JPH0731488A - Separation of bio-polyester from bio-polyestercontaining microorganism - Google Patents

Separation of bio-polyester from bio-polyestercontaining microorganism

Info

Publication number
JPH0731488A
JPH0731488A JP5196670A JP19667093A JPH0731488A JP H0731488 A JPH0731488 A JP H0731488A JP 5196670 A JP5196670 A JP 5196670A JP 19667093 A JP19667093 A JP 19667093A JP H0731488 A JPH0731488 A JP H0731488A
Authority
JP
Japan
Prior art keywords
suspension
bio
polyester
biopolyester
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5196670A
Other languages
Japanese (ja)
Inventor
Masako Yokoyama
雅子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5196670A priority Critical patent/JPH0731488A/en
Publication of JPH0731488A publication Critical patent/JPH0731488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To provide a method for efficiently separating a bio-polyester in a granular state from microbial cells containing the bio-polyester. CONSTITUTION:This method for separating the granular bio-polyester comprises charging the aqueous suspension of bio-polyester-containing microorganisms into a pressure-resistant container or preliminarily heating the suspension at 40-100C and then charging the heated suspension into the pressure-resistant container, and subsequently heating and retaining the charged suspension at 40-100C for raising the pressure to spout the suspension from the small opening of the container, thus allowing the shearing force of the fluid to act on the microorganisms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性を有するバイ
オポリエステルの菌体からの分離方法に関する。
TECHNICAL FIELD The present invention relates to a method for separating biodegradable biopolyester from bacterial cells.

【0002】[0002]

【従来の技術】現在、プラスチック廃棄物は焼却、埋立
などによって処理されているが、これらの処理方法に
は、それぞれ地球の温暖化、埋め立て地の地盤弛緩等の
問題がある。そのため、プラスチックリサイクルへの社
会意識の高まりとともに、リサイクルシステム化が進み
つつある。しかし、リサイクル可能な用途には限りがあ
り、実際問題としてプラスチック廃棄物処理方法として
は、焼却、埋立、リサイクルだけでは対応しきれず、自
然環境中に放置されたままになるものも多い。そこで、
廃棄後は自然界の物質循環に取り込まれ、分解生成物が
有害物質とならないような生分解性プラスチックが注目
されており、その開発が進められている。このようなプ
ラスチックとして、特に、微生物が菌体内で生成するポ
リエステルは、自然界の炭素循環プロセスに組み込まれ
て生態系の安定化がなされると予想されている。また、
医療分野においても、回収不要のインプラント材料、薬
物担体としての利用が可能である。
2. Description of the Related Art Currently, plastic wastes are treated by incineration, landfill, etc., but these treatment methods have problems such as global warming and land relaxation of landfill sites. For this reason, as the social awareness of plastic recycling increases, a recycling system is being developed. However, recyclable uses are limited, and as a practical matter, many plastic waste treatment methods cannot be handled by incineration, landfill, and recycling alone, and many are left in the natural environment. Therefore,
Biodegradable plastics that are taken into the natural material cycle after disposal and whose decomposition products do not become harmful substances are drawing attention, and their development is underway. As such a plastic, in particular, polyester produced by microorganisms in the cells is expected to be incorporated into the natural carbon cycle process to stabilize the ecosystem. Also,
In the medical field as well, it can be used as an implant material or a drug carrier that does not require recovery.

