JPH07311268A - Surveying laser radar - Google Patents

Surveying laser radar

Info

Publication number
JPH07311268A
JPH07311268A JP6125712A JP12571294A JPH07311268A JP H07311268 A JPH07311268 A JP H07311268A JP 6125712 A JP6125712 A JP 6125712A JP 12571294 A JP12571294 A JP 12571294A JP H07311268 A JPH07311268 A JP H07311268A
Authority
JP
Japan
Prior art keywords
wavelength
laser
target
laser radar
selecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6125712A
Other languages
Japanese (ja)
Other versions
JP3137531B2 (en
Inventor
Shohei Noda
松平 野田
Miyuki Etsu
幸 悦
Tomoyoshi Baba
智義 馬場
Tatsuo Suetsugu
辰雄 末続
Seiji Ryu
誠治 龍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06125712A priority Critical patent/JP3137531B2/en
Publication of JPH07311268A publication Critical patent/JPH07311268A/en
Application granted granted Critical
Publication of JP3137531B2 publication Critical patent/JP3137531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To provide a surveying laser radar which can survey via an optimum wavelength which can permeate sea water in a sea area and effectively survey a target of a deeper depth. CONSTITUTION:A laser radar surveys a target position by emitting a laser light 12 and inputting an echo to be reflected by a target 17 in the sea 16, and comprises a controller 21 for outputting a scan command of a variable band wavelength for a variable wavelength laser 11, and a wavelength selecting signal processor 20 for selecting a wavelength by obtaining the emitting strength and the reflecting strength of a certain wavelength and selecting the wavelength in which reflecting the strength/emitting strengths become maximum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は探査用レーザーレーダー
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser radar device for exploration.

【0002】[0002]

【従来の技術】従来、航空機等に搭載しレーザー光を照
射し海中の沈船等のターゲットにより反射されるエコー
を入力してターゲット位置を探査するレーザーレーダー
装置としては、図2模式図に示すものが知られており、
すなわち図2において、YAGレーザー31から出たレ
ーザー光32は孔あきの凹面鏡33の孔を通過し、ミラ
ー34を経由して海中36へ照射され、このときミラー
34を振動させて走査方向35にレーザービームを走査
し、海中36に存在するターゲット37を探査すると、
ターゲット37に当たったレーザー光は反射し、その一
部は入射光と反対方向に進み、ミラー34を経て凹面鏡
33で光電変換器38に集光され、光電変換器33に入
射したレーザー反射光は電気信号に変換されて信号処理
器39で処理され、ターゲット37の有無が判別され
る。
2. Description of the Related Art Conventionally, a laser radar device mounted on an aircraft or the like for irradiating a laser beam and inputting an echo reflected by a target such as a submerged ship in the sea to search a target position is shown in a schematic view of FIG. Is known,
That is, in FIG. 2, the laser beam 32 emitted from the YAG laser 31 passes through the hole of the perforated concave mirror 33, and is irradiated to the underwater 36 via the mirror 34. At this time, the mirror 34 is vibrated and the laser beam 32 is emitted in the scanning direction 35. When the beam is scanned and the target 37 existing in the sea 36 is searched,
The laser light that hits the target 37 is reflected, and a part of it travels in the direction opposite to the incident light, passes through the mirror 34, is condensed by the concave mirror 33 on the photoelectric converter 38, and the laser reflected light that enters the photoelectric converter 33 is reflected. It is converted into an electric signal and processed by the signal processor 39, and the presence or absence of the target 37 is determined.

