JPH07315878A - Method of formation of tin oxide film of reduced conductivity - Google Patents

Method of formation of tin oxide film of reduced conductivity

Info

Publication number
JPH07315878A
JPH07315878A JP13138094A JP13138094A JPH07315878A JP H07315878 A JPH07315878 A JP H07315878A JP 13138094 A JP13138094 A JP 13138094A JP 13138094 A JP13138094 A JP 13138094A JP H07315878 A JPH07315878 A JP H07315878A
Authority
JP
Japan
Prior art keywords
tin oxide
oxide film
glass
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP13138094A
Other languages
Japanese (ja)
Inventor
Shigeo Ohashi
茂夫 大橋
Masaki Onoe
正樹 尾上
Naoki Mori
直樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP13138094A priority Critical patent/JPH07315878A/en
Publication of JPH07315878A publication Critical patent/JPH07315878A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material
    • B65D23/0835Coatings characterised by the composition of the material consisting mainly of metallic compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To suppress the conductivity at the temperature setting for the installation, thus enable exact measurement of the static capacity on the glass surface and reduced errors in the inspection by controlling the relation between the temperature on the glass surface and the oxygen concentration in the film formation within a specific range. CONSTITUTION:As shown in the drawing, a tin compound is pumped up, dry air and O2-containing air are blown in through pipes, respectively, and the flow meter controls their volume ratio and flow rates. The tin compound is mixed with the O2-containing air and blown onto the outer surface of the glass vessel to effect coating. An exhauster is set over the glass vessel. This coating process is carried out under such conditions that satisfies the expressions showing the relation of the temperature of the glass surface y (in deg.C) and the oxygen concentration in the atmosphere for film formation x (in %), when needed, the O2-containing air is directly introduced into the hood chamber to form the tin oxide film so that the volume resistivity of the glass bottle exceeds 1,000OMEGAcm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス壜容器にCVD
法により酸化スズ膜を形成するためのコーティング方法
を提供するものであり、特には、その酸化スズ膜の導電
性を抑制するための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a CVD method for a glass bottle container.
The present invention provides a coating method for forming a tin oxide film by a method, and particularly relates to a method for suppressing the conductivity of the tin oxide film.

【0002】[0002]

【従来の技術】ガラス壜容器の製造において、成形機に
よって成形された壜容器は、従来から耐擦傷性を向上さ
せるために、すぐれた硬度を有している酸化スズ膜を容
器外表面に形成させることが多く行われてきている。一
般には、上記成形機によって成形された直後、徐冷工程
を経る前に無機あるいは有機スズ化合物を壜容器に吹き
つけ、酸化スズ膜を成膜していた。具体的には、例え
ば、四塩化スズまたはモノブチルトリクロロスズ等を加
熱蒸発させて得られる蒸気を成形直後のまだ高温状態の
ガラス基体表面に接触させることによって、加熱分解反
応により壜容器表面に酸化スズ膜を成膜するというCV
D法と呼ばれる方法が広く一般に行われていた。
2. Description of the Related Art In the manufacture of glass bottle containers, bottle containers molded by a molding machine have conventionally been formed with a tin oxide film having excellent hardness on the outer surface of the container in order to improve scratch resistance. Many things have been done. In general, a tin oxide film is formed by spraying an inorganic or organic tin compound into a bottle container immediately after being molded by the above molding machine and before undergoing a slow cooling step. Specifically, for example, the vapor obtained by heating and evaporating tin tetrachloride or monobutyltrichlorotin is brought into contact with the surface of the glass substrate in a still high temperature state immediately after molding to oxidize the surface of the bottle container by a thermal decomposition reaction. CV of forming a tin film
The method called the D method has been widely practiced.

【0003】通常この工程での壜容器の外表面は、50
0〜550℃の範囲で行っている。ここで表面温度を上
げれば、一般には膜厚が厚くなることが知られており、
これにより耐擦傷性を向上させるという目的はより達成
することができるが、その一方であまり高くなりすぎる
と徐冷工程を終えるまでに容器自体が自重や外的要因に
より変形しやすくなるという問題を有していた。
Usually, the outer surface of the bottle container in this process is 50
It is performed in the range of 0 to 550 ° C. It is generally known that if the surface temperature is raised, the film thickness increases,
Although the object of improving scratch resistance can be achieved by this, on the other hand, if it becomes too high, the problem that the container itself is likely to be deformed by its own weight or external factors by the end of the slow cooling step Had.

