JPH07313489A - Gradient magnetic field power source device - Google Patents

Gradient magnetic field power source device

Info

Publication number
JPH07313489A
JPH07313489A JP6116755A JP11675594A JPH07313489A JP H07313489 A JPH07313489 A JP H07313489A JP 6116755 A JP6116755 A JP 6116755A JP 11675594 A JP11675594 A JP 11675594A JP H07313489 A JPH07313489 A JP H07313489A
Authority
JP
Japan
Prior art keywords
magnetic field
gradient magnetic
power supply
series
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6116755A
Other languages
Japanese (ja)
Inventor
Fumikazu Takahashi
史一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6116755A priority Critical patent/JPH07313489A/en
Publication of JPH07313489A publication Critical patent/JPH07313489A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to output waveforms of arbitrary shapes in spite of high voltages and to minimize energy loss even if the number of the series connecting states of an inverter is increased by changing the connecting states of plural high-voltage sources and a series circuit of a linear amplifier and a gradient magnetic field coil. CONSTITUTION:This gradient magnetic field power source device 1 has two pieces of series connected high-voltage sources HVS 1, HVS 2 which are capable of applying high voltages to the series circuit formed by connecting the linear amplifier Lin in series to the gradient magnetic field coil Lg, electronic switches SW 1 to SW 12 for on and off which are interposed between these high-voltage sources HVS 1, HVS 2 and the series circuit and a control circuit 10 as a control means for changing over the on and off of these electronic switches SW1 to SW12. The continuous arbitrary waveform voltages of, for example, 0 to + or -2100V are applied to the gradient magnetic field coil Lg by changing over the first electronic switches SW 1 to SW 8 by the on and off control signals of the control circuit 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気共鳴イメージング
(MRI)システムに用いられる傾斜磁場電源装置に係
り、とくに高速撮影に好適な傾斜磁場電源装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gradient magnetic field power supply device used in a magnetic resonance imaging (MRI) system, and more particularly to a gradient magnetic field power supply device suitable for high speed imaging.

【0002】[0002]

【従来の技術】磁気共鳴現象を利用したイメージングで
は、空間的位置情報を持ったNMR信号を得るために、
パルス状の傾斜磁場を印加する必要がある。この傾斜磁
場は人体が入る程度の大きさの傾斜磁場コイルに電流パ
ルスを流すことによって発生する。その電流を供給する
装置が傾斜磁場電源であり、傾斜磁場シーケンサと傾斜
磁場コイルとの間に介挿されている。
2. Description of the Related Art In imaging using a magnetic resonance phenomenon, in order to obtain an NMR signal having spatial position information,
It is necessary to apply a pulsed gradient magnetic field. This gradient magnetic field is generated by passing a current pulse through a gradient magnetic field coil that is large enough for a human body to enter. A device for supplying the current is a gradient magnetic field power supply, which is inserted between the gradient magnetic field sequencer and the gradient magnetic field coil.

【0003】従来の典型的な撮影において用いられてい
る傾斜磁場電源は、電流100[A]〜200[A]程
度、電圧200[V]〜300[V]程度であるが、こ
の規模のアンプを搭載したMRIシステムは、通常、撮
影時間が10〜15分程度と長い。そこで、近年では撮
影を高速化して撮影時間の短縮を図るための研究開発が
行われている。傾斜磁場の観点から撮影を高速化するに
は、パルス状傾斜磁場の強度を大きくし、立ち上がり・
立ち下がり時間を短縮すればよい。しかしそのために
は、傾斜磁場コイルに大きな電流を短い立ち上がり・立
ち下がり時間で供給する必要があり、傾斜磁場電源とし
て大電流高電圧のものを用意する必要がある。
The gradient magnetic field power source used in the conventional typical imaging has a current of about 100 [A] to 200 [A] and a voltage of about 200 [V] to 300 [V]. The MRI system equipped with is usually long in imaging time of about 10 to 15 minutes. Therefore, in recent years, research and development have been carried out in order to speed up shooting and shorten shooting time. In order to speed up imaging from the perspective of the gradient magnetic field, increase the strength of the pulsed gradient magnetic field and
The fall time should be shortened. However, for that purpose, it is necessary to supply a large current to the gradient magnetic field coil in a short rise / fall time, and it is necessary to prepare a large current / high voltage power source for the gradient magnetic field.

【0004】例えば、撮影時間を数秒程度に短縮するに
は、概ね電流300[A]〜400[A]、電圧200
0[V]〜3000[V]程度のアンプが必要である
が、これを現在のMOSFETやトランジスタを用いた
AB級方式あるいはPWM方式のリニアアンプで実現す
るのは極めて困難である。もし実現したとしても傾斜磁
場アンプが非常に大型化し、例えば病院の撮影室に入ら
ないといった問題を生ずる。
For example, in order to shorten the photographing time to about several seconds, the current is approximately 300 [A] to 400 [A] and the voltage is 200.
An amplifier of about 0 [V] to 3000 [V] is required, but it is extremely difficult to realize this with a current class AB or PWM linear amplifier using MOSFETs and transistors. Even if it is realized, the gradient magnetic field amplifier becomes very large, and there arises a problem that it cannot enter the imaging room of a hospital, for example.

【0005】そこで、この状況を打破して高速撮影化を
図ることのできる従来の傾斜磁場電源として、図11に
示すものが知られている。この電源は、通常の傾斜磁場
アンプに簡単な外付け回路を付加することにより高電圧
の発生を可能としたものである。詳細には同図に示す如
く、ブリッジ接続された4つのスイッチSW1〜SW4
と高電圧源HVSから成るインバータ回路を2回路直列
に接続し、これに負荷である傾斜磁場コイルLgとリニ
アアンプLinが直列に接続されている。このインバー
タの2段直列接続により高電圧を発生し、リニアアンプ
Linの電圧を加えることにより任意波形電流を傾斜磁
場コイルLgに流す。
Therefore, as a conventional gradient magnetic field power supply capable of overcoming this situation and achieving high-speed imaging, the one shown in FIG. 11 is known. This power supply is capable of generating a high voltage by adding a simple external circuit to a normal gradient magnetic field amplifier. In detail, as shown in the figure, four switches SW1 to SW4 are connected in a bridge.
And an inverter circuit composed of a high voltage source HVS are connected in series, and a gradient magnetic field coil Lg, which is a load, and a linear amplifier Lin are connected in series. A high voltage is generated by the two-stage series connection of the inverters, and a voltage of the linear amplifier Lin is applied to cause an arbitrary waveform current to flow through the gradient magnetic field coil Lg.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たインバータの多段直列接続の傾斜磁場電源にあって
は、傾斜磁場コイルに一定電流を流すときの電力効率が
低く、これら起因して長時間の連続撮影が困難であると
いう不都合を招いていた。この問題を詳述すると、以下
のようである。
However, in the above-mentioned gradient magnetic field power source of the multi-stage serial connection of inverters, the power efficiency when a constant current is passed through the gradient magnetic field coil is low, and due to these, continuous operation for a long time is caused. This caused the inconvenience of being difficult to shoot. The details of this problem are as follows.

【0007】一般的なMRIの撮影では、傾斜磁場コイ
ルに流す電流の波形は台形波形が多く、電流値が変化し
ている時間よりも一定電流を流す時間の方が長い。図1
1の回路で傾斜磁場コイルLgに一定電流を流すときに
は、図12に示すようにコイル電流iLgは半導体スイッ
チSW1〜SW8のうちの2個(SW2,SW6)及び
ダイオード2個を通る。
In general MRI imaging, the waveform of the current flowing through the gradient magnetic field coil is often a trapezoidal waveform, and the time for which a constant current flows is longer than the time during which the current value changes. Figure 1
When a constant current is passed through the gradient magnetic field coil Lg in the first circuit, the coil current i Lg passes through two of the semiconductor switches SW1 to SW8 (SW2 and SW6) and two diodes as shown in FIG.

