とする。
Therefore, the waveform of the AC electromotive force V 2 is frequency-analyzed using a spectrum analyzer and divided into a fundamental wave component and a harmonic wave component, and the strain rate K is determined by the stress measurement amount of the fibrous soft magnetic material 3 as described above. And

【0036】ひずみ率Kは、例えば、高調波成分が第
3,第5,第7,第9調波成分である場合、それら第
3,第5,第7,第9調波成分の実効値をそれぞれ
3 ,E5 ,E7 ,E9 とし、また基本波成分の実効値
をE1 とすると、[数6]に示すように、
The distortion factor K is the effective value of the third, fifth, seventh and ninth harmonic components when the harmonic components are the third, fifth, seventh and ninth harmonic components, for example. Let E 3 , E 5 , E 7 , and E 9 be the respective values and the effective value of the fundamental wave component be E 1 , as shown in [Equation 6],

【0037】[0037]

【数6】 と表わされる。このひずみ率Kの演算には演算器が用い
られる。
[Equation 6] Is represented. A calculator is used to calculate the distortion rate K.

【0038】一方、繊維状軟磁性体3の磁気特性は、そ
の軟磁性体3が置かれている状態の変化に伴って変化す
る、つまり、繊維状軟磁性体3の瞬間磁化率dI(H)
/dHは、その軟磁性体3に対する引張り荷重が大から
小に変化すると、図5,線n 3 →線n2 →線n1 のよう
に大から小に変化し、その結果、周期関数であるV
2(t)が変化するので高調波成分の実効値も変化す
る。
On the other hand, the magnetic characteristics of the fibrous soft magnetic material 3 are as follows.
Change with the change of the state where the soft magnetic body 3 of
That is, the instantaneous magnetic susceptibility dI (H) of the fibrous soft magnetic material 3
/ DH is because the tensile load on the soft magnetic material 3 is large.
When it changes to a small value, the line n in FIG. 3→ line n2→ line n1As
Changes from large to small, and as a result, the periodic function V
2Since (t) changes, the effective value of the harmonic component also changes.
It

【0039】したがって、前記のようにひずみ率Kを測
定量とすることによって、図7に示すように繊維状軟磁
性体3の微小応力変化を正確に測定することができる。
Therefore, by using the strain rate K as the measurement amount as described above, it is possible to accurately measure the minute stress change of the fibrous soft magnetic material 3 as shown in FIG.

【0040】以下、具体例について説明する。Specific examples will be described below.

【0041】2枚のFRP板41 ,42 として、強化用
繊維体が、直径6μmのカーボン繊維よりなる8枚のク
ロスを、相隣る両クロスのカーボン繊維の配向性が45
°変化するように積層した積層体であり、またマトリッ
クスがエポキシ樹脂であるものを用意した。両FRP板
1 ,42 の寸法および熱膨脹率は前記のものと同一で
ある。これらFRP板41 ,42 を前記接着部材1を用
いて前記と同様の方法で接着して、図8に示すように接
着層Bを形成した。この場合、繊維状軟磁性体3は前記
同様に引張り荷重を付与された状態に拘束される。
As the two FRP plates 4 1 and 4 2 , the reinforcing fibrous body is composed of 8 cloths made of carbon fibers having a diameter of 6 μm, and the orientation of the carbon fibers of both adjacent cloths is 45.
There was prepared a laminated body in which the layers were laminated so as to be changed, and the matrix of which was an epoxy resin. Both FRP plates 4 1, 4 2 dimensions and coefficient of thermal expansion is the same as above. These FRP plates 4 1 and 4 2 were adhered using the adhesive member 1 in the same manner as described above to form an adhesive layer B as shown in FIG. In this case, the fibrous soft magnetic body 3 is constrained in a state where a tensile load is applied as in the above.

【0042】図8において応力測定装置8は次のように
構成される。即ち、フェライト製コア9は、一対の脚部
9aと、両脚部9aの一端を連結する連結部9bとより
コ字形に形成される。連結部9bに検知コイル7が14
0ターン/15mm巻装され、その検知コイル7の外周に
励磁コイル6が140ターン/15mm巻装される。励磁
コイル6は発振器5に接続される。また検知コイル7は
スペクトルアナライザ10に、そのスペクトルアナライ
ザ10は演算器11にそれぞれ接続される。
In FIG. 8, the stress measuring device 8 is constructed as follows. That is, the ferrite core 9 is formed in a U shape by the pair of leg portions 9a and the connecting portion 9b that connects one ends of the both leg portions 9a. The detection coil 7 is attached to the connecting portion 9b.
The winding is wound 0 turns / 15 mm, and the exciting coil 6 is wound around the detection coil 7 at 140 turns / 15 mm. The exciting coil 6 is connected to the oscillator 5. Further, the detection coil 7 is connected to the spectrum analyzer 10, and the spectrum analyzer 10 is connected to the calculator 11.