【0004】CVD法による膜の形成工程を簡単に説明
すると、原料の多くの場合常温で液体である無機あるい
は有機スズ化合物の蒸気を、乾燥空気等のキャリアーガ
スによりフード内へ導入し、熱いガラス壜容器の外表面
に向かって循環ファンを介して吹きつけられる。そして
別途備えつけられている排気機構により常時排気されて
いる。こうしてガラス壜容器の外表面に酸化スズ膜が形
成されることとなる。ここで、従来はスズ化合物の蒸気
を運ぶキャリアーガスは、乾燥空気を用いていた。
The process of forming a film by the CVD method will be briefly described. In many cases, the vapor of an inorganic or organotin compound, which is a liquid at room temperature in most cases, is introduced into the hood by a carrier gas such as dry air to produce a hot glass. It is sprayed against the outer surface of the bottle via a circulation fan. And it is constantly exhausted by an exhaust mechanism separately installed. Thus, the tin oxide film is formed on the outer surface of the glass bottle container. Here, conventionally, dry air was used as the carrier gas for carrying the vapor of the tin compound.

【0005】一方で、徐冷工程を終えた壜容器は、検査
工程を通って、出荷されているが、この検査装置の一つ
として容器表面の静電容量を利用して肉厚検査する装置
が広く一般に使用されている。例えば、特開平2−15
6102号に開示されているように、電極を有する複数
のセンサに対して位置決めされたガラス容器の外表面の
静電容量を測定し、電子回路を利用してその静電容量を
電圧に変換する。このガラス容器の肉厚を示す電圧をガ
ラス容器がセンサに沿って転動することによって連続的
に発生させ、この電圧値が予め決められた範囲外である
ときに適当な廃棄手段により不良品として排出されるこ
ととなる。この静電容量値は、ガラス容器の肉厚の増大
に比例して増加し、一般には、肉厚の10-3インチの変
化は、静電容量の10-3pF程度の変化に対応する。そ
のため、わずかな静電容量の測定誤差によっても、肉厚
の誤差を引き起こしやすい。
On the other hand, the bottle container which has undergone the slow cooling process is shipped through the inspection process. One of the inspection devices is a device for inspecting the wall thickness by utilizing the capacitance of the container surface. Is widely used. For example, Japanese Patent Laid-Open No. 2-15
As disclosed in 6102, the capacitance of the outer surface of a glass container positioned with respect to a plurality of sensors having electrodes is measured and the capacitance is converted to a voltage using an electronic circuit. . A voltage indicating the wall thickness of this glass container is continuously generated by rolling the glass container along the sensor, and when this voltage value is outside the predetermined range, it is regarded as a defective product by an appropriate disposal means. It will be discharged. This capacitance value increases in proportion to the increase in the wall thickness of the glass container, and in general, a change in wall thickness of 10 −3 inch corresponds to a change in capacitance of the order of 10 −3 pF. Therefore, even a slight capacitance measurement error is likely to cause a thickness error.

【0006】そして、従来の方法で成膜した酸化スズの
薄膜は、導電性を示す可能性があり、実際の測定によれ
ば100Ωcm以下の体積抵抗率を示すものもある。こ
のために従来の方法で酸化スズ膜を成膜したガラス壜容
器は、上記のように静電容量により肉厚を検査する装置
においては、静電容量を本来の値より大きい値として読
んでしまい、その結果肉厚が規定範囲外であっても良品
として判断してしまうことがあり、その対策として必要
以上に規定範囲を狭く取り、結果的に良品を不良品とし
て扱ってしまうといった不具合があり、改善が望まれて
いた。
[0006] Then, the tin oxide thin film formed by the conventional method may show conductivity, and some actually show a volume resistivity of 100 Ωcm or less. For this reason, the glass bottle container with the tin oxide film formed by the conventional method reads the capacitance as a value larger than the original value in the device for inspecting the wall thickness by the capacitance as described above. As a result, even if the wall thickness is outside the specified range, it may be judged as a non-defective product, and as a countermeasure, the specified range may be narrowed down more than necessary, resulting in the non-defective product being treated as a defective product. , Improvement was desired.

