JPH07316228A - Dispensing method for polyethylene with narrow molecular weight distribution - Google Patents

Dispensing method for polyethylene with narrow molecular weight distribution

Info

Publication number
JPH07316228A
JPH07316228A JP11081494A JP11081494A JPH07316228A JP H07316228 A JPH07316228 A JP H07316228A JP 11081494 A JP11081494 A JP 11081494A JP 11081494 A JP11081494 A JP 11081494A JP H07316228 A JPH07316228 A JP H07316228A
Authority
JP
Japan
Prior art keywords
solvent
molecular weight
polyethylene
sample
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11081494A
Other languages
Japanese (ja)
Inventor
Masumi Mizu
真澄 水
Meiji Tsuruta
明治 鶴田
Kimitoshi Nagata
公俊 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP11081494A priority Critical patent/JPH07316228A/en
Publication of JPH07316228A publication Critical patent/JPH07316228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To dispense polyethylene with a narrow-molecular weight distribution in a amt. simply, conveniently, efficiently, and accurately by coating a filler packed into a fractionation column with a sample and utilizing the difference in solubility by solvents to thereby change the ratio of a good solvent to a poor solvent in steps. CONSTITUTION:Polyethylene with a narrow mol.wt. distribution is dispensed by coating a filler packed into a fractionation column with a sample dissolved in a good solvent, keeping the temp. in the column at lower than the b.p. of the good solvent, transferring a solvent mixture of the good solvent with a poor solvent into the column at a rate of 1.0-10.0ml/min, and changing the ratio of the good solvent to the poor solvent in the solvent mixture in steps. Thus, a relatively large amt. (gram-unit) of the sample can be fractionated by mol.wt. and dispensed efficiently and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分子量分布の狭いポリエ
チレンの分取方法に関するものである。さらに詳しく
は、比較的多量(グラム単位)のポリエチレンを分子量
毎に分別し、効率的に精度よく分取を行う方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for collecting polyethylene having a narrow molecular weight distribution. More specifically, the present invention relates to a method of separating a relatively large amount (gram unit) of polyethylene for each molecular weight and efficiently and accurately collecting the separated polyethylene.

【0002】[0002]

【従来の技術】GPC(ゲル・パーミエーション・クロ
マトグラフィー)法でポリマーの分子量と分子量分布を
計算する場合には較正曲線が必要であるが、較正曲線を
標準試料を用いて作成する場合には分子量分布の狭い試
料が広範囲に必要である。ポリスチレンでは標準試料が
多数市販されているが、ポリエチレンの標準試料は少数
でかつ高分子量のものがない。
2. Description of the Related Art A calibration curve is necessary when calculating the molecular weight and molecular weight distribution of a polymer by the GPC (gel permeation chromatography) method, but when a calibration curve is prepared using a standard sample, a calibration curve is required. A wide range of samples with narrow molecular weight distribution is required. A large number of standard samples of polystyrene are commercially available, but a small number of standard samples of polyethylene are not available.

【0003】そこで標準ポリエチレン試料を作製する必
要がある。しかしながらリビング重合によって単分散
(Mw/Mnが1.1以下)に近いものが得られるポリ
スチレンと異なり、ポリエチレンは分子量分布の広い試
料を分別することにより分子量分布の狭い試料を作製し
なければならない。
Therefore, it is necessary to prepare a standard polyethylene sample. However, unlike polystyrene, which is close to monodisperse (Mw / Mn is 1.1 or less) by living polymerization, polyethylene has to have a narrow molecular weight distribution sample by separating a sample having a wide molecular weight distribution.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方法においては、分子量分布の狭いポリエチレン試料を
一度に分取できる量は少量であるため、分析手段が限ら
れていた。従って多量の試料(グラム単位)を必要とす
る解析手段、例えば核磁気共鳴装置、X線回折装置、光
散乱装置、粘弾性測定装置、引張試験装置、衝撃試験装
置などに分析用試料を供試することが不可能であった。
However, in the conventional method, since the amount of polyethylene sample having a narrow molecular weight distribution that can be collected at a time is small, the analysis means is limited. Therefore, the analysis sample is used as an analysis means that requires a large amount of sample (gram unit), such as a nuclear magnetic resonance device, an X-ray diffraction device, a light scattering device, a viscoelasticity measurement device, a tensile test device, and an impact test device. It was impossible to do.