【0043】先ず、接着層Bの繊維状軟磁性体3につい
て応力測定を行った。その軟磁性体3の応力測定に当っ
ては、コア9の両脚部9a端面を一方のFRP板41
表面に当て、発振器5を、直流磁界成分を含まないサイ
ン波、周波数1kHz、ピーク間電圧、つまり1周期に
おけるピークおよびピーク間の電圧30VP-P の発振条
件で作動させて励磁コイル6に繊維状軟磁性体3の保磁
力Hcを超える交流磁界Hを付与した。これによりコア
9および軟磁性体3間に磁路が形成され、検知コイル7
に交流起電力V2 が誘起される。この交流起電力V2
スペクトルアナライザ10に入力し、次いで演算器11
よりひずみ率K、即ち、[数7]に示すように、
First, stress measurement was performed on the fibrous soft magnetic material 3 of the adhesive layer B. In measuring the stress of the soft magnetic body 3, the end faces of both legs 9a of the core 9 are applied to the surface of one FRP plate 41, and the oscillator 5 is set to a sine wave containing no DC magnetic field component, a frequency of 1 kHz, and a peak-to-peak interval. The magnetic field, that is, the peak and the peak-to-peak voltage in one cycle, was operated under an oscillation condition of 30 V PP to apply an AC magnetic field H to the exciting coil 6 that exceeds the coercive force Hc of the fibrous soft magnetic body 3. As a result, a magnetic path is formed between the core 9 and the soft magnetic body 3, and the detection coil 7
AC electromotive force V 2 is induced in the. This AC electromotive force V 2 is input to the spectrum analyzer 10, and then the calculator 11
More distortion rate K, that is, as shown in [Equation 7],

【0044】[0044]

【数7】 を出力させ、これを繊維状軟磁性体3の応力測定量とし
た。前記のように軟磁性体3を磁化させると、その軟磁
性体3に伸びが生じる、つまり磁歪現象が発生するが、
交流磁界下での磁歪振動現象は、硬化した主体2によっ
て抑制される。
[Equation 7] Was output, and this was used as the stress measurement amount of the fibrous soft magnetic body 3. When the soft magnetic body 3 is magnetized as described above, the soft magnetic body 3 expands, that is, a magnetostriction phenomenon occurs.
The magnetostrictive vibration phenomenon under an alternating magnetic field is suppressed by the hardened main body 2.

【0045】次に、両FRP板41 ,42 の各外端部を
チャックにて挟持し、接着層Bについてその接着層Bが
破断するまで引張り−引張り疲労試験を行い、その間所
定の応力サイクル繰返し数毎に繊維状軟磁性体3の応力
を測定した。この疲労試験条件は、両チャック間の距離
150mm、最小引張り荷重0.14トン、最大引張り荷
重1.4トン、繰返し周波数20Hzである。
Next, the outer end portions of both FRP plates 4 1 and 4 2 are clamped by a chuck, and a tensile-tensile fatigue test is performed on the adhesive layer B until the adhesive layer B breaks, and a predetermined stress is applied during that time. The stress of the fibrous soft magnetic material 3 was measured for each cycle repetition number. The fatigue test conditions are a distance between both chucks of 150 mm, a minimum tensile load of 0.14 tons, a maximum tensile load of 1.4 tons, and a repetition frequency of 20 Hz.

【0046】そして、応力サイクル繰返し数とひずみ率
Kとの関係を求めたところ、図9の結果を得た。ひずみ
率Kは、試験開始直後に主体2が塑性的な変形を生じ
る、といった理由で低下するが、その後は、応力サイク
ル繰返し数2×103 回まで一定であり、これにより接
着層Bは無損傷であることが判る。そして応力サイクル
繰返し数が2×103 回を超えると、ひずみ率Kは低下
し始める。これは、接着層B内に損傷が発生したため、
繊維状軟磁性体3に対する拘束力が低下し、それに起因
してその軟磁性体3の応力が低下すると共に交流磁界下
での磁歪振動現象に対する抑制が緩和されたことに因
る。応力サイクル繰返し数5×103 回にて接着層Bの
断面を顕微鏡観察したところ、クラックの発生が確認さ
れた。
Then, the relationship between the number of stress cycle repetitions and the strain rate K was determined, and the results shown in FIG. 9 were obtained. The strain rate K decreases due to the fact that the main body 2 plastically deforms immediately after the start of the test, but after that, it is constant up to the stress cycle number of 2 × 10 3 times, whereby the adhesive layer B does not exist. It turns out to be damage. When the number of stress cycle repetitions exceeds 2 × 10 3 , the strain rate K starts to decrease. This is because damage occurred in the adhesive layer B,
This is because the restraining force on the fibrous soft magnetic material 3 is reduced, the stress of the soft magnetic material 3 is reduced due to that, and the suppression of the magnetostrictive vibration phenomenon under an alternating magnetic field is relaxed. When a cross section of the adhesive layer B was observed with a microscope at a stress cycle number of 5 × 10 3 times, the occurrence of cracks was confirmed.

