JPH07313185A - Production of peptide - Google Patents
Production of peptideInfo
- Publication number
- JPH07313185A JPH07313185A JP4242554A JP24255492A JPH07313185A JP H07313185 A JPH07313185 A JP H07313185A JP 4242554 A JP4242554 A JP 4242554A JP 24255492 A JP24255492 A JP 24255492A JP H07313185 A JPH07313185 A JP H07313185A
- Authority
- JP
- Japan
- Prior art keywords
- peptide
- angiotensin
- converting enzyme
- fraction
- hplc condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アンジオテンシンI変
換酵素阻害ペプチドの製造法に関する。より詳しくは、
血圧を上昇させる働きのあるアンジオテンシンIIをア
ンジオテンシンIから変換する酵素であるアンジオテン
シンI変換酵素の阻害ペプチドに関する。TECHNICAL FIELD The present invention relates to a method for producing an angiotensin I converting enzyme inhibitory peptide. For more details,
The present invention relates to an angiotensin I-converting enzyme inhibitory peptide that is an enzyme that converts angiotensin II, which functions to increase blood pressure, from angiotensin I.
【0002】[0002]
【従来の技術】高血圧症は、最高血圧が160mmHg
以上か、最少血圧が95mmHg以上または両者がそれ
以上の状態である。わが国では患者数が約2000万人
であるといわれ、り患率の高い疾病である。高血圧症
は、脳出血、脳梗塞、クモ膜下出血、狭心症、心筋梗
塞、腎硬化症、腎不全、網膜静脈閉塞症など広範囲の臓
器にわたってさまざまな合併症を生じることが知られて
おり、有効な治療薬が望まれている。BACKGROUND ART Hypertension has a maximum blood pressure of 160 mmHg.
The minimum blood pressure is 95 mmHg or higher, or both of them are higher. In Japan, the number of patients is said to be about 20 million, which is a highly prevalent disease. Hypertension is known to cause various complications over a wide range of organs such as cerebral hemorrhage, cerebral infarction, subarachnoid hemorrhage, angina, myocardial infarction, renal sclerosis, renal failure, and retinal vein occlusion, Effective therapeutic agents are desired.
【0003】生体内において血圧を調節するメカニズム
の一つとして、昇圧系であるレニン・アンジオテンシン
系と、降圧系であるカリクレイン・キニン系がある。レ
ニン・アンジオテンシン系では酵素レニンが腎臓の旁糸
球体細胞(J.G細胞)で生成され、血管でレニン基質
であるところのアンジオテンシノーゲンに作用してアン
ジオテンシンIを生成する。このアンジオテンシンIを
アンジオテンシンIIに変換する酵素がアンジオテンシ
ンI変換酵素であり、生じたアンジオテンシンIIは細
動脈に作用して収縮を起こさせる。As one of the mechanisms for controlling blood pressure in the living body, there are a renin-angiotensin system which is a pressor system and a kallikrein-quinine system which is a hypotensive system. In the renin-angiotensin system, the enzyme renin is produced in renal glomerular cells (JG cells) and acts on angiotensinogen, which is a renin substrate in blood vessels, to produce angiotensin I. The enzyme that converts angiotensin I into angiotensin II is an angiotensin I converting enzyme, and the resulting angiotensin II acts on arterioles to cause contraction.
【0004】また、アンジオテンシンIIは副腎皮質に
も作用してアルドステロンの合成と分泌を促し、腎臓で
のナトリウムの再吸収を促進し、体液量を保持する働き
もある。このようにしてアンジオテンシンIIによって
血圧が上昇する。一方、カリクレイン・キニン系では、
蛋白分解酵素であるカリクレインが、基質であるところ
のキニノーゲンに作用してキニンを生じる。キニンは血
管を拡張させ、血圧を下げる働きを有するが、キニナー
ゼIIによって分解を受ける。キニナーゼIIはアンジ
オテンシンI変換酵素と同一物質であることが知られて
いる。[0004] Angiotensin II also acts on the adrenal cortex, promotes the synthesis and secretion of aldosterone, promotes sodium reabsorption in the kidney, and maintains the body fluid volume. Thus, angiotensin II raises blood pressure. On the other hand, in the kallikrein-quinine system,
The proteolytic enzyme kallikrein acts on the substrate, kininogen, to produce quinine. Kinins have the functions of dilating blood vessels and lowering blood pressure, but they are degraded by kininase II. Kininase II is known to be the same substance as angiotensin I converting enzyme.