【0007】また、ガラス壜容器の抵抗率を上げるため
の手段としては、成膜時のガラスの温度を上げるという
方法がまず考えられるが、この方法は、既に述べたよう
にあまり上げすぎるとガラス壜の変形を生じてしまい、
この方法に変わる方法が望まれていた。
Further, as a means for increasing the resistivity of the glass bottle container, a method of increasing the temperature of the glass during film formation can be considered first. The bottle will be deformed,
An alternative to this method was desired.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、上
記問題点を解決し、ガラス容器の外表面に形成された酸
化スズ薄膜の導電性と成膜時のガラス温度との関係にお
いて、より低い温度まで導電性を示さないようにするも
のである。その結果、従来の設備温度設定で、導電性を
示さないか、あるいは示してもその値が非常に小さい酸
化スズ膜の成膜が可能となるものである。そして、容器
表面の静電容量値をより正確に測定することができるた
め、従来のように基準値外にあるガラス容器を誤って良
品として通過させることがないように必要以上に基準値
の設定を狭く取り、結果的に本来なら良品である製品を
不良品として処分するといった過ちをおかさずにすむよ
うな酸化スズ膜の形成方法を提供することである。
Therefore, the present invention solves the above-mentioned problems, and further relates to the relationship between the conductivity of the tin oxide thin film formed on the outer surface of the glass container and the glass temperature during film formation. It is intended not to show conductivity even at a low temperature. As a result, it becomes possible to form a tin oxide film that does not show conductivity or has a very small value even if it is shown in the conventional equipment temperature setting. And because the capacitance value of the container surface can be measured more accurately, the standard value is set more than necessary so that it does not accidentally pass a glass container outside the standard value as a good product as in the past. It is an object of the present invention to provide a method for forming a tin oxide film, which can be made narrower and consequently avoids the mistake of disposing a product that is originally a good product as a defective product.

【0009】[0009]

【課題を解決するための手段】ガラス壜容器へ酸化スズ
膜をコーティングする工程において、ガラス表面の温度
y(℃)と成膜雰囲気における酸素濃度x(%)との関
係が
In the step of coating a glass bottle with a tin oxide film, the relationship between the glass surface temperature y (° C.) and the oxygen concentration x (%) in the film forming atmosphere is

【数1】 を満足する範囲で成膜することを特徴とするものであ
り、更にはキャリアーガス中に酸素を混合するかあるい
はフードチャンバー内に酸素を吹き込むことを特徴とす
るものである。また、酸化スズ膜を成膜した時のガラス
壜容器の体積抵抗率が1000Ωcm以上であるもので
ある。
[Equation 1] It is characterized in that a film is formed in a range that satisfies the above condition, and further that oxygen is mixed in a carrier gas or oxygen is blown into the hood chamber. The volume resistivity of the glass bottle container when the tin oxide film is formed is 1000 Ωcm or more.

【0010】上記の関係式を言い換えれば、ガラス壜容
器へ酸化スズ膜をコーティングする工程において、ガラ
ス表面の温度とキャリアーガス中の酸素濃度との関係が
550℃−30%と500℃−100%を結ぶ直線上あ
るいはその直線より高温及び/又は高濃度側の条件で成
膜するものである。
In other words, in the step of coating the glass bottle with the tin oxide film, the relationship between the temperature of the glass surface and the oxygen concentration in the carrier gas is 550 ° C.-30% and 500 ° C.-100%. The film is formed on the straight line connecting the lines or under the condition of higher temperature and / or higher concentration than the straight line.