【0003】しかし、このポリエステルをプラスチック
として使用するためには、微生物の菌体内から分離して
取り出す必要がある。バイオポリエステル含有微生物か
らバイオポリエステルを得る方法として、クロロホルム
をはじめとする有機溶媒による抽出法、次亜塩素算ソー
ダ(Williamson,D.H.,and Wil
kinson,J.F.(1958),J.Gen.M
icrobiol.19,198−203.)またはリ
ゾチームを用いて菌体を溶解し、残存したポリマーを顆
粒として回収する方法が知られている。その他、リゾチ
ーム以外の特定の酵素による菌体の溶解によってポリマ
ーを回収する方法(特開昭60−145097)、10
0℃超の高圧の水蒸気等の圧力の開放により菌体を破壊
し、菌体破片屑とポリマーとに分離する方法(特開昭5
7−174094)等もある。
However, in order to use this polyester as a plastic, it is necessary to separate it from the microbial cells and take it out. As a method for obtaining a biopolyester from a biopolyester-containing microorganism, an extraction method with an organic solvent such as chloroform, hypochlorite soda (Williamson, DH, and Wil)
kinson, J .; F. (1958), J. Gen. M
icrobiol. 19, 198-203. ) Or lysozyme is used to dissolve bacterial cells and the remaining polymer is recovered as granules. In addition, a method of recovering a polymer by dissolving bacterial cells with a specific enzyme other than lysozyme (JP-A-60-145097), 10
A method in which cells are destroyed by releasing the pressure of steam or the like having a high pressure of more than 0 ° C. and separated into cell debris and a polymer (Japanese Patent Laid-Open No. Sho 5).
7-174094) and the like.

【0004】[0004]

【発明が解決しようとする課題】しかし、クロロホルム
等による溶媒抽出法は、当該抽出溶媒だけでなく、再沈
澱のための貧溶媒も大量に必要とする。したがって、溶
媒を各々再利用しようとすれば、2種の溶媒を分離する
ことが必要である。更に、一般に溶媒抽出に先だって菌
体全体を完全に乾燥することが必要なため、多大の熱エ
ネルギーを要することにもなるので、バイオポリエステ
ルを工業的に生産するためには、多くのプロセス用設備
やエネルギーが必要となり、事実上不利である。次亜塩
素算ソーダで処理した場合は、溶媒抽出法の欠点を回避
することはできるが、一方、ポリエステルの分子量低下
が起こり(J.A.Ramsay,E.Berger,
B.A.Ramsay and C.Chavaric
(1990),J.Biotechnology Te
chniques 4,4,221−226)、ポリマ
ーの品質に問題が生じる。リゾチームのような酵素は、
少量の実験的利用には効果的であるが、大量に確保する
のが困難なため、バイオポリエステルの量産には適切で
ない。特開昭60−145097の酵素法では、酵素処
理前後の操作が多段階になり、量産のためには、なお改
善の余地が大きい。特開昭57−174094の圧力の
解放による方法は、得られたポリエステルの純度や収量
が未記載のため、効果が不明である。本発明は、有機溶
媒を用いないで、100℃未満の水性媒体中で菌体に剪
断力をかけることにより、バイオポリエステルを含む微
生物からバイオポリエステルを分離する方法を提供する
ことを目的とする。
However, the solvent extraction method using chloroform or the like requires a large amount of not only the extraction solvent but also a poor solvent for reprecipitation. Therefore, if each solvent is to be reused, it is necessary to separate the two solvents. Furthermore, since it is generally necessary to completely dry the entire microbial cell prior to solvent extraction, a large amount of heat energy is also required. Therefore, in order to industrially produce biopolyester, many process equipments are required. And energy is required, which is a practical disadvantage. When treated with hypochlorous soda, the drawbacks of the solvent extraction method can be avoided, but on the other hand, the molecular weight of the polyester decreases (JA Ramsay, E. Berger,
B. A. Ramsay and C.I. Chavaric
(1990), J. Am. Biotechnology Te
chniques 4, 4, 221-226), which causes problems with the quality of the polymer. Enzymes like lysozyme
It is effective for a small amount of experimental use, but it is not suitable for mass production of biopolyester because it is difficult to secure a large amount. In the enzyme method disclosed in JP-A-60-145097, the operations before and after the enzyme treatment have multiple stages, and there is still a lot of room for improvement for mass production. The effect of the method of releasing pressure of JP-A-57-174094 is unclear because the purity and yield of the obtained polyester are not described. An object of the present invention is to provide a method for separating a biopolyester from a microorganism containing a biopolyester by applying a shearing force to a microbial cell in an aqueous medium of less than 100 ° C without using an organic solvent.