【0005】一般に、ポリマーは分子量、化学組成、分
子構造等の分子種のどれか又は全部について不均一な混
合物であり、そして、ポリマーの品質は、一般にこれら
分子種によって決まる。このため、ポリマーのキャラク
タリゼーションを行う際、それらのうち分子量による影
響を少なくするためには分子量分別による分取が有効な
手法である。
Polymers are generally heterogeneous mixtures of any or all of the molecular species such as molecular weight, chemical composition, molecular structure, etc., and the quality of the polymer generally depends on these molecular species. Therefore, when characterizing a polymer, fractionation by molecular weight fractionation is an effective method for reducing the influence of the molecular weight among them.

【0006】本発明は上記の問題点に鑑みてなされたも
のであり、その目的は、簡便に分子量分布の狭いポリエ
チレンを効率的に精度よく多量に分取する方法を提供す
ることにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for easily and efficiently collecting a large amount of polyethylene having a narrow molecular weight distribution in large quantities.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を行った結果、本発明を完成す
るに至った。すなわち、本発明は、分別カラムに充填さ
れた充填剤に試料をコーティングし、溶媒による溶解性
の違いを利用して、良溶媒と貧溶媒の組成比を段階的に
変えることにより分子量分布の狭いポリエチレンを分取
する方法であり、本発明により比較的多量(グラム単
位)のポリエチレンを分子量で分別し、効率的に精度よ
く分取を行うことができる。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, completed the present invention. That is, according to the present invention, the packing material packed in the fractionation column is coated with the sample, and the difference in solubility depending on the solvent is utilized to stepwise change the composition ratio of the good solvent and the poor solvent to narrow the molecular weight distribution. This is a method for fractionating polyethylene, and according to the present invention, a relatively large amount (gram unit) of polyethylene can be fractionated by molecular weight, and fractionation can be carried out efficiently and accurately.

【0008】以下、本発明についてさらに詳細に説明す
る。
The present invention will be described in more detail below.

【0009】本発明の方法において用いられる分別カラ
ムは、分別すべき成分に応じて通常使用される適当な充
填剤を充填したものを用いる。ここで充填剤は溶媒に不
溶で不活性のものであれば特に限定するものではない
が、一般には海砂、珪藻土、ガラスビーズ等の粒径50
〜400メッシュ程度のものが好適に用いられる。
The fractionation column used in the method of the present invention is packed with an appropriate packing material which is usually used depending on the components to be fractionated. The filler is not particularly limited as long as it is insoluble in the solvent and inert, but generally particle size of sea sand, diatomaceous earth, glass beads, etc. is 50
Those having about 400 mesh are preferably used.

【0010】分別カラムの形状及び大きさについては特
に限定するものではないが、例えば、直径10〜50m
m、長さ100〜1000mm程度の円筒状のステンレ
スカラムが好適に用いられる。
The shape and size of the separation column are not particularly limited, but for example, the diameter is 10 to 50 m.
A cylindrical stainless steel column with m and a length of 100 to 1000 mm is preferably used.

【0011】本方法では充填剤への試料のコーティン
グ、良溶媒と貧溶媒の組合せ、溶媒組成の勾配、流量、
カラム温度などが重要な因子である。
In this method, the sample is coated on the packing material, the combination of the good solvent and the poor solvent, the gradient of the solvent composition, the flow rate,
Column temperature is an important factor.

【0012】充填剤への試料のコーティングは、充填剤
表面に薄いポリマー層を均一に生成させるため、1℃/
min以下の徐冷が好ましい。
The coating of the sample on the filler produces a thin polymer layer uniformly on the surface of the filler in order to obtain a temperature of 1 ° C. /
Gradual cooling of min or less is preferable.