【0011】図2に示す装置の概略図により説明する
と、スズ化合物をポンプによって引き上げると共に他方
ドライエアーとO2 エアーがそれぞれ供給管を通って吹
き込まれており、それぞれのエアーは流量計によりそれ
ぞれの割合及び量が制御されてさらに先に送り込まれて
いる。そして、前記スズ化合物がO2 エアーを含んでい
るエアーと混合され、循環ファンを介してガラス容器の
外表面に吹きつけられている。ここで、エアーと混合す
る前にスズ化合物のための滴下確認窓が設けられてお
り、目視して確認することができるようになっている。
そして、ガラス容器の上方向には、排気機構が設けられ
ている。本説明では、1例として有機スズの場合を説明
したが、無機スズを使用する場合には滴下確認窓は省か
れ、またポンプがないこともある。この場合には、原料
容器に直接乾燥空気を吹き込み、蒸気として原料をフー
ド内へ送り込むこともある。更に、図3のようにO2
アーをフードチャンバー内へ直接導入することもでき
る。当然、100%のO2 エアーによって、成膜を行う
場合には、ドライエアーによる供給管が必要ない。な
お、ここで使用されるスズ化合物は、無機あるいは有機
を問わず、従来から使用されている四塩化スズまたはモ
ノブチルトリクロロスズ等、酸化スズ膜を形成し得るも
のであれば何でも使用することができる。
Explaining it with a schematic view of the apparatus shown in FIG. 2, while the tin compound is pulled up by a pump, on the other hand, dry air and O 2 air are blown through the respective supply pipes, and each air is fed by a flow meter. The proportions and quantities are controlled and delivered further. Then, the tin compound is mixed with air containing O 2 air and is blown onto the outer surface of the glass container through a circulation fan. Here, a drop confirmation window for the tin compound is provided before mixing with the air so that the tin compound can be visually confirmed.
An exhaust mechanism is provided above the glass container. In the present description, the case of using organic tin has been described as an example, but when using inorganic tin, the dropping confirmation window may be omitted and the pump may not be provided. In this case, dry air may be blown directly into the raw material container and the raw material may be sent into the hood as steam. Further, as shown in FIG. 3, O 2 air can be directly introduced into the hood chamber. Of course, when the film is formed with 100% O 2 air, the supply pipe with dry air is not necessary. The tin compound used here may be any one that can form a tin oxide film, such as tin tetrachloride or monobutyltrichlorotin, which has been conventionally used, regardless of whether it is inorganic or organic. it can.

【0012】[0012]

【作用】導電性発生のメカニズムについて説明すると、
酸化スズ膜は、膜中に酸素欠陥あるいは過剰のスズ原子
が存在していて、これらがドナーの役割を果たしてお
り、次の反応が起こり、導電性を示していると考えられ
る。
[Function] Explaining the mechanism of conductivity generation,
It is considered that the tin oxide film has oxygen defects or excess tin atoms in the film, and these atoms play a role of donors, and the following reaction occurs to show conductivity.

【0013】[0013]

【化1】 [Chemical 1]

【0014】そして、成膜雰囲気における酸素濃度を上
げることによって、過剰な酸素がこの酸素欠陥を減少さ
せ、導電性を押さえる働きをしていると考えることがで
きる。
By increasing the oxygen concentration in the film forming atmosphere, it can be considered that excess oxygen acts to reduce the oxygen defects and suppress the conductivity.

【0015】そこでまず体積抵抗率についてどの範囲内
にあるときに、検査工程上、問題が生ずるか、種々の実
験を行った。本発明者の測定によれば、100Ωcm以
下では、ほとんどの場合、誤読が発生した。そして、1
00〜1000Ωcmでは、数が減少するものの、いく
らかの誤読を生じた。さらに1000Ωcm以上ではほ
とんど誤読が生じることなく検査上、問題はないことが
わかった。この結果をふまえて、キャリアーガス全体に
おけるO2 濃度と温度との相関関係について調べていっ
た。O2 20%(通常の空気)から100%までO2
度の割合を増加させるに従って、ガラス表面の温度を下
げても体積抵抗率を上げることができた。そしてその関
係は、詳しくは550℃−30%と500℃−100%
を結ぶ直線上あるいはその直線より、高温及び/又は高
濃度側で成膜すれば、よいことがわかった。すなわち図
4において直線で示したようにその直線を含みそれより
高温及び/、又は高濃度側で行うことである。すなわち
このことからガラス表面の温度y(℃)、酸素濃度x
(%)で表した場合、次の関係式
Therefore, first, various experiments were conducted to find out what range the volume resistivity is in, which causes a problem in the inspection process. According to the measurement by the present inventor, misreading occurred in most cases at 100 Ωcm or less. And 1
At 00 to 1000 Ωcm, some misreading occurred although the number decreased. Further, it was found that there was no erroneous reading at 1000 Ωcm or more and there was no problem in the inspection. Based on this result, the correlation between the O 2 concentration in the entire carrier gas and the temperature was investigated. As the ratio of O 2 concentration was increased from 20% of O 2 (normal air) to 100%, the volume resistivity could be increased even if the temperature of the glass surface was lowered. And the relationship is 550 ℃ -30% and 500 ℃ -100% in detail.
It was found that the film should be formed on the straight line connecting the lines or at a higher temperature and / or higher concentration side than the straight line. That is, as shown by the straight line in FIG. 4, the process is performed on the high temperature and / or high concentration side including the straight line. That is, from this, the temperature y (° C.) of the glass surface and the oxygen concentration x
When expressed in (%), the following relational expression

【数1】 を導くことができる。[Equation 1] Can be guided.