【0005】[0005]

【課題を解決するための手段】本発明は、バイオポリエ
ステル含有微生物の水性懸濁液を耐圧性容器に導入し、
もしくは予め該懸濁液を40〜100℃の範囲に加熱し
て耐圧性容器に導入し、40〜100℃の範囲内で加
熱、保温し、該懸濁液に高圧をかけ、該容器の微小開口
部から該懸濁液を噴出させることによって微生物に流体
剪断力を作用させ、顆粒状のバイオポリエステルを分離
することを特徴とするバイオポリエステル含有微生物か
らのバイオポリエステル分離法に関する。なお、特開昭
57−174094の方法では、同じく高圧を用いてい
るが、これが、高圧を急激に低圧化した際の圧力ショッ
クで菌体を破壊するのに対し、本発明は、高圧液体の微
小口噴射時の剪断力によって、菌体破壊とバイオポリエ
ステルの分離を促進する方法である。
The present invention introduces an aqueous suspension of biopolyester-containing microorganisms into a pressure resistant container,
Alternatively, the suspension is preheated to a temperature range of 40 to 100 ° C. and introduced into a pressure-resistant container, heated and kept in the temperature range of 40 to 100 ° C., a high pressure is applied to the suspension, and The present invention relates to a method for separating bio-polyester from a bio-polyester-containing microorganism, which comprises applying a fluid shearing force to the micro-organism by ejecting the suspension from the opening to separate granular bio-polyester. Incidentally, in the method of JP-A-57-174094, the high pressure is also used, but this destroys the microbial cells by the pressure shock when the high pressure is suddenly reduced, whereas the present invention uses the high pressure liquid. This is a method of promoting cell destruction and separation of biopolyester by the shearing force at the time of jetting with a fine mouth.

【0006】本発明に用いる微生物は、細胞内にバイオ
ポリエステルを蓄積しているバクテリア(細胞)であ
る。例えば、アルカリゲネス属(Alcaligene
s)の菌、A.lipolytica AK201(特
開平5−64592)、A.eutrophus、A.
latus等、シュウドモナス属(Pseudomon
as)、バシルス属(Bacillus)、アゾトバク
ター属(Azotobacter)、ノカルディア属
(Nocardia)等の菌株が示されるが、その種類
に限定されるものではない。
The microorganism used in the present invention is a bacterium (cell) accumulating biopolyester in the cell. For example, Alcaligenes
s), A. lipolytica AK201 (Japanese Patent Laid-Open No. 5-64592), A.L. eutrophus, A .;
Latus, etc., Pseudomonas (Pseudomon)
As), Bacillus genus, Azotobacterium genus, Nocardia genus, and the like strains are shown, but the strains are not limited thereto.