【0005】以上のことから、アンジオテンシンI変換
酵素を阻害することによる高血圧の治療が考えられ、現
在までにカプトプリル、エナラプリル、アラセプリル、
デラプリル等が開発されている。しかし、カプトプリル
は強力な血圧降下作用を有するが、高価であり、安易に
入手することは難しい。その上、用量が不適当であると
腎機能障害や低血圧をもたらす。また、分子内に存在す
るSH基のため、発疹や、味覚異常を引き起こすともい
われている。From the above, treatment of hypertension by inhibiting angiotensin I-converting enzyme is considered, and to date, captopril, enalapril, alacepril,
Delapril and others are being developed. However, although captopril has a strong antihypertensive effect, it is expensive and difficult to obtain easily. Moreover, inadequate dosage results in renal dysfunction and hypotension. Further, it is said that the SH group existing in the molecule causes rash and taste abnormality.
【0006】一方、食品タンパク質に由来するペプチド
も、アンジオテンシンI変換酵素を阻害する働きがある
ことが知られている。例えば、トウモロコシゼインのサ
ーモライシンによる加水分解物からLeu−Arg−P
roの構造をもつペプチドが(Miyosiら、Agr
ic.Biol.Chem.第55巻、第5号、131
3〜1318頁(1991))、また、カツオブシのサ
ーモライシン分解物からIle−Lys−Proの構造
を有するペプチドが(特開平4−69396号公報)分
離されている。しかし、これらのペプチドは食品タンパ
ク質の酵素による加水分解により得られたものであるた
め、製造に高価な蛋白分解酵素を添加する必要がある。
また、ヒトκ−カゼインのアミノ酸配列を含む合成ペプ
チドVal−Arg−Proにも強いアンジオテンシン
I変換酵素阻害作用のあることが報告されている(Ko
hmuraら、Agric.Biol.Chem.第5
4巻、第3号、835〜836頁(1990))。しか
し、合成ペプチドは、多数の試薬類を用いて合成される
ため、人体に投与する前にこれら残留試薬を除去する必
要があり、ペプチドの精製に多大の労力を必要とする。[0006] On the other hand, it is known that peptides derived from food proteins also have an action of inhibiting angiotensin I converting enzyme. For example, from a hydrolyzate of corn zein with thermolysin, Leu-Arg-P
Peptides with the structure of ro (Miyosi et al., Agr
ic. Biol. Chem. Volume 55, Issue 5, 131
Pp. 3 to 1318 (1991)), and a peptide having a structure of Ile-Lys-Pro has been isolated from a thermolysin degradation product of Katsuobushi (Japanese Patent Laid-Open No. 4-69396). However, since these peptides are obtained by enzymatic hydrolysis of food proteins, it is necessary to add an expensive proteolytic enzyme to the production.
Further, it has been reported that a synthetic peptide Val-Arg-Pro containing an amino acid sequence of human κ-casein also has a strong angiotensin I-converting enzyme inhibitory action (Ko.
hmura et al., Agric. Biol. Chem. Fifth
Vol. 4, No. 3, pp. 835-836 (1990)). However, since synthetic peptides are synthesized using a large number of reagents, it is necessary to remove these residual reagents before administration to the human body, which requires a great deal of labor for peptide purification.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、天然
物に由来するアンジオテンシンI変換酵素阻害ペプチド
を魚介類の内臓等未利用資源から安価に製造する方法を
提供することである。An object of the present invention is to provide a method for inexpensively producing an angiotensin I converting enzyme inhibitory peptide derived from a natural product from unused resources such as the internal organs of fish and shellfish.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、本発明を完成させ
るに至った。すなわち、本発明により、安価で簡単に調
製できるアンジオテンシンI変換酵素阻害ペプチドの製
造方法が提供されるに至った。強いアンジオテンシンI
変換酵素阻害作用を有するペプチドVal−Arg−P
ro、Ile−Lys−ProやLeu−Arg−Pr
oは魚介類の頭や内臓の自己消化物に含まれており、以
下の方法で容易に精製することができる。水産加工業な
どで生成する魚介類の頭や内臓をクラッシャーで粉砕
し、20〜70℃で自己消化を行わせる。反応時間は1
〜6時間が適当である。蛋白質の消化を助けるために、
パパイン等の食品用蛋白分解酵素剤をこの際に加えて反
応を行うことも可能である。蛋白分解酵素は90℃以上
に加熱することにより失活させ、遠心分離または濾過に
より固形分を除去する。この自己消化液をオクタデシル
シリル基を官能基とする充填剤(例えば、セップパック
C18、ウォーターズ社製)に吸着させて水洗後、アセト
ニトリル等の極性溶媒を含む水溶液で溶出させる。溶出
液を陽イオン交換体(例えば、トヨパックSP、東ソー
社製)に吸着させ、pH6の緩衝液で洗浄後、pH8の
緩衝液で溶出させる。その後、逆相系クロマトグラフィ
ーおよび・またはゲル濾過クロマトグラフィーにてペプ
チドを精製することにより、目的とするペプチドを回収
することができる。本発明で使用できる魚種は、鰹節工
業で大量に内臓が生成するカツオが利用し易いが、イワ