【0013】良溶媒としては特に限定するものではない
が、ポリエチレンが溶媒の沸点以下で溶解するp−キシ
レン(沸点;138℃)、テトラリン(沸点;207
℃)、オルトジクロルベンゼン(沸点;180℃)、ト
リクロルベンゼン(沸点;218℃)等が好適である。
The good solvent is not particularly limited, but p-xylene (boiling point: 138 ° C.) and tetralin (boiling point: 207) in which polyethylene dissolves at a temperature not higher than the boiling point of the solvent.
C.), ortho-dichlorobenzene (boiling point; 180.degree. C.), trichlorobenzene (boiling point; 218.degree. C.) and the like are preferable.

【0014】また、貧溶媒としては特に限定するもので
はないが、良溶媒よりも沸点が高く、良溶媒と任意に溶
解する、エチレングリコールモノエチルエーテル(エチ
ルセロソルブ)(沸点;162℃)、エチレングリコー
ルモノブチルエーテル(ブチルセロソルブ)(沸点;1
71℃)等が好適である。
The poor solvent is not particularly limited, but has a boiling point higher than that of the good solvent and is freely soluble in the good solvent, such as ethylene glycol monoethyl ether (ethyl cellosolve) (boiling point: 162 ° C.), ethylene. Glycol monobutyl ether (butyl cellosolve) (boiling point; 1
71 ° C.) and the like are preferable.

【0015】本方法では、これらの良溶媒と貧溶媒から
各々1種類選択し、混合溶媒とするが、沸点の組合せか
ら沸点138℃のp−キシレンと沸点162℃のエチレ
ングリコールモノエチルエーテル(エチルセロソルブ)
又は沸点171℃のエチレングリコールモノブチルエー
テル(ブチルセロソルブ)の組合せが一般的である。
In the present method, one kind of each of these good solvent and poor solvent is selected as a mixed solvent, and p-xylene having a boiling point of 138 ° C. and ethylene glycol monoethyl ether (ethyl acetate having a boiling point of 162 ° C. are selected according to the combination of boiling points. Cellosolve)
Alternatively, a combination of ethylene glycol monobutyl ether (butyl cellosolve) having a boiling point of 171 ° C. is common.

【0016】溶媒組成の勾配は、分子量分別の対象とな
るポリエチレンの分子量及び分子量分布に応じて適宜選
択され特に限定するものではないが、分子量の異なる分
別試料を段階的に分取するため、良溶媒と貧溶媒の混合
比率が50/50以降は、10%以下、さらに5%以下
程度の溶媒組成の勾配が好ましい。
The gradient of the solvent composition is appropriately selected according to the molecular weight and the molecular weight distribution of polyethylene to be subjected to molecular weight fractionation and is not particularly limited, but it is good because fractionated samples having different molecular weights are fractionally collected. When the mixing ratio of the solvent and the poor solvent is 50/50 or more, a gradient of the solvent composition of about 10% or less, further about 5% or less is preferable.

【0017】分別カラムに送る混合溶媒の流量は、1.
0ml/min〜10.0ml/min、好ましくは
5.0ml/min〜8.0ml/minである。流量
が1.0ml/min未満の場合には、分別に時間がか
かり効率的でなく、また、分別中に配管内で再結晶化が
起こり、詰まりの原因となりそれ以降の分別が停止する
可能性がある。一方、流量が10.0ml/minを超
えると分子量分布が広がり、充分な分子量分別が行われ
ない。
The flow rate of the mixed solvent sent to the fractionation column is 1.
It is 0 ml / min to 10.0 ml / min, preferably 5.0 ml / min to 8.0 ml / min. If the flow rate is less than 1.0 ml / min, it takes time to separate and is not efficient, and recrystallization may occur in the pipe during the separation, causing clogging and stopping the separation thereafter. There is. On the other hand, when the flow rate exceeds 10.0 ml / min, the molecular weight distribution is widened and sufficient molecular weight fractionation cannot be performed.

【0018】本方法では、良溶媒と貧溶媒の組成比及び
カラム温度が、分子量分布の狭いポリエチレン試料を得
るためには特に重要である。なお、各工程時の温度及び
溶媒組成と流量は、例えば、システムコンピューター等
によって制御することができる。
In the present method, the composition ratio of the good solvent and the poor solvent and the column temperature are particularly important for obtaining a polyethylene sample having a narrow molecular weight distribution. The temperature, solvent composition and flow rate in each step can be controlled by, for example, a system computer.