【0007】ここで、バイオポリエステルとは、ポリ−
D−3−ヒドロキシブチレート〔以下、P(3HB)と
略称する〕をはじめとするポリヒドロキシアルカノエー
ト〔以下、P(HA)と略称する〕と称される微生物産
生ポリエステルを指す。P(3HB)以外の代表的な例
として、3HBとD−3−ヒドロキシバレレート(3H
V)との共重合体〔P.A.Holmes et al
(ICI),Eur.Pat.Appl.005245
9(1981)〕、3HBと4−ヒドロキシブチレート
(4HB)との共重合体〔Y.Doi et al.,
Macromolecules,21,2722(19
88)〕が挙げられる。細胞内に蓄積しているバイオポ
リエステルは、微小な顆粒として存在することが知られ
ている。処理される細胞内のバイオポリエステル含有率
(以下、ポリマー含有率という)は、高いほうが好まし
い。一般に、乾燥菌体としてポリマー含有率が20重量
%以上がよい。分離操作の効率、分離ポリマーの純度上
50重量%以上のポリマー含有率が特に好ましい。水性
懸濁液とは、培養終了後の培養懸濁液そのもの、または
培養液から遠心等で分離した菌体を水に懸濁させたもの
を指す。菌体の懸濁濃度は、乾燥菌体換算で150g菌
体/1以下、好ましくは100g菌体/1以下である。
Here, biopolyester means poly-
It refers to a microorganism-produced polyester called polyhydroxyalkanoate [hereinafter abbreviated as P (HA)] including D-3-hydroxybutyrate [hereinafter abbreviated as P (3HB)]. As typical examples other than P (3HB), 3HB and D-3-hydroxyvalerate (3H
V) copolymers [P. A. Holmes et al
(ICI), Eur. Pat. Appl. 005245
9 (1981)], a copolymer of 3HB and 4-hydroxybutyrate (4HB) [Y. Doi et al. ,
Macromolecules, 21, 2722 (19
88)]. Biopolyester accumulated in cells is known to exist as fine granules. The biopolyester content in the cells to be treated (hereinafter referred to as polymer content) is preferably high. Generally, the polymer content of dried bacterial cells is preferably 20% by weight or more. A polymer content of 50% by weight or more is particularly preferable in terms of efficiency of separation operation and purity of the separated polymer. The aqueous suspension refers to the culture suspension itself after completion of the culture, or a suspension of cells separated from the culture solution by centrifugation or the like in water. The suspension concentration of the bacterial cells is 150 g bacterial cells / 1 or less, preferably 100 g bacterial cells / 1 or less in terms of dry bacterial cells.

【0008】本発明の方法では、水性懸濁液は、微小開
口部を有する耐圧性容器に導入され高圧をかけられる。
このようにして開口部から押し出される菌体には大きな
剪断力が働くため、菌体は破壊されバイオポリエステル
の分離が促進されると推定される。このような耐圧性容
器と加圧機構からなる装置は、循環装置付高圧ホモジナ
イザーに代表される。したがって、本発明のバイオポリ
エステル分離法は、高圧ホモジナイザーの利用によって
実施可能となる。高圧ホモジナイザーの温度設定は40
〜100℃、好ましくは60〜100℃にする。懸濁液
の加熱は、高圧ホモジナイザーの導入前に、設定温度に
加熱することも望ましい。高圧ホモジナイザー内に導入
した該懸濁液にかける圧力は、装置によるが、500〜
1500 kgf/cm3 で作用させるのが好ましい。
In the method of the present invention, the aqueous suspension is introduced into a pressure-resistant container having a minute opening and subjected to high pressure.
In this way, a large shearing force acts on the bacterial cells pushed out from the opening, and it is presumed that the bacterial cells are destroyed and the separation of biopolyester is promoted. A device composed of such a pressure-resistant container and a pressurizing mechanism is represented by a high-pressure homogenizer with a circulation device. Therefore, the biopolyester separation method of the present invention can be carried out by using a high-pressure homogenizer. The temperature setting of the high pressure homogenizer is 40
To 100 ° C, preferably 60 to 100 ° C. It is also preferable that the suspension is heated to a set temperature before the introduction of the high pressure homogenizer. The pressure applied to the suspension introduced into the high-pressure homogenizer depends on the device, but is 500-
Preference is given to working at 1500 kgf / cm 3 .