シやマグロ等他の魚種の魚も使用できる。Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, completed the present invention. That is, the present invention provides a method for producing an angiotensin I converting enzyme inhibitory peptide which is inexpensive and can be easily prepared. Strong angiotensin I
Peptide having converting enzyme inhibitory action Val-Arg-P
ro, Ile-Lys-Pro and Leu-Arg-Pr
o is contained in the autolysates of the heads and internal organs of seafood and can be easily purified by the following method. The head and internal organs of seafood produced in the seafood processing industry are crushed with a crusher and self-digested at 20 to 70 ° C. Reaction time is 1
~ 6 hours is appropriate. To help digest protein
It is also possible to carry out the reaction by adding a proteolytic enzyme agent for food such as papain at this time. The proteolytic enzyme is inactivated by heating it to 90 ° C. or higher, and the solid content is removed by centrifugation or filtration. This self-digesting solution is adsorbed on a packing material having an octadecylsilyl group as a functional group (for example, Seppack C 18 , manufactured by Waters), washed with water, and then eluted with an aqueous solution containing a polar solvent such as acetonitrile. The eluate is adsorbed on a cation exchanger (for example, Toyopack SP, manufactured by Tosoh Corporation), washed with a pH 6 buffer, and then eluted with a pH 8 buffer. Then, the peptide of interest can be recovered by purifying the peptide by reverse phase chromatography and / or gel filtration chromatography. As the fish species that can be used in the present invention, skipjack, which produces a large amount of offal in the bonito industry, is easy to use, but other fish species such as sardines and tuna can also be used.
【0009】[0009]
【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 カツオの内臓1kgをクラッシャーで粉砕し、500g
の水を加え、緩やかに撹拌しながら50℃で3時間自己
消化反応を行わせた。その後、20分間煮沸し、遠心分
離により固形分を除去し、旭化成工業(株)製のラボモ
ジュール限外濾過システムSIP−1013を用いて限
外濾過を行った。濾液のペプチドを逆相系前処理カート
リッジ、セップパックC18ENV(ウォーターズ社製)
に吸着させ、蒸留水8mlで洗浄後、アセトニトリル1
5%水溶液8mlで溶出させた。この処理を4回繰り返
して、アセトニトリル溶出液を混合した。この液を減圧
下で溶媒を除去し、10mMリン酸緩衝液(pH6.
0)で平衡化したイオン交換前処理カートリッジ、トヨ
パックIC−SP(M)(東ソー社製)に吸着させた
後、同じ緩衝液4mlで洗浄し、10mMリン酸水素二
カリウム溶液4mlで溶出させた。その後、HPLC条
件1で示した条件で、逆相系高速液体クロマトグラフィ
ーで分離を行った。この時の結果を図1に示した。チャ
ート1の画分1をさらにHPLC条件2に示す条件で、
逆相系高速液体クロマトグラフィーで分離した。この結
果を図2に示した。図2の画分1−1をさらにHPLC
条件3のゲル濾過クロマトグラフィーで分離した。この
結果を図3に示した。図3の画分1−2をさらにHPL
C条件4のゲル濾過クロマトグラフィーで分離した。こ
の結果を図4に示した。図4の画分1−3に強いアンジ
オテンシンI変換酵素阻害作用が認められたので、アプ
ライドバイオシステム社製気相プロテインシーケンサ4
70Aで構造解析を行ったところ、Var−Arg−P
roの構造であることが判明した。EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 1 kg of skipjack internal organs was crushed with a crusher to give 500 g.
Water was added, and the autolysis reaction was carried out at 50 ° C. for 3 hours while gently stirring. Then, it boiled for 20 minutes, the solid content was removed by centrifugation, and ultrafiltration was performed using a laboratory module ultrafiltration system SIP-1013 manufactured by Asahi Kasei. Reverse-phase pretreatment cartridge, Sepppack C 18 ENV (manufactured by Waters)
Adsorbed on and washed with 8 ml of distilled water, then acetonitrile 1
Elution was carried out with 8 ml of a 5% aqueous solution. This process was repeated 4 times, and the acetonitrile eluate was mixed. The solvent was removed from this solution under reduced pressure, and a 10 mM phosphate buffer solution (pH 6.