【0008】さらに、高電圧を発生させるためにインバ
ータ回路を多数直列接続すると、それだけ多くの半導体
スイッチを電流が通過する。例えば、インバータ回路を
4個直列接続した図13の回路では、図14に示すよう
に、コイル電流iLgは4個の半導体スイッチSW2,S
W6,SW10,SW14及びダイオード4個を通過す
る。一般に半導体スイッチはオン抵抗をもっているため
損失が大きく、電流の通過するスイッチ数が多いほど大
きな損失が生ずる。
Furthermore, when a large number of inverter circuits are connected in series to generate a high voltage, the current passes through as many semiconductor switches. For example, in the circuit of FIG. 13 in which four inverter circuits are connected in series, as shown in FIG. 14, the coil current i Lg is four semiconductor switches SW2 and S2.
It passes through W6, SW10, SW14 and four diodes. Generally, a semiconductor switch has a large loss because it has an on-resistance, and the larger the number of switches through which a current passes, the larger the loss.

【0009】例えば、300A〜400A程度電流を流
せて耐電圧が1000V程度のIGBトランジスタ(In
sulated Gate Bipolar Transister :IGBT)ではオ
ン電圧が3[V]程度あるため、300Aの電流が流れ
ると900Wの損失を生ずる。したがって、このIGB
トランジスタを4個通過する構成だと少なくとも360
0Wの損失が生ずることになる。
For example, an IGB transistor (In which an electric current of about 300 A to 400 A can flow and a withstand voltage of about 1000 V (In
In the case of a simulated gate bipolar transistor (IGBT), the on-state voltage is about 3 [V], so a loss of 900 W occurs when a current of 300 A flows. Therefore, this IGB
At least 360 if it has four transistors
A loss of 0 W will occur.

【0010】このように直列接続の段数が多くなって電
力損失が大きいと、放熱部が必然的に大きくなり、シス
テムが大形化する。この大形化も現状のニーズからして
好ましいことではないし、仮に大形化を許容するとして
も、物理的な制約があり、一定限度に止められる。した
がって放熱が充分でないと、デューティ比が大きくとれ
ないために、長時間の連続撮影が難しいという前述した
不都合を生ずる。
When the number of stages connected in series is large and the power loss is large as described above, the heat radiating portion is inevitably large and the system becomes large. This enlargement is not preferable in view of current needs, and even if the enlargement is allowed, there is a physical limitation and it can be limited to a certain limit. Therefore, if the heat is not sufficiently dissipated, the duty ratio cannot be made large, and the above-described inconvenience that continuous shooting for a long time is difficult occurs.

【0011】この発明は上述した状況に鑑みてなされた
もので、高電圧で任意形状波形を出力できるとともに、
インパータの直列接続段数を増やしてもエネルギ損失が
少なく、長時間の連続撮影に好適な傾斜磁場電源装置を
提供することを目的とする。
The present invention has been made in view of the above situation, and can output an arbitrarily shaped waveform at high voltage.
It is an object of the present invention to provide a gradient magnetic field power supply device which has a small energy loss even when the number of serially connected imperator is increased and is suitable for continuous imaging for a long time.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、請求項1〜6記載の発明に係る傾斜磁場電源装置
は、指令信号に応じて傾斜磁場コイルに傾斜磁場発生用
のコイル電流を供給するための、磁気共鳴イメージング
システムに搭載される電源装置であって、上記傾斜磁場
コイルに直列に接続され且つ上記指令信号を線形的に増
幅して上記コイル電流を形成し該電流を上記傾斜磁場コ
イルに供給可能なリニアアンプと、上記傾斜磁場コイル
に高電圧を印加可能な、複数の高電圧源を直列に接続し
た電源手段と、上記リニアアンプ及び傾斜磁場コイルの
直列回路に対してフルブリッジ接続され且つ各々が直列
接続された複数の第1の電子スイッチから成る4組のス
イッチング手段と、上記複数の高電圧源間の直列接続点
と上記各スイッチング手段の複数の第1の電子スイッチ
間の直列接続点との間に各々介挿した第2の電子スイッ
チと、上記複数の第1の電子スイッチを上記指令信号の
波形に応じてオン・オフさせる制御手段とを備えたこと
を要部とする。
In order to achieve the above object, a gradient magnetic field power supply device according to the invention of claims 1 to 6 supplies a coil current for generating a gradient magnetic field to a gradient magnetic field coil according to a command signal. Is a power supply device mounted on a magnetic resonance imaging system, which is connected in series to the gradient magnetic field coil and linearly amplifies the command signal to form the coil current, which is generated by the gradient magnetic field. A linear amplifier that can be supplied to the coil, a power supply unit that can apply a high voltage to the gradient magnetic field coil and that is connected in series with a plurality of high voltage sources, and a full bridge for the series circuit of the linear amplifier and the gradient magnetic field coil. Four sets of switching means connected to each other and each connected in series, a series connection point between the plurality of high voltage sources and each switching The second electronic switches respectively inserted between the plurality of first electronic switches of the stages and the series connection point, and the plurality of first electronic switches are turned on / off in accordance with the waveform of the command signal. The main part is to have a control means.

【0013】また請求項7〜10記載の発明に係る傾斜
磁場電源装置は、指令信号に応じて傾斜磁場コイルに傾
斜磁場発生用のコイル電流を供給するための、磁気共鳴
イメージングシステムに搭載される電源装置であって、
上記傾斜磁場コイルに直列に接続され且つ上記指令信号
を線形的に増幅して上記コイル電流を形成し該電流を上
記傾斜磁場コイルに供給可能なリニアアンプと、上記傾
斜磁場コイルに高電圧を印加可能な複数の高電圧源から
なる電源手段と、上記リニアアンプ及び傾斜磁場コイル
の直列回路に並列に接続され且つ当該直列回路を短絡可
能な電子スイッチ部を用いた短絡手段と、上記複数の高
電圧源と上記リニアアンプ及び傾斜磁場コイルの直列回
路との接続状態及び上記短絡手段の電子スイッチのオン
・オフ状態を上記指令信号の波形に応じて制御する複数
の電子スイッチを含む接続制御手段とを備えたことを要
部とする。
The gradient magnetic field power supply device according to the present invention is mounted in a magnetic resonance imaging system for supplying a gradient magnetic field coil current to a gradient magnetic field coil in response to a command signal. Power supply,
A linear amplifier connected in series to the gradient magnetic field coil, capable of linearly amplifying the command signal to form the coil current and supplying the current to the gradient magnetic field coil, and applying a high voltage to the gradient magnetic field coil. A power supply means composed of a plurality of possible high voltage sources, a short circuit means connected in parallel to a series circuit of the linear amplifier and the gradient magnetic field coil, and using an electronic switch unit capable of short-circuiting the series circuit; Connection control means including a plurality of electronic switches for controlling the connection state between the voltage source and the series circuit of the linear amplifier and the gradient magnetic field coil and the on / off state of the electronic switch of the short-circuit means according to the waveform of the command signal. The main part is to have.