【0019】本方法では、充分な分子量分別を行なうた
め、カラム温度を、使用される良溶媒の沸点未満の範囲
内、好ましくは沸点より約10ないし20℃低く設定し
た(例えば、p−キシレン(沸点;138℃)では12
0ないし135℃の範囲内)任意の温度で一定に保ち、
p−キシレンの良溶媒とエチレングリコールモノエチル
エーテル(エチルセロソルブ)の貧溶媒との混合溶媒の
組成比を0/100ないし100/0(容量比)の範囲
で段階的に変えながら分別カラムへ送ることにより、分
別カラム内の充填剤にコーティングされた試料を溶離す
る。
In the present method, in order to carry out sufficient molecular weight fractionation, the column temperature is set within the range below the boiling point of the good solvent used, preferably about 10 to 20 ° C. lower than the boiling point (for example, p-xylene ( 12 at boiling point; 138 ° C)
Keep constant at any temperature (in the range of 0 to 135 ° C),
The composition ratio of the mixed solvent of the good solvent of p-xylene and the poor solvent of ethylene glycol monoethyl ether (ethyl cellosolve) is changed stepwise in the range of 0/100 to 100/0 (volume ratio) and sent to the separation column. This elutes the sample coated on the packing material in the fractionation column.

【0020】カラム温度が115℃未満の温度では組成
(結晶性)による分別が起こったり、分子量分布が広が
り好ましくない。また、良溶媒(例えば、p−キシレン
等)の沸点付近又はそれ以上になると溶媒が沸騰して試
料が充填剤から外れ、分子量による充分な溶離が行われ
ず、分子量と溶媒組成との関係が逆転したり、分子量が
急激に変化するなどして意図する分子量成分が分取でき
ない。
When the column temperature is lower than 115 ° C., the composition (crystallinity) causes separation, and the molecular weight distribution is widened, which is not preferable. When the boiling point of a good solvent (for example, p-xylene, etc.) becomes higher or higher, the solvent boils and the sample comes out of the packing material, sufficient elution due to the molecular weight is not performed, and the relationship between the molecular weight and the solvent composition is reversed. Or the intended molecular weight component cannot be collected due to a sudden change in the molecular weight.

【0021】本方法では、良溶媒(例えば、p−キシレ
ン)に溶解した試料(2,6ーtertーブチルーp−
クレゾール等の酸化防止剤を試料溶液に対して0.05
wt%程度添加する)を分別カラムに送った後、降温に
よりカラム内の充填剤にコーティングする。その後、カ
ラム内溶媒を貧溶媒(例えば、エチレングリコールモノ
エチルエーテル(エチルセロソルブ))に置換する。溶
媒置換後、カラム内温度を使用する良溶媒の沸点未満の
温度まで上昇させる。カラム内温度をその温度で恒温
後、カラム内へ移送する混合溶媒中のp−キシレンの良
溶媒量を段階的に増加させることにより組成比を変えな
がら分別カラムへ送り、流出液から各分別区分を得る。
各分別区分はメタノールに再沈後、濾別・乾燥して分子
量分布の狭いポリエチレン試料を得るものである。
In this method, a sample (2,6-tert-butyl-p-) dissolved in a good solvent (for example, p-xylene) is used.
Antioxidant such as cresol is added to the sample solution at 0.05
(adding about wt%) is sent to the separation column, and then the packing material in the column is coated by lowering the temperature. Then, the solvent in the column is replaced with a poor solvent (for example, ethylene glycol monoethyl ether (ethyl cellosolve)). After the solvent replacement, the temperature inside the column is raised to a temperature below the boiling point of the good solvent used. After the temperature inside the column is kept constant at that temperature, the amount of the good solvent of p-xylene in the mixed solvent transferred into the column is increased stepwise to send it to the separation column while changing the composition ratio, and separate each separation fraction from the effluent. To get
Respective precipitation fractions are obtained by reprecipitation in methanol, filtering and drying to obtain a polyethylene sample having a narrow molecular weight distribution.