【0009】循環装置付高圧ホモジナイザーとしては、
マントンゴーリン(独国APV・ゴーリン社製)、ミニ
ラボ(デンマーク APVラニー社製)、ブランリュー
ベ連続式細胞破砕機(独国Bran+Luebbe社
製)、マイクロフルイダイザー(米国Microflu
idics社製)等を用いることができる。これらの装
置は、一般的に加圧によって、分散・乳化・細胞破砕等
に用いられることがよく知られている。本発明では、高
圧ホモジナイザー内での加熱が必須なので、類似の高圧
ホモジナイザーの一種であるが非加熱型であるフレンチ
プレスは、本発明に不適当である。フレンチプレスを用
いて微生物中のバイオポリエステルを実験的な小規模で
分離することは知られているが(Helmut Bra
ndl et al,Advanes in Bioc
hemical Engineering Biote
chnology.41,77−93(1990))、
本発明の技術的特徴である加熱による分離の協同効果を
実現した例は知られていない。
As a high pressure homogenizer with a circulation device,
Manton Gorlin (German APV / Gorlin), Minilab (Denmark APV Rani), Bran-Rube cell crusher (Bran + Luebbe, Germany), Microfluidizer (Microflulu, USA)
idics company) or the like can be used. It is well known that these devices are generally used for dispersion, emulsification, cell crushing and the like by applying pressure. Since heating in the high-pressure homogenizer is essential in the present invention, a similar type of high-pressure homogenizer, but a non-heating type French press, is not suitable for the present invention. It is known to use a French press to isolate biopolyesters in microorganisms on an experimental small scale (Helmut Bra
ndl et al, Advances in Bioc
chemical Engineering Biote
chology. 41, 77-93 (1990)),
No example is known of realizing the cooperative effect of separation by heating, which is a technical feature of the present invention.

【0010】以上の処理操作により、短時間で効率よく
菌体壁を破壊し、バイオポリエステルを顆粒状で菌体か
ら分離できる。菌体壁が破壊されると、核酸のような水
溶性の高分子物質が細胞外に溶出するために、該懸濁液
の濃度は一旦上昇するが、剪断力によって核酸のような
高分子の切断も起こるためか、該懸濁液の粘度が再び低
下し、その後の遠心操作、濾過操作等でのバイオポリエ
ステルの分離が容易に行える。処理前の該懸濁液の菌体
濃度は、乾燥菌体換算で150g/lまで処理可能であ
るため、通常培養後の菌体濃度を薄める必要がない。本
発明では、該懸濁液を加熱することで、菌体壁が脆化し
て破壊しやすくなるため、該懸濁液に剪断力をかけるこ
とにより、短時間で効率の良い処理が可能となるうえ
に、バイオポリエステル顆粒を壊さないで菌体より取り
出すことができる。
By the above treatment operation, the bacterial cell wall can be efficiently destroyed in a short time, and the biopolyester can be separated from the bacterial cells in a granular form. When the bacterial cell wall is destroyed, a water-soluble polymer substance such as nucleic acid is eluted outside the cell, so that the concentration of the suspension once rises, but the shearing force causes the formation of a polymer such as nucleic acid. Perhaps because the cleavage also occurs, the viscosity of the suspension decreases again, and the biopolyester can be easily separated by the subsequent centrifugation operation, filtration operation, or the like. The cell concentration of the suspension before the treatment can be up to 150 g / l in terms of dry cells, so that it is not necessary to dilute the cell concentration after the usual culture. In the present invention, by heating the suspension, the bacterial cell wall becomes brittle and easily broken. Therefore, by applying a shearing force to the suspension, efficient treatment can be performed in a short time. In addition, the biopolyester granules can be taken out from the cells without breaking them.

【0011】[0011]

【実施例】本実施例で用いた微生物は、アルカリゲネス
属に属する微生物アルカリゲネス・リポリティカ(Al
caligenes lipolytica) AK2
01(特開平5−64592)で、培養後、P(3H
B)を約50wt%含有している菌を遠心(8000r
pm,10min.遠心分離機はKUBOTA製681
0使用)によって培養液から分離後、ペースト状菌体に
水を加えて40g菌体/lの水性懸濁液とした。この水
性懸濁液を用いて、以下に示す実施例1〜3および比較
例1,2を行った。
EXAMPLE The microorganism used in this example is a microorganism belonging to the genus Alcaligenes Alcaligenes liporitica (Al
caligenes lipolytica) AK2
01 (JP-A-5-64592), after culturing, P (3H
Centrifuge the bacteria containing about 50 wt% B) (8000r
pm, 10 min. Centrifuge KUBOTA 681
(0 use), the water was added to the paste-like microbial cells to obtain an aqueous suspension of 40 g microbial cells / l. Using the aqueous suspension, Examples 1 to 3 and Comparative Examples 1 and 2 shown below were performed.