After adsorbing on the ion exchange pretreatment cartridge, Toyopack IC-SP (M) (manufactured by Tosoh Corporation) equilibrated with 0), the sample was washed with 4 ml of the same buffer and eluted with 4 ml of 10 mM dipotassium hydrogen phosphate solution. . Then, separation was performed by reversed-phase high performance liquid chromatography under the conditions shown in HPLC condition 1. The result at this time is shown in FIG. Fraction 1 of Chart 1 was further subjected to the HPLC conditions 2
Separation was performed by reversed-phase high performance liquid chromatography. The result is shown in FIG. Fraction 1-1 of Figure 2 was further subjected to HPLC
Separation was performed by gel filtration chromatography under condition 3. The result is shown in FIG. Fractions 1-2 of Figure 3 are further HPL
It was separated by gel filtration chromatography under C condition 4. The result is shown in FIG. A strong angiotensin I-converting enzyme inhibitory action was observed in Fractions 1-3 in FIG. 4, so a gas phase protein sequencer 4 manufactured by Applied Biosystems
When structural analysis was performed with 70A, Var-Arg-P
It was found to be the structure of ro.
【0010】アンジオテンシンI変換酵素阻害の測定
は、カシュマンらの方法(バイオケミカル・ファーマコ
ロジー20巻1637〜1648頁(1971))を改
良した丸山らの方法(アグリカルチュラル・バイオロジ
カル・ケミストリー46巻5号1393〜1394(1
982))に従った。すなわち、試験管に本発明ペプチ
ド水溶液30μlと、酵素基質としてL−ヒプリルヒス
チジルロイシン(シグマ社製)と塩化ナトリウムを含有
したpH8.3のホウ酸緩衝液250μlを加え、37
℃で10分間プレインキュベーションした。その後、ア
ンジオテンシンI変換酵素含有液100μlを加え、酵
素反応を開始した。この時のホウ酸緩衝液の濃度は0.
1M、L−ヒプリルヒスチジルロイシン濃度は5mM、
塩化ナトリウム300mMであり、阻害がかからない場
合の酵素活性は8mUである。37℃、pH8.3で3
0分間振動しつつ反応せしめた後、1N塩酸250μl
を加え、反応を停止させた。酢酸エチル1.5mlを加
え、15秒間振とうさせて酵素反応で生じた馬尿酸を抽
出し、2000rpm、10分間遠心分離して酢酸エチ
ル層1.0を試験管に回収した。酢酸エチルをホットド
ライバス中で120℃、30分間加温して完全に除去し
た後、室温で5分間放置した。そして、3mlの蒸留水
を加え、生成した馬尿酸の量を228nm吸光度を測定
して求めた。酵素反応に使用したアンジオテンシンI変
換酵素含有液は、ラビットラングアセトンパウダー(シ
グマ社製)1gを0.1Mホウ酸緩衝液(pH8.3)
10mlに溶かし、よく撹拌した後、4℃、40000
×gで40分間遠心分離した上清を0.1Mホウ酸緩衝
液で希釈して作成した。また、酵素反応開始前に塩酸を
添加して、同様な操作を施したものの測定結果をブラン
クとした。反応液中に本ペプチドが2.2μM添加され
た時に、アンジオテンシンI変換酵素の活性が50%阻
害された。The measurement of the inhibition of angiotensin I converting enzyme is carried out by the method of Maruyama et al. (Agricultural Biological Chemistry, vol. 46, 5) which is an improved version of the method of Kashman et al. No. 1393-1394 (1
982)). That is, to a test tube, 30 μl of an aqueous solution of the peptide of the present invention and 250 μl of a borate buffer solution of pH 8.3 containing L-hipryl histidyl leucine (manufactured by Sigma) and sodium chloride as an enzyme substrate were added,
Pre-incubated at 10 ° C for 10 minutes. Then, 100 μl of angiotensin I converting enzyme-containing solution was added to start the enzymatic reaction. At this time, the borate buffer solution had a concentration of 0.