【0014】[0014]

【作用】請求項1〜6記載の発明に係る傾斜磁場電源装
置にあっては、制御手段により、フルブリッジ接続され
た4個のスイッチング手段の第1の電子スイッチが指令
信号の波形に応じてオン・オフされ、複数の高電圧源と
リニアアンプ及び傾斜磁場コイルの直列回路との電気的
な接続状態が切り換えられる。この結果、複数の高電圧
源の各出力電圧及びリニアアンプの電圧の和,差によっ
てより高電圧の任意波形を傾斜磁場コイルに印加でき
る。さらに、傾斜磁場コイルに一定電流を供給すると
き、高電圧源及び第1の電子スイッチで形成されるイン
バータ回路の段数を増やしていった場合でも、電流が通
過する素子数は常に第1の電子スイッチ2個、第2の電
子スイッチ2個で済むので、インバータ回路の段数の割
に、電力損失も少なくて済む。
In the gradient magnetic field power supply device according to the present invention, the control means causes the first electronic switches of the four switching means in full bridge connection to respond to the waveform of the command signal. It is turned on / off to switch the electrical connection state between the plurality of high voltage sources and the series circuit of the linear amplifier and the gradient magnetic field coil. As a result, a higher voltage arbitrary waveform can be applied to the gradient magnetic field coil by the sum and difference of the output voltages of the plurality of high voltage sources and the voltages of the linear amplifier. Furthermore, when a constant current is supplied to the gradient magnetic field coil, even if the number of stages of the inverter circuit formed by the high voltage source and the first electronic switch is increased, the number of elements through which the current passes is always the first electron. Since only two switches and two second electronic switches are required, the power loss can be small for the number of stages of the inverter circuit.

【0015】また、請求項7〜10記載の発明に係る傾
斜磁場電源装置にあっては、接続制御手段によって、複
数の高電圧源とリニアアンプ及び傾斜磁場コイルの直列
回路との接続手段が切り換えられ、より高電圧の任意波
形を傾斜磁場コイルに印加できる。特に、一定値のコイ
ル電流を供給するとき、リニアアンプと傾斜磁場コイル
の直列回路が短絡手段により短絡され、一定電流供給時
のリニアアンプにより供給される電流が通過する電子ス
イッチ素子数がより減少し、電力損失も一層減少する。
Further, in the gradient magnetic field power supply device according to the present invention, the connection control means switches the connection means between the plurality of high voltage sources and the linear amplifier and the series circuit of the gradient magnetic field coils. Therefore, a higher voltage arbitrary waveform can be applied to the gradient coil. In particular, when a constant value of coil current is supplied, the series circuit of the linear amplifier and the gradient magnetic field coil is short-circuited by the short-circuiting means, and the number of electronic switch elements through which the current supplied by the linear amplifier when supplying a constant current passes is further reduced. However, the power loss is further reduced.

【0016】[0016]

【実施例】本発明の第1実施例を図1〜図6に基づいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS.

【0017】図1に示す傾斜磁場電源装置1は、静磁場
を発生させるマグネット(図示せず)の診断空間内に装
備される傾斜磁場コイルLgにパルス電流を供給するも
のである。具体的には傾斜磁場電源装置1は、同図に示
す如く、傾斜磁場コイルLgにリニアアンプLinを直
列に接続し、この直列回路に対して高電圧を印加可能な
2個の直列接続された高電圧源HVS1,HVS2(出
力電圧はこの実施例では各々、VH1=600[V],
VH2=1200[V])と、この高電圧源HVS1,
HVS2と上記直列回路との間に介在させたオン・オフ
用の電子スイッチSW1〜SW12と、この電子スイッ
チSW1〜SW12のオン・オフを切り換える制御手段
としての制御回路10とを備えている。
The gradient magnetic field power supply device 1 shown in FIG. 1 supplies a pulse current to a gradient magnetic field coil Lg provided in a diagnostic space of a magnet (not shown) for generating a static magnetic field. Specifically, in the gradient magnetic field power supply device 1, as shown in the figure, a linear amplifier Lin is connected in series to the gradient magnetic field coil Lg, and two serially connected high-voltage-applyable series circuits are connected. High voltage sources HVS1 and HVS2 (output voltages are VH1 = 600 [V], respectively in this embodiment)
VH2 = 1200 [V]) and this high voltage source HVS1,
The electronic switch SW1 to SW12 for on / off interposed between the HVS2 and the series circuit and the control circuit 10 as a control means for switching on / off of the electronic switch SW1 to SW12 are provided.

【0018】この内、リニアアンプLinは、入力され
る指令電流Ip を線形的に増幅した電流を発生するよう
になっている。なお、このリニアアンプLinの電圧V
LはVL=±300[V]になっている。電子スイッチ
SW1〜SW12は第1の電子スイッチSW1〜SW8
と第2の電子スイッチSW9〜SW12とから成る。こ
の第1の電子スイッチSW1〜SW8の内、スイッチS
W1及びSW3,スイッチSW2及びSW4,スイッチ
SW5及びSW7,並びにスイッチSW6及びSW8が
各々直列に接続されて各スイッチング手段を構成し、こ
の4組のスイッチング手段が、リニアアンプLin及び
傾斜磁場コイルLgの直列回路に対して図示の如くフル
ブリッジ接続されている。
Of these, the linear amplifier Lin is adapted to generate a current obtained by linearly amplifying the input command current Ip. The voltage V of this linear amplifier Lin
L is VL = ± 300 [V]. The electronic switches SW1 to SW12 are the first electronic switches SW1 to SW8.
And second electronic switches SW9 to SW12. Of the first electronic switches SW1 to SW8, the switch S
W1 and SW3, switches SW2 and SW4, switches SW5 and SW7, and switches SW6 and SW8 are respectively connected in series to configure respective switching means, and these four sets of switching means include linear amplifier Lin and gradient magnetic field coil Lg. A full bridge connection is made to the series circuit as shown.

【0019】これに対して第2の電子スイッチSW9〜
SW12の夫々は2つの高電圧源、HVS1,HVS2
の中間接続点aとスイッチング手段「SW1,SW3」
〜「SW6,SW8」の各中間接続点b1〜b4との間
に接続されている。
On the other hand, the second electronic switch SW9-
Each SW12 has two high voltage sources, HVS1 and HVS2.
Intermediate connection point a and switching means "SW1, SW3"
To "SW6, SW8" are connected between the intermediate connection points b1 to b4.

【0020】より具体的な構成として、図2に示すよう
に、上記第1の電子スイッチSW1〜SW8は、各々、
IGBトランジスタT1(〜T8)とダイオードD1
(〜D8)の逆並列接続により構成されている。また、
第2の電子スイッチSW9〜SW12は各々、図2に示
す如く、ダイオードD9(〜D12)により形成されて
いる。
As a more specific configuration, as shown in FIG. 2, the first electronic switches SW1 to SW8 are respectively
IGB transistor T1 (to T8) and diode D1
(To D8) are connected in anti-parallel. Also,
Each of the second electronic switches SW9 to SW12 is formed by a diode D9 (to D12) as shown in FIG.

【0021】さらに制御回路10は、リニアアンプLi
nに与えられる指令電流ip の波形に応じて第1の電子
スイッチSW1〜SW8のIGBトランジスタT1〜T
8のオン・オフを切り換える制御信号を各々出力するよ
うになっている。
Further, the control circuit 10 includes a linear amplifier Li.
IGB transistors T1 to T of the first electronic switches SW1 to SW8 according to the waveform of the command current ip given to n.
Control signals for switching ON / OFF of 8 are output respectively.

