JPH07311183A - Sensor for ultrasonic densitometer - Google Patents

Sensor for ultrasonic densitometer

Info

Publication number
JPH07311183A
JPH07311183A JP6129779A JP12977994A JPH07311183A JP H07311183 A JPH07311183 A JP H07311183A JP 6129779 A JP6129779 A JP 6129779A JP 12977994 A JP12977994 A JP 12977994A JP H07311183 A JPH07311183 A JP H07311183A
Authority
JP
Japan
Prior art keywords
ultrasonic
sensor
temperature
measured
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6129779A
Other languages
Japanese (ja)
Other versions
JP3201145B2 (en
Inventor
Kazuo Fujimura
和生 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP12977994A priority Critical patent/JP3201145B2/en
Publication of JPH07311183A publication Critical patent/JPH07311183A/en
Application granted granted Critical
Publication of JP3201145B2 publication Critical patent/JP3201145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enhance accuracy in the measurement of sound velocity, while reducing the size, by measuring the temperature in the ultrasonic propagation region accurately. CONSTITUTION:The sensor 10 comprises a planar ultrasonic oscillator 12, a radiator 14 loaded with the ultrasonic oscillator 12 and radiating ultrasonic wave U generated therefrom, a reflector 16 disposed oppositely to the reflector 14 through a liquid L to be measured and reflecting the ultrasonic wave U radiated from the ultrasonic oscillator 12 back to the ultrasonic oscillator 12, a post 18 coupling the reflector 16 and the radiator 14 and a temperature measuring element 60 disposed in the post 18. The ultrasonic oscillator 12 is provided with a central through hole 20 and the post 18 is provided in the axial direction thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば超音波濃度計に
用いられるセンサに関し、詳しくは、液体を伝搬する超
音波の速度を測定することにより液体の諸特性を知るた
めに用いられるセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor used in, for example, an ultrasonic densitometer, and more particularly to a sensor used to know various characteristics of a liquid by measuring the velocity of ultrasonic waves propagating in the liquid. .

【0002】[0002]

【従来の技術】図3は従来の超音波濃度計等のセンサを
示し、図3(1)は図3(2)におけるIII-III 線縦断
面図、図3(2)は平面図である。以下、これらの図面
に基づき説明する。
2. Description of the Related Art FIG. 3 shows a conventional sensor such as an ultrasonic densitometer, FIG. 3 (1) is a vertical sectional view taken along the line III-III in FIG. 3 (2), and FIG. 3 (2) is a plan view. . Hereinafter, description will be given with reference to these drawings.

【0003】超音波濃度計等のセンサ50は、板状の超
音波振動子52と、超音波振動子52を装着するととも
に超音波振動子52から発生した超音波Uを放射する放
射板54と、放射板54に被測定液体Lを挟んで対向す
るとともに超音波振動子52から放射された超音波Uを
超音波振動子52へ向けて反射する反射板56と、反射
板56と放射板54とを連結する支柱58と、支柱58
内に設けられた測温素子60とを備えたものである。そ
して、支柱58は、超音波振動子52の外側になるよう
に設けられている。
A sensor 50, such as an ultrasonic densitometer, has a plate-shaped ultrasonic vibrator 52, a radiation plate 54 for mounting the ultrasonic vibrator 52 and radiating an ultrasonic wave U generated from the ultrasonic vibrator 52. A reflecting plate 56 facing the radiation plate 54 with the liquid L to be measured sandwiched therebetween and reflecting the ultrasonic waves U radiated from the ultrasonic transducer 52 toward the ultrasonic transducer 52, and the reflecting plate 56 and the radiation plate 54. A pillar 58 for connecting the
The temperature measuring element 60 is provided inside. Then, the support column 58 is provided outside the ultrasonic transducer 52.

【0004】次に、センサ50の動作を説明する。Next, the operation of the sensor 50 will be described.