1M, L-Hipryl histidyl leucine concentration is 5 mM,
Sodium chloride is 300 mM, and the enzyme activity without inhibition is 8 mU. 3 at 37 ° C, pH 8.3
After reacting with shaking for 0 minutes, 250 μl of 1N hydrochloric acid
Was added to stop the reaction. 1.5 ml of ethyl acetate was added, and the mixture was shaken for 15 seconds to extract hippuric acid generated by the enzymatic reaction, and centrifuged at 2000 rpm for 10 minutes to recover an ethyl acetate layer 1.0 in a test tube. Ethyl acetate was heated in a hot dry bath at 120 ° C. for 30 minutes to completely remove it, and then left at room temperature for 5 minutes. Then, 3 ml of distilled water was added, and the amount of hippuric acid produced was determined by measuring the 228 nm absorbance. The angiotensin I-converting enzyme-containing solution used for the enzymatic reaction was 1 g of rabbit rung acetone powder (manufactured by Sigma) and 0.1 M borate buffer solution (pH 8.3).
Dissolve in 10 ml and stir well, then 4 ℃, 40000
It was prepared by diluting the supernatant after centrifugation at xg for 40 minutes with 0.1 M borate buffer. Further, hydrochloric acid was added before the start of the enzymatic reaction, and the same operation was performed, but the measurement result was used as a blank. When 2.2 μM of the peptide was added to the reaction solution, the activity of angiotensin I converting enzyme was inhibited by 50%.
【0011】実施例2 実施例1の逆相クロマトグラフィーで得られた画分2
(図1)をさらにHPLC条件2の条件で分離した。そ
の結果を図5に示した。図5の画分2−1をさらにHP
LC条件3のゲル濾過クロマトグラフィーで分離した。
この結果を図6に示した。図6の画分2−2をさらにH
PLC条件4のゲル濾過クロマトグラフィーで分離し
た。この結果を図7に示した。図7の画分2−3をさら
にHPLC条件5でイオン交換分離を行い、図8に示す
画分2−4を得た。この画分を最後にHPLC条件6で
逆相系分離を行い、図9に示す画分2−5を得た。画分
2−5には強いアンジオテンシンI変換酵素阻害作用が
認められたので、脱塩後、アプライドバイオシステム社
製気相プロテインシーケンサ470Aで構造解析を行っ
たところ、Ile−Lys−Proの構造であることが
判明した。前記実施例1に記載の方法で本ペプチドのア
ンジオテンシンI変換酵素阻害活性を測定したところ、
反応液中に本ペプチドが2.5μM添加された時に、ア
ンジオテンシンI変換酵素の活性が50%阻害された。Example 2 Fraction 2 obtained by reverse phase chromatography of Example 1
(FIG. 1) was further separated under the condition of HPLC condition 2. The results are shown in Fig. 5. The fraction 2-1 in FIG.
Separated by gel filtration chromatography under LC condition 3.
The result is shown in FIG. Fraction 2-2 in FIG.
Separation was performed by gel filtration chromatography under PLC condition 4. The result is shown in FIG. 7. Fraction 2-3 in FIG. 7 was further subjected to ion exchange separation under HPLC condition 5 to obtain fraction 2-4 in FIG. This fraction was finally subjected to reverse phase system separation under HPLC condition 6 to obtain fraction 2-5 shown in FIG. Fractions 2-5 were found to have a strong angiotensin I converting enzyme inhibitory action. Therefore, after desalting, structural analysis was performed using a gas phase protein sequencer 470A manufactured by Applied Biosystems, and it was found that the structure was Ile-Lys-Pro. It turned out to be. When the angiotensin I-converting enzyme inhibitory activity of the present peptide was measured by the method described in Example 1,
When this peptide was added to the reaction solution at 2.5 μM, the activity of angiotensin I converting enzyme was inhibited by 50%.
【0012】実施例3 実施例1の逆相クロマトグラフィーで得られた画分3
(図1)をさらにHPLC条件2の条件で分離した。そ
の結果を図10に示した。図10の画分3−1をさらに
HPLC条件3のゲル濾過クロマトグラフィーで分離し
た。この結果を図11に示した。図11の画分3−2を
さらにHPLC条件4のゲル濾過クロマトグラフィーで
分離した。この結果を図12に示した。図12の画分3
−3をさらにHPLC条件5でイオン交換分離を行い、
図13に示す画分3−4を得た。この画分を最後にHP
LC条件6で逆相系分離を行い、図14に示す画分3−
5を得た。画分3−5には強いアンジオテンシンI変換
酵素阻害作用が認められたので、脱塩後、アプライドバ
イオシステム社製気相プロテインシーケンサ470Aで
構造解析を行ったところ、Leu−Arg−Proの構
造であることが判明した。前記実施例1に記載の方法で
本ペプチドのアンジオテンシンI変換酵素阻害活性を測
定したところ、反応液中に本ペプチドが1.0μM添加
された時に、アンジオテンシンI変換酵素の活性が50
%阻害された。Example 3 Fraction 3 obtained by reverse phase chromatography of Example 1
(FIG. 1) was further separated under the condition of HPLC condition 2. The results are shown in Fig. 10. Fraction 3-1 in FIG. 10 was further separated by gel filtration chromatography under HPLC condition 3. The result is shown in FIG. Fraction 3-2 in FIG. 11 was further separated by gel filtration chromatography under HPLC condition 4. The result is shown in FIG. Fraction 3 in Figure 12
-3 is further subjected to ion exchange separation under HPLC condition 5,
Fractions 3-4 shown in FIG. 13 were obtained. HP at the end of this fraction
Reversed-phase separation was performed under LC condition 6, and fractions 3-shown in FIG.