【0003】しかしてレーザー光32の波長は、海水の
透過率がよい400〜600nmの波長域にありかつ高
出力で航空機等に搭載可能なメンテナンス性のよい、Y
AGレーザー31の第2高調波523nmが採用され固
定されている。しかしながら海水中におけるレーザー光
の減衰は海中浮遊物による散乱の多寡によってその度合
いが異なり、図3線図に示すように、レーザー光の最小
減衰波長すなわち最大透過波長は海域によって異なる。
従って上記のようにレーザー光32の波長を523nm
に固定していたのでは海域によって最適な波長で探査す
ることができないので、探査海域に応じた深い探査を行
うことができない。また減衰係数の増大に抗してより深
くにあるターゲット37を探査するにはレーザー強度を
大きくするしかないが、例えば減衰係数α=0.12の海域
では、レーザー強度を2倍にしても探査できる最大深度
は2.9 mしか伸びないという不都合がある。
However, the wavelength of the laser beam 32 is in the wavelength range of 400 to 600 nm where the transmittance of seawater is good, the output is high, and it can be mounted on an aircraft or the like with good maintainability.
The second harmonic 523 nm of the AG laser 31 is adopted and fixed. However, the degree of attenuation of laser light in seawater differs depending on the amount of scattering by suspended matter in the sea, and as shown in the diagram of FIG. 3, the minimum attenuation wavelength of laser light, that is, the maximum transmission wavelength, differs depending on the sea area.
Therefore, as described above, the wavelength of the laser beam 32 is 523 nm.
Since it is not possible to search at the optimum wavelength depending on the sea area if it is fixed at, it is not possible to perform deep exploration according to the sea area. In addition, in order to search the target 37 located deeper against the increase of the attenuation coefficient, the laser intensity must be increased. For example, in the sea area with the attenuation coefficient α = 0.12, even if the laser intensity is doubled, the maximum search is possible. The depth is only 2.9 m, which is a disadvantage.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、海域によってよく海水
を透過できる最適な波長で探査することができ、より深
い深度のターゲットを有効に探査することができる探査
用レーザーレーダー装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and it is possible to perform exploration at an optimum wavelength that allows seawater to be transmitted well depending on the sea area, and a target with a deeper depth can be effectively used. It is an object of the present invention to provide a laser radar device for exploration capable of exploring.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、レ
ーザー光を照射し海中ターゲットにより反射されるエコ
ーを入力してターゲット位置を探査するレーザーレーダ
ー装置において、可変波長レーザー光を照射するレーザ
ー装置と、上記レーザー装置に対し可変帯域波長のスキ
ャン指令を出すコントローラーと、ある波長における照
射強度と反射強度を求め反射強度/照射強度が最大とな
る波長を選定する手段とを具えたことを特徴とする。
To this end, the present invention provides a laser radar device for irradiating a variable wavelength laser beam in a laser radar device for irradiating a laser beam and inputting an echo reflected by an underwater target to search a target position. And a controller for issuing a scan command of a variable band wavelength to the laser device, and means for selecting an irradiation intensity / reflection intensity at a certain wavelength and selecting a reflection intensity / a wavelength at which the irradiation intensity is maximized. To do.

【0006】[0006]

【作用】本発明探査用レーザーレーダー装置において
は、コントローラーからの信号でレーザー装置の波長を
可変帯域にわたってスキャンさせ、波長選定手段におい
てある波長における照射強度と反射強度を求め反射強度
/照射強度が最大となる波長を選定し、その波長でレー
ザー装置の波長を固定し海中ターゲットの探査を行う。
In the laser radar device for exploration of the present invention, the wavelength of the laser device is scanned over a variable band by the signal from the controller, and the irradiation intensity and the reflection intensity at a certain wavelength are obtained by the wavelength selection means to obtain the maximum reflection intensity / irradiation intensity. The wavelength to be used is selected, the wavelength of the laser device is fixed at that wavelength, and the underwater target is searched.

【0007】[0007]

【実施例】本発明探査用レーザーレーダー装置の一実施
例を図1模式図について説明すると、波長可変レーザー
11は400〜600nmの帯域で発振可能なオプティ
カル・パラメトリック発振原理を用いた波長可変レーザ
ーであり、この波長可変レーザー11から照射されるレ
ーザー光12の前方には孔あきの凹面鏡13が配置され
るとともに、その前にミラー14が設置され走査方向1
5にレーザービームを走査し、海中16のターゲット1
7を探査するようになっている。また凹面鏡13からの
反射光を受ける位置に光電変換器18が配設され、更に
この光電変換器18には探査用信号処理器19及び波長
選定用信号処理器20が連結されており、波長選定用信
号処理器20と波長可変レーザー11とに可変帯域の適
宜波長のスキャン指令を出すコントローラー21が接続
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the laser radar device for exploration of the present invention will be described with reference to the schematic view of FIG. 1. The wavelength tunable laser 11 is a wavelength tunable laser using the optical parametric oscillation principle capable of oscillating in the band of 400 to 600 nm. There is a perforated concave mirror 13 in front of the laser light 12 emitted from the wavelength tunable laser 11, and a mirror 14 is installed in front of the concave mirror 13 for scanning direction 1.
Scan the laser beam to 5 and target 16 underwater
Exploring 7. Further, a photoelectric converter 18 is arranged at a position where the reflected light from the concave mirror 13 is received, and a search signal processor 19 and a wavelength selection signal processor 20 are connected to the photoelectric converter 18 for wavelength selection. The signal processor 20 and the wavelength tunable laser 11 are connected to a controller 21 which issues a scan command of an appropriate wavelength in a variable band.