【0022】続いて図3〜図6に基づいて傾斜磁場コイ
ルLgに任意の波形の電流を流すときの動作を説明す
る。
Next, the operation when a current having an arbitrary waveform is passed through the gradient magnetic field coil Lg will be described with reference to FIGS.

【0023】まず傾斜磁場コイルLgに0〜±300
[V]の電圧を印加するには、第1の電子スイッチSW
3,SW6又はSW4,SW5の各トランジスタが制御
回路10によりオンに設定される。これにより、傾斜磁
場コイルLgにはリニアアンプLinのみが電気的に接
続され、0〜±300[V]の電圧が印加される。この
とき、図3の一点鎖線又は破線で示す経路で傾斜磁場コ
イル電流(以下、「コイル電流」という)iLgが流れ
る。
First, 0 to ± 300 is applied to the gradient magnetic field coil Lg.
To apply the voltage of [V], the first electronic switch SW
The transistors SW3, SW6 or SW4, SW5 are turned on by the control circuit 10. As a result, only the linear amplifier Lin is electrically connected to the gradient magnetic field coil Lg, and a voltage of 0 to ± 300 [V] is applied. At this time, the gradient magnetic field coil current (hereinafter, referred to as “coil current”) i Lg flows through the path indicated by the alternate long and short dash line or the broken line in FIG.

【0024】また、傾斜磁場コイルLgに±300
[V]〜±900[V]の電圧を印加する場合、第1の
電子スイッチSW1,SW3,SW4,SW6又はSW
2,SW4,SW3,SW5の各トランジスタがオンに
切り換えられ、これによりリニアアンプLinが第1の
高電圧源HVS1に直列に接続される。このため、リニ
アアンプLinと第1の高電圧源HVS1との出力電圧
の和又は差により、傾斜磁場コイルLgに±300
[V]〜±900[V]の電圧が印加される。いま、例
えば第1の電子スイッチSW1,SW3,SW4,SW
6をオンにしているとすれば、コイル電流iLgは図4の
一点鎖線又は破線に示す如く流れる(一点鎖線は第1の
高電圧源HVS1から傾斜磁場コイルLgに電流が供給
されている状態を示すのに対し、破線は傾斜磁場コイル
Lgから第1の高電圧源HVS1に電流が回生している
状態を示す)。
The gradient magnetic field coil Lg has ± 300
When a voltage of [V] to ± 900 [V] is applied, the first electronic switches SW1, SW3, SW4, SW6 or SW
The transistors 2, 2, SW4, SW3 and SW5 are switched on, whereby the linear amplifier Lin is connected in series to the first high voltage source HVS1. Therefore, the gradient magnetic field coil Lg has ± 300 due to the sum or difference of the output voltages of the linear amplifier Lin and the first high voltage source HVS1.
A voltage of [V] to ± 900 [V] is applied. Now, for example, the first electronic switches SW1, SW3, SW4, SW
6 is turned on, the coil current i Lg flows as shown by the alternate long and short dash line or the broken line in FIG. 4 (the alternate long and short dash line indicates a state in which the current is supplied from the first high voltage source HVS1 to the gradient magnetic field coil Lg. On the other hand, the broken line indicates the state in which the current is regenerated from the gradient magnetic field coil Lg to the first high voltage source HVS1).

【0025】さらに、傾斜磁場コイルLgに±900
[V]〜±1500[V]の電圧を印加する場合、第1
の電子スイッチSW3,SW5,SW6,SW8又はS
W4,SW6,SW5,SW7の各トランジスタがオン
に切り換えられ、これによりリニアアンプLinが第2
の高電圧源HVS2に直列に接続される。このため、リ
ニアアンプLinと第2の高電圧源HVS2との出力電
圧の和又は差により、傾斜磁場コイルLgに±900
[V]〜±1500[V]の電圧が印加される。いま、
例えば第1の電子スイッチSW3,SW5,SW6,S
W8をオンにしているとすれば、コイル電流iLgは図5
の一点鎖線又は破線に示す如く流れる(一点鎖線は第2
の高電圧源HVS2から傾斜磁場コイルLgに電流が供
給されている状態を示すのに対し、破線は傾斜磁場コイ
ルLgから第2の高電圧源HVS2に電流が回生してい
る状態を示す)。
Further, the gradient magnetic field coil Lg has ± 900
When a voltage of [V] to ± 1500 [V] is applied, the first
Electronic switch SW3, SW5, SW6, SW8 or S
Each of the transistors W4, SW6, SW5 and SW7 is turned on, which causes the linear amplifier Lin to become the second transistor.
Of the high voltage source HVS2. Therefore, the gradient magnetic field coil Lg has ± 900 due to the sum or difference of the output voltages of the linear amplifier Lin and the second high voltage source HVS2.
A voltage of [V] to ± 1500 [V] is applied. Now
For example, the first electronic switches SW3, SW5, SW6, S
If W8 is turned on, the coil current i Lg is as shown in FIG.
Flows as indicated by the alternate long and short dash line or dashed line (the alternate long and short dash line indicates the second
The current is being supplied from the high voltage source HVS2 to the gradient magnetic field coil Lg, while the broken line shows the current being regenerated from the gradient magnetic field coil Lg to the second high voltage source HVS2).

【0026】さらに、傾斜磁場コイルLgに±1500
[V]〜±2100[V]の電圧を印加する場合、第1
の電子スイッチSW1,SW3,SW6,SW8又はS
W2,SW4,SW5,SW7の各トランジスタがオン
に切り換えられ、これによりリニアアンプLinが第
1,第2の高電圧源HVS1,HVS2に直列に接続さ
れる。このため、リニアアンプLinと第1,第2の高
電圧源HVS1,HVS2との出力電圧の和又は差によ
り、傾斜磁場コイルLgに±1500[V]〜±210
0[V]の電圧が印加される。いま、例えば第1の電子
スイッチSW1,SW3,SW6,SW8をオンにして
いるとすれば、コイル電流iLgは図6の一点鎖線又は破
線に示す如く流れる(一点鎖線は第1,第2の高電圧源
HVS1,HVS2から傾斜磁場コイルLgに電流が供
給されている状態を示すのに対し、破線は傾斜磁場コイ
ルLgから第1,第2の高電圧源HVS1,HVS2に
電流が回生している状態を示す)。
Further, the gradient coil Lg has ± 1500.
When a voltage of [V] to ± 2100 [V] is applied, the first
Electronic switch SW1, SW3, SW6, SW8 or S
The transistors W2, SW4, SW5 and SW7 are turned on, whereby the linear amplifier Lin is connected in series to the first and second high voltage sources HVS1 and HVS2. Therefore, the gradient magnetic field coil Lg has ± 1500 [V] to ± 210 depending on the sum or difference of the output voltages of the linear amplifier Lin and the first and second high voltage sources HVS1 and HVS2.
A voltage of 0 [V] is applied. If, for example, the first electronic switches SW1, SW3, SW6 and SW8 are turned on, the coil current i Lg flows as shown by the one-dot chain line or the broken line in FIG. 6 (the one-dot chain line indicates the first and second dashed lines). While the current is being supplied from the high voltage sources HVS1 and HVS2 to the gradient magnetic field coil Lg, the broken line indicates that the current is regenerated from the gradient magnetic field coil Lg to the first and second high voltage sources HVS1 and HVS2. Showing the state).