Got 5. Since a strong angiotensin I-converting enzyme inhibitory action was observed in Fractions 3-5, after desalting, structural analysis was performed using a gas phase protein sequencer 470A manufactured by Applied Biosystems, and it was found that the structure was Leu-Arg-Pro. It turned out to be. When the angiotensin I-converting enzyme inhibitory activity of the peptide was measured by the method described in Example 1, the activity of the angiotensin I-converting enzyme was 50 when the peptide was added to the reaction solution at 1.0 μM.
% Inhibited.
【0013】HPLC条件1 カラム:RP−18(e) 10mmID×250mm
L(メルク社製) 移動相:A 0.05%トリフルオロ酢酸液 B:0.05%トリフルオロ酢酸、30%アセトニトリ
ル液 グラジエントはA液100%から120分後にB液10
0%になる直線グラジエント 流速:4.0ml/分 検出:UV210nmHPLC condition 1 Column: RP-18 (e) 10 mm ID × 250 mm
L (manufactured by Merck) Mobile phase: A 0.05% trifluoroacetic acid solution B: 0.05% trifluoroacetic acid, 30% acetonitrile solution Gradient was 100% of solution A and 120 minutes later, solution B 10
0% linear gradient Flow rate: 4.0 ml / min Detection: UV210 nm
【0014】HPLC条件2 カラム:RP−18(e) 4.6mmID×250m
mL(メルク社製) 移動相:A 0.05%トリフルオロ酢酸液 B:0.05%トリフルオロ酢酸、30%アセトニトリ
ル液 グラジエントはA液100%から120分後にB液10
0%になる直線グラジエント 流速:1.0ml/分 検出:UV210nmHPLC condition 2 Column: RP-18 (e) 4.6 mm ID × 250 m
mL (manufactured by Merck) Mobile phase: A 0.05% trifluoroacetic acid solution B: 0.05% trifluoroacetic acid, 30% acetonitrile solution Gradient was 100% of solution A and 120 minutes later, solution B 10
0% linear gradient Flow rate: 1.0 ml / min Detection: UV210 nm
【0015】HPLC条件3 カラム:GS−220 7.6mmID×500mmL
(旭化成工業社製) 移動相:50mM酢酸アンモニウム 流速:1.0ml/分 検出:UV210nmHPLC condition 3 column: GS-220 7.6 mm ID × 500 mm L
(Asahi Kasei Co., Ltd.) Mobile phase: 50 mM ammonium acetate Flow rate: 1.0 ml / min Detection: UV 210 nm
【0016】HPLC条件4 カラム:GS−320 7.6mmID×500mmL
(旭化成工業社製) 移動相:50mM酢酸アンモニウム 流速:1.0ml/分 検出:UV210nmHPLC condition 4 Column: GS-320 7.6 mm ID × 500 mm L
(Asahi Kasei Co., Ltd.) Mobile phase: 50 mM ammonium acetate Flow rate: 1.0 ml / min Detection: UV 210 nm
【0017】HPLC条件5 カラム:TSKgel SP−2SW 4.6mmID
×250mmL (東ソー社製) 移動相:A 20mMリン酸ナトリウム緩衝液(pH
6.0) B 20mMリン酸ナトリウム緩衝液(pH6.0)+
0.5M塩化ナトリウム A100%で10分流した後40分後にB液100%と
なるような直線グラジエント 流速:0.8ml/分 検出:UV210nmHPLC condition 5 Column: TSKgel SP-2SW 4.6 mm ID
× 250 mmL (manufactured by Tosoh Corporation) Mobile phase: A 20 mM sodium phosphate buffer (pH
6.0) B 20 mM sodium phosphate buffer (pH 6.0) +
0.5M sodium chloride A 100% A flow for 10 minutes, and then 40 minutes later, a linear gradient such that the solution B becomes 100% Flow rate: 0.8 ml / min Detection: UV210 nm
【0018】HPLC条件6 カラム:RP−18(e) 4.6mmID×250m
mL(メルク社製) 移動相:0.05%トリフルオロ酢酸、7%アセトニト
リル液 流速:1.0ml/分 検出:UV210nmHPLC condition 6 Column: RP-18 (e) 4.6 mm ID × 250 m
mL (manufactured by Merck) Mobile phase: 0.05% trifluoroacetic acid, 7% acetonitrile solution Flow rate: 1.0 ml / min Detection: UV210 nm
【0019】[0019]
【発明の効果】以上説明したとおり、本発明によれば、
血圧上昇を抑える作用を有するアンジオテンシンI変換
酵素阻害ペプチドが蛋白分解酵素剤を添加することなく
容易に得られる。As described above, according to the present invention,
An angiotensin I converting enzyme inhibitory peptide having an action of suppressing an increase in blood pressure can be easily obtained without adding a proteolytic enzyme agent.