【0008】このような装置において、波長可変レーザ
ー11から出たレーザー光12は孔あきの凹面鏡13の
孔を通過し、走査方向15へ振動されるミラー14によ
って海中16を走査しターゲット17を探査すると、タ
ーゲット17に当たったレーザー光は反射しその一部は
ミラー14,凹面鏡13を経て光電変換器18に集光さ
れ、光電変換器18に入射したレーザー反射光は電気信
号22に変換されて探査用信号処理器19で処理され、
ターゲット17の有無が判別される。しかして波長可変
レーザー11からレーザー光12を照射するにあたっ
て、コントローラー21からの信号23で波長可変レー
ザー11の波長を400〜600nmまでスキャンさ
せ、波長選定用信号処理器20において、このときの光
電変換器18からの信号24と波長可変レーザー11の
パワーモニター信号25との強度比をとり、その信号と
コントローラー21からの信号23を一時記録する。ス
キャンが完了すると、強度比と波長の関係から強度比が
最大になるときの波長を決定し、その波長信号をコント
ローラー21に送る。コントローラー21ではその波長
信号で波長可変レーザー11の波長を固定し、探査モー
ドに切換えて探査を行う。
In such an apparatus, the laser light 12 emitted from the wavelength tunable laser 11 passes through the hole of the perforated concave mirror 13, and the underwater 16 is scanned by the mirror 14 vibrated in the scanning direction 15 to search the target 17. The laser light that hits the target 17 is reflected, and a part of it is focused on the photoelectric converter 18 via the mirror 14 and the concave mirror 13, and the laser reflected light that has entered the photoelectric converter 18 is converted into an electrical signal 22 for exploration. Is processed by the signal processor 19 for
The presence or absence of the target 17 is determined. Then, when irradiating the laser light 12 from the wavelength tunable laser 11, the signal 23 from the controller 21 scans the wavelength of the wavelength tunable laser 11 to 400 to 600 nm, and the wavelength selection signal processor 20 performs photoelectric conversion at this time. The intensity ratio between the signal 24 from the device 18 and the power monitor signal 25 of the wavelength tunable laser 11 is calculated, and the signal and the signal 23 from the controller 21 are temporarily recorded. When the scan is completed, the wavelength at which the intensity ratio becomes maximum is determined from the relationship between the intensity ratio and the wavelength, and the wavelength signal is sent to the controller 21. The controller 21 fixes the wavelength of the wavelength tunable laser 11 with the wavelength signal and switches to the search mode to perform the search.

【0009】かくしてこの装置によれば、波長選定用信
号処理器20によりレーザー光12の反射強度/照射強
度が最大となる波長を選定することによって、当該探査
海域で最もよく海水を透過する波長のレーザー光12で
ターゲット17を探査することができ、より深い深度を
有効に探査することができることになり、例えば従来の
532nmの波長では減衰係数α=0.12であるが480
nmの波長にすればα=0.08となるときは、532nm
での最大透過深度を50mとすれば、480nmでの最
大透過深度は約69mとなり19mも深く探査できる。
Thus, according to this apparatus, the wavelength selecting signal processor 20 selects the wavelength at which the reflection intensity / irradiation intensity of the laser beam 12 is maximum, so that the wavelength of the seawater which is most permeated in the exploration sea area is selected. The target 17 can be probed with the laser beam 12, and a deeper depth can be effectively probed. For example, in the conventional wavelength of 532 nm, the attenuation coefficient α = 0.12, but 480
If the wavelength of nm is α = 0.08, 532 nm
If the maximum penetration depth at 50 m is 50 m, the maximum penetration depth at 480 nm is about 69 m, and a depth of 19 m can be explored.

【0010】[0010]

【発明の効果】要するに本発明によれば、レーザー光を
照射し海中ターゲットにより反射されるエコーを入力し
てターゲット位置を探査するレーザーレーダー装置にお
いて、可変波長レーザー光を照射するレーザー装置と、
上記レーザー装置に対し可変帯域波長のスキャン指令を
出すコントローラーと、ある波長における照射強度と反
射強度を求め反射強度/照射強度が最大となる波長を選
定する手段とを具えたことにより、海域によってよく海
水を透過できる最適な波長で探査することができ、より
深い深度のターゲットを有効に探査することができる探
査用レーザーレーダー装置を得るから、本発明は産業上
極めて有益なものである。
In summary, according to the present invention, in a laser radar device for irradiating a laser beam and inputting an echo reflected by an underwater target to search a target position, a laser device for irradiating a variable wavelength laser beam,
By providing a controller for issuing a scan command of a variable band wavelength to the above laser device and a means for selecting the irradiation intensity and the reflection intensity at a certain wavelength and selecting the wavelength at which the reflection intensity / irradiation intensity is the maximum, the INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially because it provides a laser radar device for exploration that can perform exploration at an optimum wavelength that can penetrate seawater and can effectively probe a target at a deeper depth.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明探査用レーザーレーダー装置の一実施例
の模式図である。
FIG. 1 is a schematic view of an embodiment of a laser radar device for exploration of the present invention.