【0022】本方法を実施するための装置としては、例
えば、図1に示す装置があげられる。この装置の主な構
成は、2台のポンプ、恒温槽、恒温槽内のカラム、そし
てフラクションコレクタ及び赤外検出器からなるもので
ある。相互の作用はシステムコンピューター制御により
自動分取が行われる。
An apparatus for carrying out the present method is, for example, the apparatus shown in FIG. The main configuration of this device consists of two pumps, a thermostat, a column in the thermostat, a fraction collector and an infrared detector. Interactions are automatically sorted by system computer control.

【0023】本方法は大きく2つの工程からなる。試料
を良溶媒に溶解した試料溶液を試料注入部から分別カラ
ムに送り、降温により試料を分別カラム内の充填剤コー
ティングにさせる(第1工程)。
The method is mainly composed of two steps. The sample solution in which the sample is dissolved in a good solvent is sent from the sample injection part to the separation column, and the sample is coated with the filler in the separation column by lowering the temperature (first step).

【0024】さらに貧溶媒と置換後、良溶媒と貧溶媒の
組成比を段階的に変えながら分別カラムへ送ることによ
り、分別カラム内の充填剤にコーティングされた試料を
溶離(第2工程)し、分別試料がフラクションコレクタ
に集められる。
After replacing with the poor solvent, the sample coated on the packing material in the fractionation column is eluted (second step) by sending it to the fractionation column while changing the composition ratio of the good solvent and the poor solvent stepwise. , Fractionated samples are collected in the fraction collector.

【0025】以上の方法により、Mw/Mnが2.1以
下の分子量分布が狭いポリエチレンを分取することが可
能となる。
By the above method, polyethylene having a narrow molecular weight distribution of Mw / Mn of 2.1 or less can be collected.

【0026】[0026]

【実施例】以下に実施例を用いて本発明を詳細に説明す
るが、本発明はこれらに限定されるものではない。
The present invention is described in detail below with reference to examples, but the present invention is not limited to these.

【0027】上記した図1に示す装置を用いて、下記の
条件及び表1に示す温度(110℃、120℃、130
℃、140℃)により、高密度ポリエチレン(HDP
E)7300A(東ソー製 MFR=0. 05g/10
min、密度=0. 951g/cm3)の分子量分別を
行った。
Using the apparatus shown in FIG. 1 described above, the following conditions and the temperatures shown in Table 1 (110 ° C., 120 ° C., 130 ° C.) were used.
℃, 140 ℃, high density polyethylene (HDP
E) 7300A (Made by Tosoh MFR = 0.05 g / 10
min, density = 0.951 g / cm 3 ).

【0028】溶媒:p−キシレン/エチレングリコール
モノエチルエーテル(エチルセロソルブ)の混合溶媒
で、組成比を0/100ないし100/0(容量比)の
範囲で段階的に変化させた。
Solvent: A mixed solvent of p-xylene / ethylene glycol monoethyl ether (ethyl cellosolve), the composition ratio of which was changed stepwise in the range of 0/100 to 100/0 (volume ratio).

【0029】分別カラム:直径21.4mm、長さ60
0mm 充填剤:海砂 290g 表1に分子量分別の結果をまとめて示す。分子量及び分
子量分布測定はGPC法(ゲル・パーミエーション・ク
ロマトグラフィー)により下記の条件で測定した。
Separation column: diameter 21.4 mm, length 60
0 mm Filler: Sea sand 290 g Table 1 summarizes the results of molecular weight fractionation. The molecular weight and the molecular weight distribution were measured by the GPC method (gel permeation chromatography) under the following conditions.