【0012】実施例1〜3および比較例1,2の操作で
得たP(3HB)は、純度を調べるためにガスクロマト
グラフィー、分子量分布の決定にゲルパーミエーション
クロマトグラフィー(GPC)を用いて分析を行った。
なお、ガスクロマトグラフィーには、実施例1〜3およ
び比較例1,2で得られた沈澱物を乾燥(105℃,2
4hr)した後、メタノール/硫酸(85/15 wt
%/wt%)によりメタノリシスして菌体内ポリエステ
ルをモノマーのメチルエステルとしたものを分析して、
ポリマー含有率を求めた。これは、〔H.Brandl
et al,Int.J.Biol.Macromo
l.,11,49−55(1989)〕に示される方法
に従った。GPCには、試料(約100mg)中のポリエ
ステルを熱クロロホルム150mlで抽出後、溶液を濃縮
してヘキサンを加えて再沈し、沈澱を濾過、真空乾燥
(2hr)して10mg/10mlのクロロホルム溶液にし
て測定した。
P (3HB) obtained by the operations of Examples 1 to 3 and Comparative Examples 1 and 2 was subjected to gas chromatography to check the purity and gel permeation chromatography (GPC) to determine the molecular weight distribution. Analysis was carried out.
For gas chromatography, the precipitates obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were dried (105 ° C, 2 ° C).
After 4 hours, methanol / sulfuric acid (85/15 wt
% / Wt%) was used for the methanolysis to analyze intracellular polyesters as monomeric methyl esters,
The polymer content was determined. This is [H. Brandl
et al, Int. J. Biol. Macromo
l. , 11, 49-55 (1989)]. For GPC, the polyester in the sample (about 100 mg) was extracted with 150 ml of hot chloroform, the solution was concentrated and hexane was added to reprecipitate, and the precipitate was filtered and vacuum dried (2 hr) to give a 10 mg / 10 ml chloroform solution. Was measured.

【0013】(実施例1)P(3HB)含有菌体の該懸
濁液500mlを作成した。予め該懸濁液を90℃で約5
分間加熱後、APV・ゴーリン社製マントンゴーリンに
投入する。この装置内で、該懸濁液をゲージ圧約100
0 kgf/cm3 に加圧し(この時、装置内の温度は加熱さ
れた懸濁液の温度に制御する)、瞬時(約10-6〜10
-5sec)に約0.02mmの隙間を通過させて空気中に
放出し、流体剪断力をかける。この一連の操作を、懸濁
液を自動的に循環させることにより10回繰り返した。
処理後の懸濁液を遠心分離(2700rpm,10mi
n)して沈澱物を得た。 (実施例2)該懸濁液を70℃、約5分間予備加熱する
こと、およびマントンゴーリン内の加熱温度を70℃と
する以外は、実施例1と同様に操作した。 (実施例3)本例では、該懸濁液を70℃、約5分間予
備加熱して、マントンゴーリン操作(10回)を20回
に変える以外は、実施例1と同様に操作した。
(Example 1) 500 ml of the suspension of P (3HB) -containing cells was prepared. Pre-suspend the suspension at 90 ° C for about 5
After heating for a minute, the mixture is placed in APV Gorin's Manton Gorin. In this device, the suspension is filled with a gauge pressure of about 100.
Pressurized to 0 kgf / cm 3 (at this time, the temperature inside the apparatus is controlled to the temperature of the heated suspension), and instantaneously (about 10 −6 to 10 −10 ).
After passing through a gap of about 0.02 mm for -5 sec), it is discharged into the air and a fluid shear force is applied. This series of operations was repeated 10 times by automatically circulating the suspension.
The treated suspension is centrifuged (2700 rpm, 10 mi
n) to obtain a precipitate. (Example 2) The same operation as in Example 1 was carried out except that the suspension was preheated at 70 ° C for about 5 minutes, and the heating temperature in the manton-goulin was 70 ° C. (Example 3) In this example, the same operation as in Example 1 was carried out except that the suspension was preheated at 70 ° C for about 5 minutes to change the manton-goulin operation (10 times) to 20 times.