【図2】従来の探査用レーザーレーダー装置の模式図で
ある。
FIG. 2 is a schematic diagram of a conventional laser radar device for exploration.

【図3】海域におけるレーザー光波長と減衰係数の関係
を示す線図である。
FIG. 3 is a diagram showing a relationship between a laser light wavelength and an attenuation coefficient in a sea area.

【符号の説明】[Explanation of symbols]

11 波長可変レーザー 12 レーザー光 13 凹面鏡 14 ミラー 15 走査方向 16 海中 17 ターゲット 19 探査用信号処理器 20 波長選定用信号処理器 21 コントローラー 11 Tunable laser 12 Laser light 13 Concave mirror 14 Mirror 15 Scanning direction 16 Undersea 17 Target 19 Signal processor for exploration 20 Signal processor for wavelength selection 21 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末続 辰雄 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 (72)発明者 龍 誠治 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Tatsuo 1-1, Atsunoura-machi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard (72) Inventor Seiji Ryu 1-1, Atsunoura-machi, Nagasaki City Mitsubishi Heavy Industries Ltd. In-house

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光を照射し海中ターゲットによ
り反射されるエコーを入力してターゲット位置を探査す
るレーザーレーダー装置において、可変波長レーザー光
を照射するレーザー装置と、上記レーザー装置に対し可
変帯域波長のスキャン指令を出すコントローラーと、あ
る波長における照射強度と反射強度を求め反射強度/照
射強度が最大となる波長を選定する手段とを具えたこと
を特徴とする探査用レーザーレーダー装置。
1. A laser radar device for irradiating a laser beam and inputting an echo reflected by an underwater target to search a target position, and a laser device for irradiating a variable wavelength laser beam and a variable band wavelength for the laser device. A laser radar device for exploration, comprising a controller for issuing a scan command of, and means for determining the irradiation intensity and the reflection intensity at a certain wavelength and selecting the wavelength at which the reflection intensity / irradiation intensity is maximum.
JP06125712A 1994-05-16 1994-05-16 Exploration laser radar equipment Expired - Lifetime JP3137531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06125712A JP3137531B2 (en) 1994-05-16 1994-05-16 Exploration laser radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06125712A JP3137531B2 (en) 1994-05-16 1994-05-16 Exploration laser radar equipment

Publications (2)

Publication Number Publication Date
JPH07311268A true JPH07311268A (en) 1995-11-28
JP3137531B2 JP3137531B2 (en) 2001-02-26

Family

ID=14916884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06125712A Expired - Lifetime JP3137531B2 (en) 1994-05-16 1994-05-16 Exploration laser radar equipment

Country Status (1)

Country Link
JP (1) JP3137531B2 (en)

Also Published As

Publication number Publication date
JP3137531B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US5646907A (en) Method and system for detecting objects at or below the water's surface
US4512197A (en) Apparatus for generating a focusable and scannable ultrasonic beam for non-destructive examination
WO2001007865A2 (en) System and method for ultrasonic laser testing using a laser source to generate ultrasound having a tunable wavelength
US4991149A (en) Underwater object detection system
EP0614084A4 (en) Laser ultrasonic flaw detection method and apparatus.
US3718032A (en) Ultrasonic visualization
EP0956496A2 (en) Method and apparatus for detecting an object
CN210864039U (en) Underwater target detection system based on laser acoustic scanning mode
WO2001007906A1 (en) Device and method for laser-ultrasonic frequency control using optimal wavelength tuning
US4779241A (en) Acoustic lens arrangement
US5161125A (en) Radiation selective system for target range and imaging readout
KR20110010114A (en) Improved mid-ir laser for generation of ultrasound using a co2 laser and harmonic generation
JPH07311268A (en) Surveying laser radar
JPH06217395A (en) Monochromatic ultrasonic wave converter
US9702819B1 (en) Surface vessel wake detection
JP2971090B2 (en) Laser radar
US3534326A (en) Direct acoustical to optical conversion for underwater imaging
CN114018824B (en) Single-head laser ultrasonic equipment and method based on fiber Bragg grating
CN114018823B (en) Excitation and reception integrated laser ultrasonic flaw detection equipment and method
RU2141676C1 (en) Sonar system for optico-acoustic examination of underwater object
RU2154841C1 (en) Technique for detection of underwater target in guarded water area
JPH0493787A (en) Measuring equipment of position of underwater moving body by laser
RU178896U1 (en) ACOUSTIC HYDROLOCATION DEVICE
RU2167500C1 (en) Method for measurement of noise parameters of floating material by means of laser hydrophone
JPH0712781A (en) Flaw detection method using ultrasonic wave

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

EXPY Cancellation because of completion of term