【0047】図10は他の引張り−引張り疲労試験例を
示す。この試験例においては、前記何れか一方のFRP
板41 と鋼板(JIS S45C、長さg:155mm、
幅h:25mm、厚さk:4mm、熱膨脹率11.2×10
-6/℃)とを前記接着部材1を用いて前記と同様の方法
で接着したものが用いられた。この場合には、鋼板の熱
膨脹率がFRP板41 のそれよりも大きいことに起因し
て、繊維状軟磁性体3は圧縮荷重を付与された状態に拘
束される。
FIG. 10 shows another tensile-tensile fatigue test example. In this test example, the FRP of either one of the above
Plate 4 1 and the steel plate (JIS S45C, length g: 155mm,
Width h: 25 mm, thickness k: 4 mm, coefficient of thermal expansion 11.2 × 10
-6 / ° C.) and the adhesive member 1 were adhered in the same manner as described above. In this case, the thermal expansion coefficient of the steel sheet due to larger than that of the FRP plate 4 1, fibrous soft magnetic body 3 is restrained in a state of being applied a compressive load.

【0048】試験条件は、最小引張り荷重を0.06ト
ンに、最大引張り荷重を0.55トンにそれぞれ設定し
た以外は前記試験例と同じである。また感度向上の観点
から応力測定装置8のコア9はFRP板41 側に配置さ
れる。
The test conditions are the same as those of the test example except that the minimum tensile load is set to 0.06 ton and the maximum tensile load is set to 0.55 ton. The core 9 of the stress measuring device 8 from the viewpoint of improving sensitivity is disposed FRP plate 4 1 side.

【0049】図10において、ひずみ率Kは、試験開始
直後に主体2が塑性的な変形を生じる、といった理由で
僅かに上昇するが、その後は、応力サイクル繰返し数6
×103 回まで一定であり、これにより接着層Bは無損
傷であることが判る。そして応力サイクル繰返し数が6
×103 回を超えると、ひずみ率Kは上昇し始める。こ
れは、接着層内に損傷が発生したため、繊維状軟磁性体
3に対する拘束力が低下し、それに起因してその軟磁性
体3の応力が低下すると共に交流磁界下での磁歪振動現
象に対する抑制が緩和されたことに因る。応力サイクル
繰返し数104回にて接着層Bの断面を顕微鏡観察した
ところ、繊維状軟磁性体3と硬化した主体2間にクラッ
クの発生が認められた。
In FIG. 10, the strain rate K slightly increases because the main body 2 undergoes plastic deformation immediately after the start of the test, but after that, the stress cycle repetition number 6
It is constant up to × 10 3 times, which shows that the adhesive layer B is undamaged. And the stress cycle number is 6
When it exceeds × 10 3 times, the strain rate K starts to increase. This is because the adhesive layer is damaged, so that the restraining force on the fibrous soft magnetic material 3 is reduced, which causes the stress of the soft magnetic material 3 to be reduced and also suppresses the magnetostrictive vibration phenomenon under an alternating magnetic field. Is due to the relaxation. When the cross section of the adhesive layer B was observed with a microscope at a stress cycle number of 10 4 times, cracks were observed between the fibrous soft magnetic body 3 and the cured main body 2.

【0050】なお、接着部材1には、その強化を目的と
してガラス繊維等を含有させてもよい。両被接着部材は
金属より構成されていてもよく、またそれら部材の材質
は木材、セラミックス等であってもよい。
The adhesive member 1 may contain glass fiber or the like for the purpose of strengthening it. Both members to be adhered may be made of metal, and the material of these members may be wood, ceramics, or the like.

【0051】軟磁性体の応力測定量としては、ひずみ率
Kに限らず、交流起電力の波形において、軟磁性体の応
力情報を含む一つ以上の高調波成分の実効値、ピーク間
電圧、波高値等を用いることができる。
The stress measurement amount of the soft magnetic material is not limited to the strain rate K, but in the waveform of the AC electromotive force, the effective value of one or more harmonic components including the stress information of the soft magnetic material, the peak-to-peak voltage, A peak value or the like can be used.