【0030】装置:ウオーターズ150C ALC/G
PC カラム:東ソー製GMHHRーH(S)(7.8mmI
D×30cm×3本) 溶媒:オルソジクロルベンゼン(ODCB) 流量:1. 0ml/min 注入濃度:40mg/50ml ODCB(注入量30
0μl) なお、東ソー製標準ポリスチレンを用いてユニバーサル
キャリブレーション法によりカラム溶出体積は較正し
た。
Equipment: Waters 150C ALC / G
PC column: Tosoh GMHHR-H (S) (7.8 mmI)
D × 30 cm × 3) Solvent: Ortho-dichlorobenzene (ODCB) Flow rate: 1.0 ml / min Injection concentration: 40 mg / 50 ml ODCB (injection volume 30
The column elution volume was calibrated by the universal calibration method using standard polystyrene manufactured by Tosoh Corporation.

【0031】[0031]

【表1】 [Table 1]

【0032】表1の結果から、本方法によるHDPEの
分別は分子量分別の効果が顕著であり、分子量分布の狭
い試料が得られていることがわかる。
From the results in Table 1, it can be seen that the fractionation of HDPE by this method has a remarkable effect of fractionation of the molecular weight, and a sample having a narrow molecular weight distribution is obtained.

【0033】一方、カラム抽出温度が115℃未満の温
度では組成(結晶性)による分別が起こったり、分子量
分布が広がり好ましくないことがわかる。また、p−キ
シレンの良溶媒の沸点付近又はそれ以上になると溶媒が
沸騰して試料が充填剤から外れ、分子量による充分な溶
離が行われず、分子量が急激に変化するなどして意図す
る分子量成分が分取できないことがわかる。
On the other hand, it is understood that when the column extraction temperature is lower than 115 ° C., fractionation due to composition (crystallinity) occurs and the molecular weight distribution broadens, which is not preferable. Further, when the boiling point of the good solvent of p-xylene is around or higher, the solvent is boiled and the sample is removed from the packing material, sufficient elution due to the molecular weight is not carried out, and the molecular weight is changed suddenly. It turns out that can't be collected.

【0034】参考例 市販ポリエチレン標準試料としては、NBS(Nati
onal Bureau Standards)のもの
があるが、重量平均分子量は最高でも Mw=119,
600(Standards Reference M
aterial1484)であり、非常に高価である。
表2に公表値と測定値を示す。
Reference Example As a commercially available polyethylene standard sample, NBS (Nati
(Bureau Standards), but the weight average molecular weight is at most Mw = 119,
600 (Standards Reference M
1184), which is very expensive.
Table 2 shows the published and measured values.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
の方法によれば、1)比較的多量(グラム単位)の試料
を分子量で分別し、効率的に精度よく分取を行うことが
でき、さらに、2)この装置は、ポンプ、恒温槽、フラ
クションコレクタ及び赤外検出器などの相互の作動をシ
ステムコンピューター制御することにより自動分取がで
きる効果を有するものである。
As is clear from the above description, according to the method of the present invention, 1) a relatively large amount (gram unit) of a sample can be fractionated by molecular weight, and fractionation can be performed efficiently and accurately. In addition, 2) this device has the effect of being able to perform automatic fractionation by controlling the mutual operations of the pump, the constant temperature bath, the fraction collector, the infrared detector and the like by a system computer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において用いられる装置の一例の概略を
示す図である。
FIG. 1 is a diagram schematically showing an example of an apparatus used in the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 分別カラムに充填された充填剤に試料を
コーティングし、溶媒による溶解性の違いを利用して、
良溶媒と貧溶媒の組成比を段階的に変えることによりポ
リエチレンを分取することを特徴とする分子量分布の狭
いポリエチレンの分取方法。
1. A sample is coated on a packing material packed in a fractionation column, and the difference in solubility depending on the solvent is utilized,
A method for fractionating polyethylene having a narrow molecular weight distribution, which comprises fractionating polyethylene by stepwise changing the composition ratio of a good solvent and a poor solvent.
【請求項2】 分別カラムに充填された充填剤に良溶媒
に溶解した試料をコーティングし、その後、分別カラム
内を良溶媒の沸点未満の温度で保ち、分別カラム中に、
良溶媒と貧溶媒の混合溶媒を1.0ml/min〜1
0.0ml/minで移送し、該混合溶媒中における良
溶媒と貧溶媒の組成比を段階的に変えることによりポリ
エチレンを分取することを特徴とする分子量分布の狭い
ポリエチレンの分取方法。
2. The packing material packed in the fractionation column is coated with a sample dissolved in a good solvent, and thereafter, the inside of the fractionation column is maintained at a temperature lower than the boiling point of the good solvent, and in the fractionation column,
1.0ml / min-1 of mixed solvent of good solvent and poor solvent
A method for fractionating polyethylene having a narrow molecular weight distribution, characterized in that polyethylene is fractionated by transferring at 0.0 ml / min and stepwise changing the composition ratio of a good solvent and a poor solvent in the mixed solvent.
JP11081494A 1994-05-25 1994-05-25 Dispensing method for polyethylene with narrow molecular weight distribution Pending JPH07316228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081494A JPH07316228A (en) 1994-05-25 1994-05-25 Dispensing method for polyethylene with narrow molecular weight distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081494A JPH07316228A (en) 1994-05-25 1994-05-25 Dispensing method for polyethylene with narrow molecular weight distribution