【0014】(比較例1)本例では、該懸濁液を予備加
熱しない以外は、実施例1と同様に操作した。 (比較例2)本例では、該懸濁液を100ml作成し、窒
素置換して密閉にした容器中で攪拌(100rpm)し
ながら80℃に加熱し、1hr攪拌を続けた。処理後の
懸濁液を遠心分離(2700rpm,10min)して
沈澱物を得た。 実施例1〜3および比較例1,2の分離条件を表1に示
す。
Comparative Example 1 In this example, the same operation as in Example 1 was carried out except that the suspension was not preheated. (Comparative Example 2) In this Example, 100 ml of the suspension was prepared, heated to 80 ° C. with stirring (100 rpm) in a closed container with nitrogen substitution, and stirring was continued for 1 hour. The treated suspension was centrifuged (2700 rpm, 10 min) to obtain a precipitate. Table 1 shows the separation conditions of Examples 1 to 3 and Comparative Examples 1 and 2.

【0015】[0015]

【表1】 (注)加熱温度:実施例1〜3、比較例1は予備加熱温
度、比較例2は処理加熱温度を示す。 実施例,比較例のガスクロマトグラフィー、GPCで得
られた結果を表2に示した。
[Table 1] (Note) Heating temperature: Examples 1 to 3 and Comparative Example 1 show preheating temperature, and Comparative Example 2 shows treatment heating temperature. Table 2 shows the results obtained by gas chromatography and GPC in Examples and Comparative Examples.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明により、従来の各方法の欠点を克
服した新しい分離法を開発した。すなわち、有機溶媒を
用いないで、水性媒体中で比較的穏和な条件下で、高圧
ホモジナイザーを作動して剪断力をかけることにより、
バイオポリエステルを含む微生物からバイオポリエステ
ルを分離できた。
According to the present invention, a new separation method has been developed which overcomes the drawbacks of the conventional methods. That is, by using a high pressure homogenizer and applying a shearing force under relatively mild conditions in an aqueous medium without using an organic solvent,
The biopolyester could be separated from the microorganism containing the biopolyester.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 バイオポリエステル含有微生物の水性懸
濁液を耐圧性容器に導入し、40〜100℃の範囲内で
加熱、保温し、該懸濁液に高圧をかけ、該容器の微小開
口部から該懸濁液を噴出させることによって微生物に流
体剪断力を作用させ、顆粒状のバイオポリエステルを分
離することを特徴とするバイオポリエステル含有微生物
からのバイオポリエステル分離法。
1. An aqueous suspension of biopolyester-containing microorganisms is introduced into a pressure-resistant container, heated and kept in the temperature range of 40 to 100 ° C., a high pressure is applied to the suspension, and a minute opening portion of the container is introduced. A method for separating a biopolyester from a biopolyester-containing microorganism, which comprises applying a fluid shearing force to the microbe by ejecting the suspension from the microbe to separate a granular biopolyester.
【請求項2】 耐圧性容器に導入する前に予め水性懸濁
液を40〜100℃の範囲に加熱する請求項1に記載の
方法。
2. The method according to claim 1, wherein the aqueous suspension is heated in the range of 40 to 100 ° C. before being introduced into the pressure resistant container.
JP5196670A 1993-07-15 1993-07-15 Separation of bio-polyester from bio-polyestercontaining microorganism Pending JPH0731488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5196670A JPH0731488A (en) 1993-07-15 1993-07-15 Separation of bio-polyester from bio-polyestercontaining microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5196670A JPH0731488A (en) 1993-07-15 1993-07-15 Separation of bio-polyester from bio-polyestercontaining microorganism

Publications (1)