【0052】[0052]

【発明の効果】本発明によれば、前記のように構成する
ことによって、非破壊状態にて軟磁性体の応力を精度良
く測定して、内部欠陥を高感度で検知し得る接着層を形
成することが可能な接着部材を提供することができる。
また軟磁性体の応力測定は、一方の被接着部材の表面側
から行えばよいので、接着層の内部欠陥の検知を容易に
行うことができる。
According to the present invention, with the above-mentioned structure, the stress of the soft magnetic material is accurately measured in the non-destructive state to form the adhesive layer capable of detecting the internal defect with high sensitivity. It is possible to provide an adhesive member that can be manufactured.
Further, since the stress measurement of the soft magnetic material may be performed from the surface side of one of the adherend members, the internal defect of the adhesive layer can be easily detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】接着部材の斜視図である。FIG. 1 is a perspective view of an adhesive member.

【図2】図1の2−2線拡大断面図である。2 is an enlarged sectional view taken along line 2-2 of FIG.

【図3】2枚のFRP板を接着層を介して接着した状態
を示す斜視図である。
FIG. 3 is a perspective view showing a state in which two FRP plates are bonded via an adhesive layer.

【図4】応力測定方法の原理図である。FIG. 4 is a principle diagram of a stress measuring method.

【図5】軟磁性体の磁化曲線図である。FIG. 5 is a magnetization curve diagram of a soft magnetic material.

【図6】交流起電力V2 の波形図である。FIG. 6 is a waveform diagram of AC electromotive force V 2 .

【図7】応力とひずみ率Kとの関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between stress and strain rate K.

【図8】応力測定装置の概略図である。FIG. 8 is a schematic view of a stress measuring device.

【図9】応力サイクル繰返し数とひずみ率との関係の一
例を示すグラフである。
FIG. 9 is a graph showing an example of the relationship between the number of stress cycle repetitions and the strain rate.

【図10】応力サイクル繰返し数とひずみ率との関係の
他例を示すグラフである。
FIG. 10 is a graph showing another example of the relationship between the number of stress cycle repetitions and the strain rate.

【符号の説明】[Explanation of symbols]

1 接着部材 2 主体 3 軟磁性体 41 ,42 FRP板(被接着部材) B 接着層1 Adhesive member 2 Main body 3 Soft magnetic material 4 1 , 4 2 FRP plate (adhered member) B Adhesive layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方の被接着部材(41 )と他方の被接
着部材(42 )とを接着し、且つ軟磁性体(3)の応力
−磁気特性を利用して内部欠陥を検知し得るようにした
接着層(B)を形成するための接着部材であって、未硬
化の接着剤よりなる主体(2)と、前記主体(2)内に
埋設され、且つ主体(2)硬化後には外力を付与された
状態に拘束される複数の前記軟磁性体(3)とより構成
されることを特徴とする内部欠陥検知可能な接着層形成
用接着部材。
1. An internal defect is detected by adhering one adhered member (4 1 ) and the other adhered member (4 2 ) and utilizing the stress-magnetic characteristics of the soft magnetic material (3). An adhesive member for forming an adhesive layer (B) thus obtained, comprising a main body (2) made of an uncured adhesive, and a main body (2) embedded in the main body (2) and after curing the main body (2). Is an adhesive member for forming an adhesive layer capable of detecting an internal defect, which is composed of a plurality of the soft magnetic bodies (3) which are constrained to be applied with an external force.
【請求項2】 前記軟磁性体(3)は繊維状をなし、そ
れら繊維状軟磁性体(3)が、前記主体(2)内におい
て一定間隔で並列している、請求項1記載の内部欠陥検
知可能な接着層形成用接着部材。
2. The internal according to claim 1, wherein the soft magnetic material (3) has a fibrous shape, and the fibrous soft magnetic materials (3) are juxtaposed at regular intervals in the main body (2). An adhesive member for forming an adhesive layer capable of detecting defects.
【請求項3】 前記軟磁性体(3)は非晶質金属よりな
る、請求項1または2記載の内部欠陥検知可能な接着層
形成用接着部材。
3. The adhesive member for forming an adhesive layer according to claim 1, wherein the soft magnetic material (3) is made of an amorphous metal.
JP10998594A 1994-01-26 1994-05-24 Adhesive member for forming adhesive layer capable of detecting internal defect Pending JPH07316518A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10998594A JPH07316518A (en) 1994-05-24 1994-05-24 Adhesive member for forming adhesive layer capable of detecting internal defect
DE69520608T DE69520608T2 (en) 1994-01-26 1995-01-26 Measurement of the tensile stress of a magnetic material and error detection in fiber-reinforced plastic structures and adhesive elements provided with magnetic material
US08/381,687 US5640088A (en) 1994-01-26 1995-01-26 Process for measuring stress of magnetic materials, FRP member whose internal damage is detectable, and adhesive layer forming adhesive member whose internal defection is detectable
EP95300469A EP0666470B1 (en) 1994-01-26 1995-01-26 Stress measurement of magnetic materials, and FRP and adhesive members with such material for defect detection
US08/815,471 US6127822A (en) 1994-01-26 1997-03-11 Adhesive member for forming an adhesive layer between two members and capable of detecting an internal defect in the adhesive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10998594A JPH07316518A (en) 1994-05-24 1994-05-24 Adhesive member for forming adhesive layer capable of detecting internal defect