【0005】超音波振動子52から発生した超音波U
は、放射板54から被測定液体Lへ放射される。超音波
Uは、被測定液体L内を伝搬しながら、反射板56で反
射して、再び超音波振動子52に戻る。反射板56と放
射板54との間の距離Dは一定であるから、超音波Uが
放射されてから戻ってくるまでの伝搬時間tを測定する
ことにより、超音波Uの被測定液体Lにおける音速v
(v=2D/t)が算出できる。そして、既に知られて
いる音速vと被測定液体Lの濃度との関係に基づき、音
速vに対応する被測定液体Lの濃度が得られる。
The ultrasonic wave U generated from the ultrasonic vibrator 52
Is radiated from the radiation plate 54 to the liquid L to be measured. The ultrasonic wave U propagates through the liquid L to be measured, is reflected by the reflection plate 56, and returns to the ultrasonic transducer 52 again. Since the distance D between the reflection plate 56 and the radiation plate 54 is constant, the propagation time t from the emission of the ultrasonic wave U to the return of the ultrasonic wave U is measured, whereby the ultrasonic wave U in the liquid L to be measured is measured. Speed of sound v
(V = 2D / t) can be calculated. Then, based on the already known relationship between the sound velocity v and the concentration of the measured liquid L, the concentration of the measured liquid L corresponding to the sound velocity v is obtained.

【0006】また、音速vは温度依存性を有しているの
で、測温素子60で超音波Uの伝搬領域62の温度Tを
測定することにより、音速vを補正している。例えば、
蒸留水の超音波伝搬速度は、0.1[℃] 当たり約0.3[m]変
化する。この場合、0.1[m]の測定分解能を保証するため
には、0.03 [℃] の温度を正確に測定しなければならな
い。
Further, since the sound velocity v has temperature dependency, the sound velocity v is corrected by measuring the temperature T of the propagation region 62 of the ultrasonic wave U by the temperature measuring element 60. For example,
The ultrasonic wave propagation velocity of distilled water changes about 0.3 [m] per 0.1 [℃]. In this case, in order to guarantee the measurement resolution of 0.1 [m], the temperature of 0.03 [℃] must be measured accurately.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、センサ
50には次のような問題があった。
However, the sensor 50 has the following problems.

【0008】図3(1)から明らかなように、厳密に言
うと、測温素子60は超音波Uの伝搬領域62外の温度
Tを測定している。そのため、測温素子60で測定され
る温度Tが必ずしも伝搬領域62の温度Tに一致しない
ことから、音速vの補正が不十分となって、測定精度を
低下させていた。
As is clear from FIG. 3A, strictly speaking, the temperature measuring element 60 measures the temperature T outside the propagation region 62 of the ultrasonic wave U. Therefore, since the temperature T measured by the temperature measuring element 60 does not necessarily match the temperature T of the propagation region 62, the correction of the sound velocity v is insufficient and the measurement accuracy is reduced.

【0009】また、被測定液体Lの量が少ないとセンサ
50を被測定液体Lに浸漬できないので、センサ50は
小型であることが要求される。ところが、支柱58が超
音波振動子52の外側になるように設けられている点
が、センサ50の小型化を妨げる要因となっていた。そ
の結果、センサ50を配管内に取付ける場合は、センサ
50の大きさに合わせて配管の径を太くしなければなら
ないので、センサ50の使用者に多大な費用を負担させ
ていた。
If the amount of the liquid L to be measured is small, the sensor 50 cannot be immersed in the liquid L to be measured, so that the sensor 50 is required to be small. However, the fact that the column 58 is provided outside the ultrasonic transducer 52 has been a factor that hinders downsizing of the sensor 50. As a result, when the sensor 50 is mounted in the pipe, the diameter of the pipe must be increased according to the size of the sensor 50, which incurs a great expense on the user of the sensor 50.