Publication Number Publication Date
JPH0731488A true JPH0731488A (en) 1995-02-03

Family

ID=16361646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5196670A Pending JPH0731488A (en) 1993-07-15 1993-07-15 Separation of bio-polyester from bio-polyestercontaining microorganism

Country Status (1)

Country Link
JP (1) JPH0731488A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029266A1 (en) * 2002-09-30 2004-04-08 Kaneka Corporation Method of purifying 3-hydroxyalkanoic acid copolymer
WO2007135039A1 (en) * 2006-05-24 2007-11-29 Basf Se Process for the removal of polyhydroxyalkanoate particles obtained by fermentation, using a nozzle separator
US7314740B2 (en) 2002-04-26 2008-01-01 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
US7393668B2 (en) 2003-01-20 2008-07-01 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
US7435567B2 (en) 2004-03-04 2008-10-14 Kaneka Corporation Method for degradation of nucleic acids and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314740B2 (en) 2002-04-26 2008-01-01 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
WO2004029266A1 (en) * 2002-09-30 2004-04-08 Kaneka Corporation Method of purifying 3-hydroxyalkanoic acid copolymer
US7435566B2 (en) 2002-09-30 2008-10-14 Kaneka Corporation Method of purifying 3-hyroxyalkanoic acid copolymer
US7393668B2 (en) 2003-01-20 2008-07-01 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
US7435567B2 (en) 2004-03-04 2008-10-14 Kaneka Corporation Method for degradation of nucleic acids and use thereof
WO2007135039A1 (en) * 2006-05-24 2007-11-29 Basf Se Process for the removal of polyhydroxyalkanoate particles obtained by fermentation, using a nozzle separator

Similar Documents

Publication Publication Date Title
EP1687436B1 (en) Process for recovering polyhydroxyalkanoates ("phas") from cellular biomass
KR100526840B1 (en) Method and apparatus for producing polyhydroxyalkanoate
JPH0731489A (en) Separation of bio-polyester from bio-polyester-containing microorganism
WO2010116681A1 (en) Method for collecting polyhydroxyalkanoate
EP1705250B1 (en) A method for separating, extracting and purifying poly-beta-hydroxyalkanoates (phas) directly from bacterial fermented broth
JP3718221B2 (en) Polymer degradation
JPH0731488A (en) Separation of bio-polyester from bio-polyestercontaining microorganism
Xiong et al. Chemical digestion method to promote activated sludge cell wall breaking and optimize the polyhydroxyalkanoate (PHA) extraction process
JPH0731487A (en) Separation of bio-polyester from bio-polyester-containing microbial cell
JPH05178977A (en) Method for treating molded polymer article
Tran et al. An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs
JP3930667B2 (en) Method for separating and purifying poly-3-hydroxyalkanoic acid
JP2008054541A (en) Method for separating and purifying 3-hydroxyalkanoic acid copolymer produced by fermentation
EP1550723B1 (en) Method of purifying 3-hydroxyalkanoic acid copolymer
WO2001068890A2 (en) Method of extracting polyhydroxyalkanoate from a solution
JPWO2003091444A1 (en) Method for separating poly-3-hydroxyalkanoic acid
JP6864585B2 (en) Method for producing polyhydroxy alkanoate
Ferreira et al. Preparation and characterization of polyethylene based graft copolymers. Applications in the immobilization of enzymes
JP4126511B2 (en) Method for recovering poly-3-hydroxybutyric acid from microbial cells
US20080118963A1 (en) Method Of Coagulating Poly-3-Hydroxyalkanoic Acid
JP4007580B2 (en) Method and apparatus for producing polyhydroxyalkanoate
JP2002306190A (en) Method for separating/recovering poly-3-hydroxyalkanoic acid from biological cell
JP2001340095A (en) Method for separating polyhydroxyalkanoic acid from biological cell
JPH0838587A (en) Disposal method for waste including biological and infectious substance
JP2000166587A (en) Production of polymer fine particle using organism