【0027】このように第1の電子スイッチSW1〜S
W8を制御回路10のオン・オフ制御信号により切り換
えることで、傾斜磁場コイルLgに0〜±2100
[V]までの連続的な任意波形電圧を印加でき、傾斜磁
場コイルLgに任意波形のコイル電流iLgを流すことが
できる。
As described above, the first electronic switches SW1 to S
By switching W8 by the ON / OFF control signal of the control circuit 10, 0 to ± 2100 is applied to the gradient magnetic field coil Lg.
A continuous arbitrary waveform voltage up to [V] can be applied, and a coil current i Lg having an arbitrary waveform can be passed through the gradient magnetic field coil Lg.

【0028】次に、本発明の第2実施例を図7に基づい
て説明する。前述した第1実施例の傾斜磁場電源装置は
高電圧源が2台の構成であったが、この第3実施例は3
台に増やしたものである。
Next, a second embodiment of the present invention will be described with reference to FIG. The gradient magnetic field power supply device according to the first embodiment described above has a configuration in which two high voltage sources are provided.
It has been added to the table.

【0029】第2実施例における3台の第1〜第3の高
電圧源HVS1〜HVS3の出力電圧は、第1の高電圧
源HVS1が1200[V],第2の高電圧源HVS2
が600[V],及び第3の高電圧源HVS3が210
0[V]に各々選ばれ、直列に接続されている。リニア
アンプLinの電圧は±300[V]に設定されてお
り、このリニアアンプLinと傾斜磁場コイルLgが直
列に接続されている。この直列回路に対して、各々直列
に接続された3個の第1の電子スイッチから成るスイッ
チング手段「SW1,SW3,SW5」,「SW2,S
W4,SW6」,「SW7,SW9,SW11」および
「SW8,SW10,SW12」がフルブリッジ接続さ
れている。各第1の電子スイッチSW1〜SW12は第
1実施例と同様にIGBトランジスタとダイオードの逆
並列接続により形成されており、制御回路10からの制
御信号によオン・オフされる。
The output voltages of the three first to third high voltage sources HVS1 to HVS3 in the second embodiment are 1200 V for the first high voltage source HVS1 and the second high voltage source HVS2.
Is 600 [V], and the third high voltage source HVS3 is 210
0 [V] is selected and connected in series. The voltage of the linear amplifier Lin is set to ± 300 [V], and the linear amplifier Lin and the gradient magnetic field coil Lg are connected in series. For this series circuit, switching means "SW1, SW3, SW5", "SW2, S" each consisting of three first electronic switches connected in series are provided.
"W4, SW6", "SW7, SW9, SW11" and "SW8, SW10, SW12" are full-bridge connected. Each of the first electronic switches SW1 to SW12 is formed by an anti-parallel connection of an IGB transistor and a diode as in the first embodiment, and is turned on / off by a control signal from the control circuit 10.

【0030】さらに、各スイッチング手段におけるスイ
ッチの直列接続点と第1〜第3の高電圧源HVS1〜H
VS3の直列接続点との間に第2の電子スイッチとして
のダイオードD13〜D20が図示の如く接続されてい
る。例えばスイッチング手段「SW1,SW3,SW
5」におけるスイッチSW1,SW3間の接続点がダイ
オードD13を介して第2,第3の高電圧源HVS2,
HVS3の接続点に至り、スイッチSW3,SW5のそ
れが別のダイオードD17を介して第1,第2の高電圧
源HVS1,HVS2のそれに至る。他のスイッチング
手段も同様である。
Further, a series connection point of switches in each switching means and the first to third high voltage sources HVS1 to HVS.
Diodes D13 to D20 as second electronic switches are connected between the series connection point of VS3 and as shown in the drawing. For example, switching means "SW1, SW3, SW
5 ”, the connection point between the switches SW1 and SW3 is the second and third high voltage sources HVS2 and HVS2 via the diode D13.
It reaches the connection point of HVS3, and that of the switches SW3 and SW5 reaches that of the first and second high voltage sources HVS1 and HVS2 via another diode D17. The same applies to other switching means.

【0031】このように構成することにより、第1実施
例のものと同等の作用効果が得られ、0〜±4200
[V]と、より高電圧の任意波形電圧を発生させ、傾斜
磁場コイルLgに印加することができる。
With this structure, the same effect as that of the first embodiment can be obtained, and 0 to ± 4200 can be obtained.
An arbitrary waveform voltage of [V] and a higher voltage can be generated and applied to the gradient magnetic field coil Lg.

【0032】さらに、この第2実施例にかかる傾斜磁場
電源装置1にあっては、より高い電圧を発生できるよう
にインバータ回路の直列接続段数を増やしても(ここで
は3段)、傾斜磁場コイルLgに一定電流を流すときの
スイッチ素子での損失が相対的に少ないという特別な利
点がある。この理由は以下のようである。一定電流を流
すには、第1実施例の場合、電子スイッチSW3,SW
6(又はSW4,SW5)をオンにすればよく、このと
き2つのスイッチをコイル電流iLgが通過していた(図
3参照)。これに対して、より高い電圧を発生できるよ
うに接続段数を増やした第2実施例の場合でも2個の電
子スイッチSW5,SW8(又はSW6,SW7)をオ
ンにすれば一定電流を供給できる。すなわち、第2実施
例の傾斜磁場電源装置の場合も、一定電流を流すときに
電子スイッチで生ずる電力損失は第1実施例と同じで済
む。前述したようにMRIの撮影では、傾斜磁場コイル
Lgに台形波電流を流すことが多いから、かかる事態の
場合、必然的に一定電流を流す期間の割合が多くなり、
この期間における電力損失が従来よりも減ることから、
効率を上げることができる。このエネルギ効率の向上の
度合はインバータ回路の直列接続段数が多くなるほど顕
著になる。従って、放熱機構をより小形にできるし、デ
ューティ比を大きくすることができて、長時間の連続撮
影も容易になる。
Further, in the gradient magnetic field power supply device 1 according to the second embodiment, even if the number of serially connected stages of the inverter circuit is increased (here, three stages) so that a higher voltage can be generated, the gradient magnetic field coil is provided. There is a special advantage that the loss in the switch element is relatively small when a constant current is passed through Lg. The reason for this is as follows. In order to flow a constant current, in the case of the first embodiment, the electronic switches SW3, SW
6 (or SW4, SW5) should be turned on, and the coil current i Lg was passing through the two switches at this time (see FIG. 3). On the other hand, even in the case of the second embodiment in which the number of connection stages is increased so that a higher voltage can be generated, a constant current can be supplied by turning on the two electronic switches SW5, SW8 (or SW6, SW7). That is, also in the case of the gradient magnetic field power supply device of the second embodiment, the power loss caused by the electronic switch when a constant current is passed is the same as that of the first embodiment. As described above, in MRI imaging, a trapezoidal wave current is often passed through the gradient magnetic field coil Lg. Therefore, in such a situation, the proportion of the period during which a constant current is inevitably increased,
Since the power loss during this period is less than before,
You can increase efficiency. The degree of improvement in energy efficiency becomes more remarkable as the number of serially connected inverter circuits increases. Therefore, the heat dissipation mechanism can be made smaller, the duty ratio can be increased, and continuous shooting for a long time becomes easy.

【0033】さらに第3実施例を図8,図9に基づいて
説明する。この第3実施例の傾斜磁場電源装置は、傾斜
磁場コイルに一定電流を供給するときの電力損失をより
一層減らすようにしたものである。
Further, a third embodiment will be described with reference to FIGS. 8 and 9. The gradient magnetic field power supply device of the third embodiment is configured to further reduce power loss when a constant current is supplied to the gradient magnetic field coil.