Publications (1)

Publication Number Publication Date
JPH07316228A true JPH07316228A (en) 1995-12-05

Family

ID=14545341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081494A Pending JPH07316228A (en) 1994-05-25 1994-05-25 Dispensing method for polyethylene with narrow molecular weight distribution

Country Status (1)

Country Link
JP (1) JPH07316228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068517A1 (en) * 2004-01-09 2005-07-28 Chevron Phillips Chemical Company, Lp Ultra high molecular weight polyethylene fractions having narrow molecular weight distributions and methods of making and using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068517A1 (en) * 2004-01-09 2005-07-28 Chevron Phillips Chemical Company, Lp Ultra high molecular weight polyethylene fractions having narrow molecular weight distributions and methods of making and using the same
US7241620B2 (en) 2004-01-09 2007-07-10 Chevron Phillips Chemical Company Lp Ultra high molecular weight polyethylene fractions having narrow molecular weight distributions and methods of making and using the same
US7691633B2 (en) 2004-01-09 2010-04-06 Chevron Phillips Chemical Company Lp Ultra high molecular weight polyethylene fractions having narrow molecular weight distributions and methods of making and using the same

Similar Documents

Publication Publication Date Title
Francis et al. Fractionation of polyethylene
Danusso et al. Some solution properties of isotactic and atactic polystyrenes
NO160050B (en) SERUM-SEPARATION MEDIA.
Spatorico et al. Exclusion chromatography using porous glass. II. Application to hydrophilic polymers
Peebles Jr Branching in Polyacrylonitrile1
Glockner Characterization of copolymers by means of liquid chromatography
Kulin et al. Long and short chain branching frequency in Low Density Polyethylene (LDPE)
Ford et al. Formation of isotonic Nycodenz gradients for cell separations
Johnson et al. Gel permeation chromatography with organic solvents
Jungnickel et al. Polymer fractionation by precipitation chromatography
JPH07316228A (en) Dispensing method for polyethylene with narrow molecular weight distribution
Caplan Fractionation of polymers by precipitation chromatography—microtechnique and theory
Lesec Preparative gel permeation chromatography
Macko et al. Applicability of cloud point data in liquid chromatography of polymers and continuous measurement of cloud points for polyolefins in mixed solvents
Schneider Review of solution methods and certain other methods of polymer fractionation
Britto et al. High‐density polyethylene fractionation with supercritical propane
Ahmed et al. Characterization of PEG in monomethyl ethers of PEG by 2‐D LC
Ogawa et al. Polymer deposition onto the support in column fractionation
Salovey et al. Molecular aggregation in poly (vinyl chloride)
JP2016042028A (en) Analysis method and analysis device for oil composition component
Gianotti et al. Long chain branching in low density polyethylene: 1. Molecular structure
Mendelson Elution fractionation of crystalline polypropylene
Ishizu et al. Self-micellization of (AB) n type star-block copolymers
Ogawa et al. Preparative fractionation of nylon 12 by column elution method and gel permeation chromatography
JPH0929005A (en) Temperature rise elution dispensing process for ethylene/ alpha olefin copolymer