Publications (1)

Publication Number Publication Date
JPH07316518A true JPH07316518A (en) 1995-12-05

Family

ID=14524166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10998594A Pending JPH07316518A (en) 1994-01-26 1994-05-24 Adhesive member for forming adhesive layer capable of detecting internal defect

Country Status (1)

Country Link
JP (1) JPH07316518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271182A (en) * 2003-03-04 2004-09-30 Osaka Sealing Printing Co Ltd Sensing material, sensing seal and sensing system
JP2010065094A (en) * 2008-09-09 2010-03-25 Seiji Sugawara Adhesive for resin material
JP2011527756A (en) * 2008-07-09 2011-11-04 ザ・ボーイング・カンパニー Measurement of strain in bonded joints containing magnetostrictive materials.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271182A (en) * 2003-03-04 2004-09-30 Osaka Sealing Printing Co Ltd Sensing material, sensing seal and sensing system
JP2011527756A (en) * 2008-07-09 2011-11-04 ザ・ボーイング・カンパニー Measurement of strain in bonded joints containing magnetostrictive materials.
JP2010065094A (en) * 2008-09-09 2010-03-25 Seiji Sugawara Adhesive for resin material

Similar Documents

Publication Publication Date Title
US6127822A (en) Adhesive member for forming an adhesive layer between two members and capable of detecting an internal defect in the adhesive layer
US8616068B2 (en) Array for sensing and inducing strain in an adhesively bonded joint including magnetostrictive material
Cho et al. Megahertz-range guided pure torsional wave transduction and experiments using a magnetostrictive transducer
KR100573736B1 (en) Transducer for Generating and Sensing Torsional Waves, and Apparatus and Method for Structural Diagnosis Using It
US7621189B2 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
US5640088A (en) Process for measuring stress of magnetic materials, FRP member whose internal damage is detectable, and adhesive layer forming adhesive member whose internal defection is detectable
CN112903162B (en) Method for evaluating residual stress distribution characteristics of natural gas pipeline circumferential weld by using coercive force
JP4203045B2 (en) Magnetic deformation transducer using tail patch and elastic wave measuring device using it
Ghezzo et al. Onset of resin micro-cracks in unidirectional glass fiber laminates with integrated SHM sensors: experimental results
Tenreiro et al. Effect of mechanical properties and geometric dimensions on electromechanical impedance signatures for adhesive joint integrity monitoring
JPH07316518A (en) Adhesive member for forming adhesive layer capable of detecting internal defect
Tzoura et al. Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors
US9465011B2 (en) Flexible magnetostrictive probe having sensor elements without permanent magnets
Matta et al. Acoustic emission damage assessment of steel/CFRP bonds for rehabilitation
GRADY et al. Vibration testing of impact-damaged composite laminates
JP3406045B2 (en) FRP member capable of detecting internal damage
Kurz et al. Micromagnetic and ultrasound methods to determine and monitor stress of steel structures
Chen et al. Health monitoring of composites embedded with magnetostrictive thick film without disassembly
EP1167965A2 (en) Method for in-Situ non-destructive measurement of young&#39;s modulus of plate structures
JP3266727B2 (en) Method for measuring stress of magnetic material
Zhou et al. Review of embedded particle tagging methods for nondestructive evaluation (NDE) of composite materials and structures
Augustyniak et al. Assessment with mechanical Barkhausen effect of residual stress in grain oriented polycrystalline 3% Si-Fe sheet
Palanisamy et al. Numerical modal sensitivity analysis for fatigue damage accumulation in adhesively bonded lap-joint
Chen et al. Parametric study on contact sensors for MASW measurement-based interfacial debonding detection for SCCS
JP3270632B2 (en) Stress measuring sensor and stress measuring device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040623