【0034】具体的には、図8に示す如く、第1実施例
で説明した図2記載の回路に、リニアアンプLinと傾
斜磁場コイルLgとの直列回路を短絡可能な短絡手段と
しての短絡回路11を付加したものである。この短絡回
路11は、IGBトランジスタT21(T22)とダイ
オードD21(D22)の逆並列接続回路からなる電子
スイッチSW21,SW22を直列に接続し、リニアア
ンプLin及び傾斜磁場コイルLgの直列回路に並列に
接続したものである。
Specifically, as shown in FIG. 8, the short circuit as a short circuit means capable of short-circuiting the series circuit of the linear amplifier Lin and the gradient magnetic field coil Lg in the circuit shown in FIG. 2 described in the first embodiment. 11 is added. This short circuit 11 connects electronic switches SW21 and SW22, which are composed of an anti-parallel connection circuit of an IGB transistor T21 (T22) and a diode D21 (D22) in series, and is connected in parallel to a series circuit of a linear amplifier Lin and a gradient magnetic field coil Lg. It is connected.

【0035】コイル電流iLgとして一定電流を流すモー
ドにおいて、この短絡回路11の電子スイッチSW21
又はSW22を接続制御手段としての制御回路10によ
りオンに切り換える。これにより、図9の一点鎖線又は
破線で示す経路でコイル電流iLgが流れるので、この一
定電流供給モードにおける電流通過スイッチ数は1つに
減少する。従って、一定電流供給時の電力損失を更に減
少させることができる。
In a mode in which a constant current is supplied as the coil current i Lg , the electronic switch SW21 of this short circuit 11 is used.
Alternatively, the SW 22 is turned on by the control circuit 10 as the connection control means. As a result, the coil current i Lg flows through the path shown by the alternate long and short dash line in FIG. 9, so the number of current passing switches in this constant current supply mode is reduced to one. Therefore, it is possible to further reduce the power loss when a constant current is supplied.

【0036】さらに、第4実施例を図10に基づいて説
明する。この第4実施例は第3実施例で説明した一定電
流供給時の短絡回路を、前述した従来の図13,図14
に示した傾斜磁場電源装置に適用したものである。
Further, a fourth embodiment will be described with reference to FIG. In the fourth embodiment, the short-circuit circuit at the time of supplying the constant current described in the third embodiment has the same structure as the conventional circuit shown in FIGS.
It is applied to the gradient magnetic field power supply device shown in FIG.

【0037】この図10に示す傾斜磁場電源装置1は、
電子スイッチSW1〜SW4及び第1の高電圧源HVS
1による第1インバータ回路INV1,電子スイッチS
W5〜SW8及び第2の高電圧源HVS2による第2イ
ンバータ回路INV2,電子スイッチSW9〜SW12
及び第3の高電圧源HVS3による第3インバータ回路
INV3並びに電子スイッチSW13〜SW16及び第
4の高電圧源HVS4による第4インバータ回路INV
4を図示の如く直列に接続し、この直列回路にリニアア
ンプLinと傾斜磁場コイルLgとを図示の如く直列に
挿入している。さらに、このリニアアンプLinと傾斜
磁場コイルLgをそれらの両側で互いに短絡可能な短絡
手段としての第1,第2短絡回路12,13を備えてい
る。この第1,第2短絡回路12,13の各々は第3実
施例と同様に形成した電子スイッチSW23,SW24
(SW25,SW26)の直列回路により構成され、コ
イル電流iLgとし、一定電流を流すときに、接続制御手
段としての制御回路10からオン・オフされるようにな
っている。
The gradient magnetic field power supply device 1 shown in FIG.
Electronic switches SW1 to SW4 and first high voltage source HVS
1st inverter circuit INV1 by 1 and electronic switch S
Second inverter circuit INV2 by W5-SW8 and second high voltage source HVS2, electronic switches SW9-SW12
And the third inverter circuit INV3 by the third high voltage source HVS3 and the fourth inverter circuit INV by the electronic switches SW13 to SW16 and the fourth high voltage source HVS4.
4 are connected in series as shown in the figure, and the linear amplifier Lin and the gradient magnetic field coil Lg are inserted in series as shown in the figure. Further, the linear amplifier Lin and the gradient magnetic field coil Lg are provided with first and second short-circuiting circuits 12 and 13 as short-circuiting means capable of short-circuiting each other on both sides thereof. Each of the first and second short circuits 12 and 13 has an electronic switch SW23 or SW24 formed in the same manner as in the third embodiment.
It is constituted by a series circuit of (SW25, SW26), and is set to a coil current i Lg, and is turned on / off from the control circuit 10 as a connection control means when a constant current is passed.

【0038】この第4実施例に対応する従来の図13の
構成の場合、一定値のコイル電流iLgが通過するスイッ
チ数は図14に示す如く4個である。しかしながら、本
第4実施例では電子スイッチSW23,SW26又はS
W24,SW25を通して一定値のコイル電流iLgを流
すことができ、そのスイッチ数は2個に減少する。従っ
て、コイル電流iLgとして一定値を供給するモードにお
ける電力損失を従来よりも大幅に減少させることができ
る。
In the case of the conventional configuration shown in FIG. 13 corresponding to the fourth embodiment, the number of switches through which the coil current i Lg having a constant value passes is four as shown in FIG. However, in the fourth embodiment, the electronic switches SW23, SW26 or S
A constant coil current i Lg can be passed through W24 and SW25, and the number of switches is reduced to two. Therefore, the power loss in the mode in which a constant value is supplied as the coil current i Lg can be significantly reduced as compared with the conventional case.

【0039】なお、上記各実施例では電子スイッチに用
いる半導体スイッチング素子としてIGBトランジスタ
を用いたが、本発明は必ずしもかかる素子に限定される
ことなく、例えばパワートランジスタ,GTOサイリス
タ,MOSFETであってもよい。
In each of the above embodiments, the IGB transistor is used as the semiconductor switching element used for the electronic switch, but the present invention is not necessarily limited to such an element, and may be, for example, a power transistor, a GTO thyristor or a MOSFET. Good.

【0040】[0040]

【発明の効果】以上説明したように、本発明の傾斜磁場
電源装置によれば、複数の高電圧源とリニアアンプ及び
傾斜磁場コイルの直列回路との間の接続状態を変えるこ
とで、多レベルのインバータ構成を実現でき、高電圧の
任意波形を出力できる一方、インバータの段数を増やし
ても、コイル電流として一定値を供給するときの通過電
流による回路損失を相対的に減らすことができ、放熱部
を小形化することができるとともに、デューティ比を大
きくとることができ、長時間の連続撮影に好適なものと
なる。
As described above, according to the gradient magnetic field power supply device of the present invention, by changing the connection state between the plurality of high voltage sources and the series circuit of the linear amplifier and the gradient magnetic field coil, multi-levels can be obtained. The inverter configuration can be realized and a high voltage arbitrary waveform can be output.On the other hand, even if the number of inverter stages is increased, the circuit loss due to the passing current when supplying a constant value as the coil current can be relatively reduced, and the heat dissipation can be improved. The part can be downsized and the duty ratio can be increased, which is suitable for continuous shooting for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る傾斜磁場電源装置の
原理的構成を示すブロック図。
FIG. 1 is a block diagram showing the basic configuration of a gradient magnetic field power supply device according to a first embodiment of the present invention.

【図2】本発明の第1実施例の傾斜磁場電源装置のより
具体的な構成を示すブロック図。
FIG. 2 is a block diagram showing a more specific configuration of the gradient magnetic field power supply device according to the first embodiment of the present invention.

【図3】コイル電流の流れの一態様を示す説明図。FIG. 3 is an explanatory diagram showing one mode of a coil current flow.