【0020】配列番号:1 配列の長さ:3 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:ペプチド SEQ ID NO: 1 Sequence length: 3 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide
【0021】配列番号:2 配列の長さ:3 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:ペプチド SEQ ID NO: 2 Sequence length: 3 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide
【0022】配列番号:3 配列の長さ:3 配列の型:アミノ酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:ペプチド SEQ ID NO: 3 Sequence length: 3 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide
【図面の簡単な説明】[Brief description of drawings]
【図1】カツオ自己消化物由来のペプチド液をRP−1
8(e)カラム(10mmID×250mmL)で分離
した際の溶出パターン。FIG. 1 shows a peptide solution derived from skipjack self-digested product as RP-1.
8 (e) Elution pattern when separated with a column (10 mm ID × 250 mm L).
【図2】図1の画分1をHPLC条件2で分離した際の
溶出パターン。FIG. 2 is an elution pattern when fraction 1 in FIG. 1 is separated under HPLC condition 2.
【図3】図2の画分1−1をHPLC条件3で分離した
際の溶出パターン。FIG. 3 is an elution pattern when fraction 1-1 of FIG. 2 is separated under HPLC condition 3.
【図4】図3の画分1−2をHPLC条件4で分離した
際の溶出パターン。FIG. 4 is an elution pattern when fractions 1-2 of FIG. 3 are separated under HPLC condition 4.
【図5】図1の画分2をHPLC条件2で分離した際の
溶出パターン。FIG. 5 is an elution pattern when Fraction 2 of FIG. 1 is separated under HPLC condition 2.
【図6】図5の画分2−1をHPLC条件3で分離した
際の溶出パターン。FIG. 6 is an elution pattern when the fraction 2-1 of FIG. 5 is separated under HPLC condition 3.
【図7】図6の画分2−2をHPLC条件4で分離した
際の溶出パターン。FIG. 7 is an elution pattern when fraction 2-2 in FIG. 6 is separated under HPLC condition 4.
【図8】図7の画分2−3をHPLC条件5で分離した
際の溶出パターン。8 is an elution pattern when fractions 2-3 in FIG. 7 were separated under HPLC condition 5. FIG.
【図9】図8の画分2−4をHPLC条件6で分離した
際の溶出パターン。9 is an elution pattern when fractions 2-4 in FIG. 8 are separated under HPLC condition 6. FIG.
【図10】図1の画分3をHPLC条件2で分離した際
の溶出パターン。FIG. 10 is an elution pattern obtained when Fraction 3 in FIG. 1 was separated under HPLC condition 2.
【図11】図10の画分3−1をHPLC条件3で分離
した際の溶出パターン。FIG. 11 is an elution pattern when the fraction 3-1 of FIG. 10 is separated under HPLC condition 3.
【図12】図11の画分3−2をHPLC条件4で分離
した際の溶出パターン。FIG. 12 is an elution pattern obtained by separating the fraction 3-2 shown in FIG. 11 under HPLC condition 4.
【図13】図12の画分3−3をHPLC条件5で分離
した際の溶出パターン。FIG. 13 is an elution pattern when fractions 3-3 in FIG. 12 are separated under HPLC condition 5.