【0016】[0016]

【実施例】以下に本発明の好ましい実施例を詳細に説明
する。体積抵抗率の適正範囲内におけるO2 濃度と温度
との相関関係を調べるために酸素濃度20%から100
%の範囲内の各温度での酸化スズ膜の成膜を行った。そ
して、この時のそれぞれの体積抵抗率を100Ωcm以
下が×、100〜1000Ωcmの範囲内が△、100
0Ωcm以上が○の三段階の記号によって表した。この
結果を図1にグラフとして示した。
The preferred embodiments of the present invention will be described in detail below. In order to investigate the correlation between the O 2 concentration and the temperature within the proper range of the volume resistivity, the oxygen concentration is 20% to 100%.
The tin oxide film was formed at each temperature within the range of%. The respective volume resistivities at this time are x when 100 Ωcm or less, and Δ and 100 are within the range of 100 to 1000 Ωcm.
0 Ωcm or more is represented by a three-level symbol of ◯. The results are shown as a graph in FIG.

【0017】酸素濃度が30%未満のとき、550℃以
下では、抵抗率は小さく導電性を示す。酸素濃度が増加
すると下限温度は下がり、O2 100%においては成膜
温度が500℃でも導電性は示さないことがわかる。よ
って実施例によっても確認することができた。
When the oxygen concentration is less than 30% and the temperature is 550 ° C. or less, the resistivity is small and the conductivity is exhibited. As the oxygen concentration increases, the lower limit temperature decreases, and it can be seen that at 100% O 2 , no conductivity is exhibited even at a film forming temperature of 500 ° C. Therefore, it could be confirmed also in the examples.

【0018】[0018]

【発明の効果】以上説明したように、本発明の酸化スズ
膜の成膜方法によれば、体積抵抗率の高い膜を得ること
ができ、その結果、電気容量により肉厚を検査する装置
における誤測定を防ぐことができ、今後、壜の軽量化が
進んだときでも十分に対応が可能となるものである。加
えて、キャリアーガスの一部あるいは全部をO2 エアー
ガスに変更するだけでよく、現有の設備をそのまま用い
ることができるので、利用価値も非常に大きいものであ
る。また、O2 濃度を上げることによって、成膜時のガ
ラス表面温度を下げることができるので、工程中のガラ
ス変形を防ぐ対策の一つとすることができるばかりでな
く、作業性がよくなるものである。さらに、今後の壜の
軽量化にもつなげていくことができると考えられる。よ
って、従来の問題点を解決した導電性を抑制した酸化ス
ズ膜の形成方法として産業の発達に寄与するところは極
めて大である。
As described above, according to the method for forming a tin oxide film of the present invention, a film having a high volume resistivity can be obtained. As a result, in a device for inspecting the wall thickness by the electric capacity. It is possible to prevent erroneous measurement, and in the future, even if the bottle becomes lighter, it will be possible to sufficiently cope with it. In addition, since it is only necessary to change a part or all of the carrier gas to O 2 air gas and the existing equipment can be used as it is, the utility value is very large. Further, since the glass surface temperature during film formation can be lowered by increasing the O 2 concentration, it can be one of the measures for preventing the glass deformation during the process, and the workability is improved. . In addition, it is thought that it will be possible to reduce the weight of bottles in the future. Therefore, as a method for forming a tin oxide film with suppressed conductivity, which solves the conventional problems, it greatly contributes to industrial development.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例におけるグラフ結果である。FIG. 1 is a graph result in this example.

【図2】本発明におけるCVD法のための設備の概略図
である。
FIG. 2 is a schematic diagram of equipment for a CVD method in the present invention.

【図3】本発明におけるCVD法のための設備の概略図
である。
FIG. 3 is a schematic diagram of equipment for a CVD method in the present invention.