【図4】コイル電流の流れの一態様を示す説明図。FIG. 4 is an explanatory view showing one mode of a coil current flow.

【図5】コイル電流の流れの一態様を示す説明図。FIG. 5 is an explanatory diagram showing one mode of a coil current flow.

【図6】コイル電流の流れの一態様を示す説明図。FIG. 6 is an explanatory view showing one mode of a coil current flow.

【図7】本発明の第2実施例に係る傾斜磁場電源装置の
構成を示すブロック図。
FIG. 7 is a block diagram showing a configuration of a gradient magnetic field power supply device according to a second embodiment of the present invention.

【図8】本発明の第3実施例に係る傾斜磁場電源装置の
構成を示すブロック図。
FIG. 8 is a block diagram showing the configuration of a gradient magnetic field power supply device according to a third embodiment of the present invention.

【図9】本発明の第3実施例の傾斜磁場電源装置におけ
る一定値のコイル電流供給時の電流経路を示す説明図。
FIG. 9 is an explanatory diagram showing a current path when supplying a constant coil current in the gradient magnetic field power supply device according to the third embodiment of the present invention.

【図10】本発明の第4実施例に係る傾斜磁場電源装置
の構成を示すブロック図。
FIG. 10 is a block diagram showing a configuration of a gradient magnetic field power supply device according to a fourth embodiment of the present invention.

【図11】従来の傾斜磁場電源装置の一例を示すブロッ
ク図。
FIG. 11 is a block diagram showing an example of a conventional gradient magnetic field power supply device.

【図12】従来装置における一定値のコイル電流供給時
の電流経路を示す説明図。
FIG. 12 is an explanatory diagram showing a current path when a constant value coil current is supplied in the conventional device.

【図13】従来の傾斜磁場電源装置の他の例を示すブロ
ック図。
FIG. 13 is a block diagram showing another example of a conventional gradient magnetic field power supply device.

【図14】従来装置における一定値のコイル電流供給時
の電流経路を示す説明図。
FIG. 14 is an explanatory diagram showing a current path when a constant value coil current is supplied in the conventional device.

【符号の説明】[Explanation of symbols]

1 傾斜磁場電源装置 10 制御回路 11〜13 短絡回路 D9〜D20 ダイオード HVS1〜HVS4 高電圧源 Lg 傾斜磁場コイル Lin リニアアンプ SW1〜SW16,SW21〜SW26 電子スイッチ 1 Gradient magnetic field power supply device 10 Control circuit 11-13 Short circuit D9-D20 Diode HVS1-HVS4 High voltage source Lg Gradient coil Lin Linear amplifier SW1-SW16, SW21-SW26 Electronic switch

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 指令信号に応じて傾斜磁場コイルに傾斜
磁場発生用のコイル電流を供給するための、磁気共鳴イ
メージングシステムに搭載される傾斜磁場電源装置にお
いて、上記傾斜磁場コイルに直列に接続され且つ上記指
令信号を線形的に増幅して上記コイル電流を形成し該電
流を上記傾斜磁場コイルに供給可能なリニアアンプと、
上記傾斜磁場コイルに高電圧を印加可能な、複数の高電
圧源を直列に接続した電源手段と、上記リニアアンプ及
び傾斜磁場コイルの直列回路に対してフルブリッジ接続
され且つ各々が直列接続された複数の第1の電子スイッ
チから成る4組のスイッチング手段と、上記複数の高電
圧源間の直列接続点と上記各スイッチング手段の複数の
第1の電子スイッチ間の直列接続点との間に各々介挿し
た第2の電子スイッチと、上記複数の第1の電子スイッ
チを上記指令信号の波形に応じてオン・オフさせる制御
手段とを備えたことを特徴とする傾斜磁場電源装置。
1. A gradient magnetic field power supply device mounted on a magnetic resonance imaging system for supplying a gradient magnetic field coil current to a gradient magnetic field coil according to a command signal, the gradient magnetic field power supply device being connected in series to the gradient magnetic field coil. And a linear amplifier capable of linearly amplifying the command signal to form the coil current and supplying the current to the gradient coil.
A power supply means capable of applying a high voltage to the gradient magnetic field coil, which is connected in series with a plurality of high voltage sources, and a full bridge connection to the series circuit of the linear amplifier and the gradient magnetic field coil, and each of which is connected in series. Four sets of switching means each including a plurality of first electronic switches, and a series connection point between the plurality of high voltage sources and a series connection point between the plurality of first electronic switches of the switching means, respectively. A gradient magnetic field power supply device comprising: an inserted second electronic switch; and a control means for turning on / off the plurality of first electronic switches according to the waveform of the command signal.
【請求項2】 前記電源手段は出力電圧値が異なる2台
の高電圧源から成り、前記4組のスイッチング手段の各
々は2個の第1の電子スイッチから成ることを特徴とす
る請求項1記載の傾斜磁場電源装置。
2. The power supply means is composed of two high voltage sources having different output voltage values, and each of the four sets of switching means is composed of two first electronic switches. The described gradient magnetic field power supply device.
【請求項3】 前記電源手段は出力電圧値が互いに異な
る3台の高電圧源から成り、前記4組のスイッチング手
段の各々は3個の第1の電子スイッチから成ることを特
徴とする請求項1記載の傾斜磁場電源装置。
3. The power supply means is composed of three high voltage sources having different output voltage values, and each of the four sets of switching means is composed of three first electronic switches. 1. The gradient magnetic field power supply device according to 1.
【請求項4】 前記各スイッチング手段における1番
目,2番目,及び3番目の第1の電子スイッチ間の2つ
の直列接続点が第2の電子スイッチを介して前記高電圧
源における1番目,2番目,及び3番目の高電圧源の2
つの直列接続点に個別に接続されていることを特徴とと
する請求項3記載の傾斜磁場電源装置。
4. The two series connection points between the first, second, and third first electronic switches in each of the switching means are connected to the first, second, and third high voltage sources via a second electronic switch. 2nd of the 3rd and 3rd high voltage source
The gradient magnetic field power supply device according to claim 3, wherein the gradient magnetic field power supply device is individually connected to two series connection points.
【請求項5】 前記第1の電子スイッチは、半導体スイ
ッチング素子及び整流素子の逆並列接続回路で形成され
ていることを特徴とする請求項2又は4記載の傾斜磁場
電源装置。
5. The gradient magnetic field power supply device according to claim 2, wherein the first electronic switch is formed of an antiparallel connection circuit of a semiconductor switching element and a rectifying element.
【請求項6】 前記第2の電子スイッチは、整流素子で
形成されていることを特徴とする請求項2又は4記載の
傾斜磁場電源装置。
6. The gradient magnetic field power supply device according to claim 2, wherein the second electronic switch is formed of a rectifying element.
【請求項7】 指令信号に応じて傾斜磁場コイルに傾斜
磁場発生用のコイル電流を供給するための、磁気共鳴イ
メージングシステムに搭載される傾斜磁場電源装置にお
いて、上記傾斜磁場コイルに直列に接続され且つ上記指
令信号を線形的に増幅して上記コイル電流を形成し該電
流を上記傾斜磁場コイルに供給可能なリニアアンプと、
上記傾斜磁場コイルに高電圧を印加可能な複数の高電圧
源からなる電源手段と、上記リニアアンプ及び傾斜磁場
コイルの直列回路に並列に接続され且つ当該直列回路を
短絡可能な電子スイッチ部を用いた短絡手段と、上記複
数の高電圧源と上記リニアアンプ及び傾斜磁場コイルの
直列回路との接続状態及び上記短絡手段の電子スイッチ
のオン・オフ状態を上記指令信号の波形に応じて制御す
る複数の電子スイッチを含む接続制御手段とを備えたこ
とを特徴とする傾斜磁場電源装置。
7. A gradient magnetic field power supply device mounted in a magnetic resonance imaging system for supplying a coil current for generating a gradient magnetic field to a gradient magnetic field coil according to a command signal, the gradient magnetic field power supply device being connected in series to the gradient magnetic field coil. And a linear amplifier capable of linearly amplifying the command signal to form the coil current and supplying the current to the gradient coil.
A power supply unit composed of a plurality of high voltage sources capable of applying a high voltage to the gradient magnetic field coil, and an electronic switch unit connected in parallel to the series circuit of the linear amplifier and the gradient magnetic field coil and capable of short-circuiting the series circuit. A plurality of short-circuit means, a plurality of high-voltage sources connected to the series circuit of the linear amplifier and the gradient magnetic field coil, and an on / off state of an electronic switch of the short-circuit means according to the waveform of the command signal. And a connection control means including an electronic switch of the gradient magnetic field power supply device.
【請求項8】 前記電源手段の複数の高電圧源は直列に
接続されており、前記接続制御手段の複数の電子スイッ
チは、前記リニアアンプ及び傾斜磁場コイルの直列回路
に対してフルブリッジされた4組のスイッチング手段を
形成し、且つこのスイッチング手段の各々を成す、直列
接続された複数の第1の電子スイッチと、上記複数の高
電圧源間の直列接続点と上記各スイッチング手段の複数
の第1の電子スイッチ間の直列接続点との間に各々介挿
された第2の電子スイッチとを含むことを特徴とする請
求項7記載の傾斜磁場電源装置。
8. A plurality of high voltage sources of the power supply means are connected in series, and a plurality of electronic switches of the connection control means are full-bridged with respect to a series circuit of the linear amplifier and gradient magnetic field coil. A plurality of serially connected first electronic switches forming four sets of switching means and forming each of the switching means; a series connection point between the plurality of high voltage sources and a plurality of the switching means. 8. The gradient magnetic field power supply device according to claim 7, further comprising a second electronic switch interposed between the first electronic switch and a series connection point.
【請求項9】 前記短絡手段の電子スイッチ部は、半導
体スイッチング素子及び整流素子を逆並列接続し、この
並列回路を互いに逆向きに直列接続した構成である請求
項8記載の傾斜磁場電源装置。
9. The gradient magnetic field power supply device according to claim 8, wherein the electronic switching section of the short-circuit means has a configuration in which a semiconductor switching element and a rectifying element are connected in antiparallel, and the parallel circuits are connected in series in directions opposite to each other.
【請求項10】 前記複数の高電圧源は互いに併設され
ており、前記接続制御手段の複数の電子スイッチは上記
複数の高電圧源の各々と複数のインバータ回路を形成
し、この複数のインバータ回路を前記リニアアンプ及び
傾斜磁場コイルに対して直列に多段接続したことを特徴
とする請求項7記載の傾斜磁場電源装置。
10. The plurality of high voltage sources are provided side by side with each other, and the plurality of electronic switches of the connection control means form a plurality of inverter circuits with each of the plurality of high voltage sources, and the plurality of inverter circuits. 8. The gradient magnetic field power supply device according to claim 7, wherein the linear magnetic field power supply device is connected in multiple stages in series to the linear amplifier and the gradient magnetic field coil.
JP6116755A 1994-05-30 1994-05-30 Gradient magnetic field power source device Pending JPH07313489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6116755A JPH07313489A (en) 1994-05-30 1994-05-30 Gradient magnetic field power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116755A JPH07313489A (en) 1994-05-30 1994-05-30 Gradient magnetic field power source device