【図14】図13の画分3−4をHPLC条件6で分離
した際の溶出パターン。FIG. 14 is an elution pattern when fractions 3-4 in FIG. 13 are separated under HPLC condition 6.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61K 38/55 AEQ C07K 123:00 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area A61K 38/55 AEQ C07K 123: 00
Claims (3)
Val−Arg−Proの構造を持つペプチドを分離回
収することを特徴とするアンジオテンシンI変換酵素阻
害ペプチドの製造方法。1. A method for producing an angiotensin I converting enzyme inhibitory peptide, which comprises autolyzing seafood and separating and recovering a peptide having a Val-Arg-Pro structure from the autolysate.
Ile−Lys−Proの構造を持つペプチドを分離回
収することを特徴とするアンジオテンシンI変換酵素阻
害ペプチドの製造方法。2. A method for producing an angiotensin I converting enzyme inhibitory peptide, which comprises autolyzing seafood and separating and recovering a peptide having a structure of Ile-Lys-Pro from the autolyzed product.
eu−Arg−Proの構造を持つペプチドを分離回収
することを特徴とするアンジオテンシンI変換酵素阻害
ペプチドの製造方法。3. A seafood is self-digested, and L is extracted from the self-digested product.
A method for producing an angiotensin I converting enzyme inhibitory peptide, which comprises separating and collecting a peptide having a structure of eu-Arg-Pro.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242554A JPH07313185A (en) | 1992-08-20 | 1992-08-20 | Production of peptide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242554A JPH07313185A (en) | 1992-08-20 | 1992-08-20 | Production of peptide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07313185A true JPH07313185A (en) | 1995-12-05 |
Family
ID=17090830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4242554A Pending JPH07313185A (en) | 1992-08-20 | 1992-08-20 | Production of peptide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07313185A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002247955A (en) * | 2001-02-23 | 2002-09-03 | Takashi Okazaki | Split product having high angiotensin converting enzyme- inhibiting action, method for producing the same and functional food |
WO2003044044A1 (en) * | 2001-11-21 | 2003-05-30 | Morinaga Milk Industry Co., Ltd. | Novel peptide having angiotensin convertase inhibitory effect |
-
1992
- 1992-08-20 JP JP4242554A patent/JPH07313185A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002247955A (en) * | 2001-02-23 | 2002-09-03 | Takashi Okazaki | Split product having high angiotensin converting enzyme- inhibiting action, method for producing the same and functional food |
WO2003044044A1 (en) * | 2001-11-21 | 2003-05-30 | Morinaga Milk Industry Co., Ltd. | Novel peptide having angiotensin convertase inhibitory effect |
US7022676B2 (en) | 2001-11-21 | 2006-04-04 | Morinaga Milk Industry Co., Ltd. | Peptide having angiotensin converting enzyme inhibitory effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07313185A (en) | Production of peptide | |
JPH08231588A (en) | Angiotensinase inhibiting peptide and its production | |
JP3472801B2 (en) | Angiotensin I converting enzyme inhibitor and method for producing the same | |
JPH05306296A (en) | Fish-derived peptide and its production | |
JP3430176B2 (en) | Method for purifying angiotensin converting enzyme inhibitory peptide | |
JP3119674B2 (en) | New peptides, their production methods and applications | |
JP3009718B2 (en) | New peptides, their production methods and applications | |
JPH06220088A (en) | Tripeptide inhibiting angiotensin i converting enzyme, its production and food containing the tripeptide | |
JP3040389B2 (en) | Production method of peptide | |
US4784988A (en) | Peptides correlated to lysozyme | |
JPH05306295A (en) | Angiotensin i converting enzyme-inhibitory tripeptide and its production | |
JP3009719B2 (en) | New peptides, their production methods and applications | |
JP2003024012A (en) | Angiotensin i converting enzyme inhibitor and antihypertensive functional food | |
JP2001163896A (en) | Novel peptide used as angiotensin converting enzyme inhibitor, and preparation process thereof | |
JP3012291B2 (en) | Novel peptide, its production method and use | |
JP3009720B2 (en) | New peptides, their production methods and applications | |
JP3454545B2 (en) | Angiotensin I converting enzyme inhibiting tripeptide, method for producing the same, and food containing the same | |
JPH0649096A (en) | Angiotensin i converting enzyme-inhibiting peptide, its production and food containing the same | |
JPH05331190A (en) | New peptide and its production | |
JP3108920B1 (en) | Novel tetrapeptide and angiotensin converting enzyme inhibitors | |
JP3012292B2 (en) | New peptides, their production methods and applications | |
JPH05331192A (en) | New peptide and its production | |
JP2965683B2 (en) | Novel peptide, method for producing it and use | |
JP3031692B2 (en) | Novel peptide, method for producing it and use | |
JP3115569B2 (en) | New peptide |