【図4】実施条件を表すためのグラフである。FIG. 4 is a graph for showing implementation conditions.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス壜容器へ酸化スズ膜をコーティン
グする工程において、ガラス表面の温度y(℃)と成膜
雰囲気における酸素濃度x(%)との関係が 【数1】 を満足する範囲で成膜することを特徴とする導電性を抑
制した酸化スズ膜の形成方法。
1. In the step of coating a tin oxide film on a glass bottle container, the relationship between the glass surface temperature y (° C.) and the oxygen concentration x (%) in the film forming atmosphere is expressed by A method for forming a tin oxide film with suppressed conductivity, characterized in that the film is formed in a range that satisfies the above condition.
【請求項2】 キャリアーガス中に酸素を混合すること
を特徴とする請求項1に記載の導電性を抑制した酸化ス
ズ膜の形成方法。
2. The method for forming a tin oxide film with suppressed conductivity according to claim 1, wherein oxygen is mixed in a carrier gas.
【請求項3】 フードチャンバー内に酸素を吹き込むこ
とを特徴とする請求項1又は2に記載の導電性を抑制し
た酸化スズ膜の形成方法。
3. The method for forming a tin oxide film with suppressed conductivity according to claim 1, wherein oxygen is blown into the hood chamber.
【請求項4】 酸化スズ膜を成膜した時のガラス壜容器
の体積抵抗率が1000Ωcm以上であることを特徴と
する請求項1乃至は3に記載の導電性を抑制した酸化ス
ズ膜の形成方法。
4. The formation of a tin oxide film with suppressed conductivity according to claim 1, wherein the volume resistivity of the glass bottle container when the tin oxide film is formed is 1000 Ωcm or more. Method.
JP13138094A 1994-05-20 1994-05-20 Method of formation of tin oxide film of reduced conductivity Ceased JPH07315878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13138094A JPH07315878A (en) 1994-05-20 1994-05-20 Method of formation of tin oxide film of reduced conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13138094A JPH07315878A (en) 1994-05-20 1994-05-20 Method of formation of tin oxide film of reduced conductivity

Publications (1)

Publication Number Publication Date
JPH07315878A true JPH07315878A (en) 1995-12-05

Family

ID=15056603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13138094A Ceased JPH07315878A (en) 1994-05-20 1994-05-20 Method of formation of tin oxide film of reduced conductivity

Country Status (1)

Country Link
JP (1) JPH07315878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006784A (en) * 2010-06-24 2012-01-12 Toyo Glass Co Ltd Coating chamber for bottle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006784A (en) * 2010-06-24 2012-01-12 Toyo Glass Co Ltd Coating chamber for bottle

Similar Documents

Publication Publication Date Title
US7625604B2 (en) Heat treatment method and heat treatment apparatus
KR950013065B1 (en) Dry etching apparatus dry etching methodand diluted anhydrous hydrogen fluoride gas generator for use therein
US7938080B2 (en) Method for using film formation apparatus
US8183158B2 (en) Semiconductor processing apparatus and method for using same
KR100948985B1 (en) Film formation apparatus for semiconductor processing, method of using the same, and computer readable medium
CN101158032B (en) Film forming device and method thereof
KR100336167B1 (en) Heat treatment apparatus
TWI404124B (en) Film formation apparatus for semiconductor process and method for using the same
TWI491768B (en) Method of determining an amount of impurities that a contaminating material contributes to high purity silicon
CN100589230C (en) Film formation method and semiconductor processing equipment
KR20060047371A (en) Film formation apparatus and method of using the same
CN101800162A (en) Component for vertical heat processing apparatus, vertical heat processing apparatus and heat-insulating cylinder
US6238488B1 (en) Method of cleaning film forming apparatus, cleaning system for carrying out the same and film forming system
EP2583943A1 (en) Method for cleaning bell jar, method for manufacturing polycrystalline silicon and device for drying bell jar
JP2000340554A (en) Operation method of batch-type thermal treatment apparatus
KR19980024359A (en) Film thickness measuring device
JPH07315878A (en) Method of formation of tin oxide film of reduced conductivity
JPH04326512A (en) Forming method of doped thin film
Hong et al. Study of the Reaction of Si2 H 6 in the Presence of C 2 H 2 in Synthesis of SiC Films by LPCVD Using a Macro/microcavity Method
US20140295675A1 (en) Silicon oxide film forming method and silicon oxide film forming apparatus
CN100533656C (en) Film formation apparatus and method of using the same
US20210172825A1 (en) Method of Manufacturing Semiconductor Device and Non-transitory Computer-readable Recording Medium
Peev et al. Kinetics of polysilicon film growth by thermal decomposition of silane
CN103526178A (en) Silicon oxide film forming method and forming apparatus
WO2022064558A1 (en) Method for manufacturing semiconductor device, abnormal sign detection method, abnormal sign detection program, and substrate treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040319

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A01

A045 Written measure of dismissal of application

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A045