Publications (1)

Publication Number Publication Date
JPH07313489A true JPH07313489A (en) 1995-12-05

Family

ID=14694945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116755A Pending JPH07313489A (en) 1994-05-30 1994-05-30 Gradient magnetic field power source device

Country Status (1)

Country Link
JP (1) JPH07313489A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103173A1 (en) * 2003-05-26 2004-12-02 Hitachi Medical Corporation Magnetic resonance imaging device
JP2006000645A (en) * 2004-06-15 2006-01-05 General Electric Co <Ge> Switching type amplifier with high power in high fidelity
US7928600B2 (en) 2005-07-01 2011-04-19 Hitachi Medical Corporation Power source device and magnetic resonance imaging apparatus using the same
JP2014083303A (en) * 2012-10-25 2014-05-12 Toshiba Teli Corp Gradient magnetic field power source device, and gradient magnetic field power supply control program
JP2016021980A (en) * 2014-07-16 2016-02-08 株式会社東芝 Coil driving device and magnetic resonance imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103173A1 (en) * 2003-05-26 2004-12-02 Hitachi Medical Corporation Magnetic resonance imaging device
JPWO2004103173A1 (en) * 2003-05-26 2006-07-20 株式会社日立メディコ Magnetic resonance imaging system
JP4550737B2 (en) * 2003-05-26 2010-09-22 株式会社日立メディコ Magnetic resonance imaging system
JP2006000645A (en) * 2004-06-15 2006-01-05 General Electric Co <Ge> Switching type amplifier with high power in high fidelity
US7928600B2 (en) 2005-07-01 2011-04-19 Hitachi Medical Corporation Power source device and magnetic resonance imaging apparatus using the same
JP2014083303A (en) * 2012-10-25 2014-05-12 Toshiba Teli Corp Gradient magnetic field power source device, and gradient magnetic field power supply control program
JP2016021980A (en) * 2014-07-16 2016-02-08 株式会社東芝 Coil driving device and magnetic resonance imaging device

Similar Documents

Publication Publication Date Title
US5734565A (en) Reducing switching losses in series connected bridge inverters and amplifiers
US10122294B2 (en) Active gate clamping for inverter switching devices with enhanced common source inductance
EP2234263A1 (en) A power supply, method, and computer program product for supplying electrical power to a load
US9912279B2 (en) Circuit with current sharing alternately switched parallel transistors
US5081409A (en) Pulse-width modulated circuit for driving a load
KR19990044462A (en) Power converter and power conversion method
JP2004266884A (en) Switching power supply type power supply equipment and nuclear magnetic resonance imaging apparatus using the same
US11489437B2 (en) DC inverter/converter current balancing for paralleled phase leg switches
US4961054A (en) Gradient current speed-up circuit for high-speed NMR imaging system
JPH07500720A (en) Transformer isolated FET drive circuit with 0-100% duty cycle
EP0418074A2 (en) Gradient current speed-up circuit for NMR system
JPH07313489A (en) Gradient magnetic field power source device
US6166602A (en) High-efficiency switching power amplifier
JPH0618564B2 (en) Gradient acceleration circuit for NMR equipment
US6204729B1 (en) H-bridge power amplifier for a motor
US6031422A (en) Power amplifier and nuclear magnetic resonance tomography apparatus employing same
US6111458A (en) Power amplifier and nuclear spin tomography apparatus employing same
US20200235723A1 (en) Power device driving apparatus
JPH07221563A (en) Power amplifier
Horii et al. Large current output digital gate driver using half-bridge digital-to-analog converter IC and two power MOSFETs
JP2006081232A (en) Power supply system for gate driving unit
JPH08211139A (en) Power supply and magnetic resonance imaging system employing it
JPH066975A (en) High voltage power supply circuit
US11424688B2 (en) Modular power converter
JPH0241666A (en) Transistor inverter device