【0010】[0010]

【発明の目的】そこで、本発明の目的は、超音波の伝搬
領域の温度を正確に測定することにより音速の測定精度
を向上させるとともに、小型化を可能にした超音波濃度
計等のセンサを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a sensor such as an ultrasonic densitometer, which can improve the accuracy of sound velocity measurement by accurately measuring the temperature of the propagation region of ultrasonic waves and can be downsized. To provide.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、板状の超音波振動子
と、この超音波振動子を装着するとともにこの超音波振
動子から発生した超音波を放射する放射板と、この放射
板に被測定液体を挟んで対向するとともに前記超音波振
動子から放射された超音波を前記超音波振動子へ向けて
反射する反射板と、この反射板と前記放射板とを連結す
る支柱と、この支柱内に設けられた測温素子とを備え
た、超音波濃度計等のセンサを改良したものである。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and includes a plate-shaped ultrasonic vibrator, and the ultrasonic vibrator to which the ultrasonic vibrator is attached. A radiation plate that radiates the generated ultrasonic waves, and a reflection plate that faces the radiation plate while sandwiching the liquid to be measured and that reflects the ultrasonic waves radiated from the ultrasonic vibrator toward the ultrasonic vibrator, This is an improvement of a sensor such as an ultrasonic densitometer, which is provided with a support for connecting the reflection plate and the radiation plate and a temperature measuring element provided in the support.

【0012】すなわち、前記超音波振動子の中央に貫通
孔が設けられ、この貫通孔の軸線方向に前記支柱が設け
られたことを特徴とするものである。
That is, a through hole is provided in the center of the ultrasonic transducer, and the support column is provided in the axial direction of the through hole.

【0013】[0013]

【作用】超音波振動子から発生した超音波は、放射板を
通して被測定液体中に放射される。放射された超音波
は、被測定液体を伝搬しながら反射板で反射して、再び
超音波振動子に戻る。超音波が超音波振動子から放射さ
れてから再び超音波振動子に戻るまでの時間は、超音波
の被測定液体における音速を表している。なぜならば、
放射板と反射板とは支柱によって連結されているので、
これらの間の距離が常に一定だからである。一方、音速
は被測定液体の濃度等の諸特性と密接な関係にあるの
で、音速を測定することにより被測定液体の諸特性を知
ることができる。また、音速は温度依存性を有する。そ
こで、測温素子で被測定液体の温度を測定して、音速を
補正する。このとき、測温素子は超音波の伝搬する領域
内のほぼ中央の温度を測定する。超音波振動子の貫通孔
の軸線方向に支柱が設けられ、支柱内に測温素子が設け
られているからである。
The ultrasonic wave generated from the ultrasonic oscillator is radiated into the liquid to be measured through the radiation plate. The emitted ultrasonic waves are reflected by the reflector while propagating through the liquid to be measured, and then return to the ultrasonic transducer. The time from when the ultrasonic wave is emitted from the ultrasonic vibrator to when it returns to the ultrasonic vibrator represents the speed of sound of the ultrasonic wave in the liquid under measurement. because,
Since the radiation plate and the reflection plate are connected by the columns,
This is because the distance between them is always constant. On the other hand, since the speed of sound is closely related to various characteristics such as the concentration of the liquid to be measured, it is possible to know the various characteristics of the liquid to be measured by measuring the speed of sound. In addition, the speed of sound has temperature dependence. Therefore, the temperature of the liquid to be measured is measured by the temperature measuring element to correct the sound velocity. At this time, the temperature measuring element measures the temperature at the approximate center in the region where the ultrasonic waves propagate. This is because the column is provided in the axial direction of the through hole of the ultrasonic transducer and the temperature measuring element is provided in the column.

【0014】[0014]

【実施例】図1は本発明に係る超音波濃度計等のセンサ
の一実施例を示し、図1(1)は図1(2)におけるI
−I線縦断面図、図1(2)は平面図である。以下、図
1及び図2に基づき説明する。ただし、図3と同一部分
は同一符号を付して重複説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a sensor such as an ultrasonic densitometer according to the present invention. FIG.
FIG. 1 (2) is a plan view taken along line -I. Hereinafter, description will be given with reference to FIGS. 1 and 2. However, the same parts as those in FIG.

【0015】本発明に係る超音波濃度計等のセンサ10
は、板状の超音波振動子12と、超音波振動子12を装
着するとともに超音波振動子12から発生した超音波U
を放射する放射板14と、放射板14に被測定液体Lを
挟んで対向するとともに超音波振動子12から放射され
た超音波Uを超音波振動子12へ向けて反射する反射板
16と、反射板16と放射板14とを連結する支柱18
と、支柱18内に設けられた測温素子60とを備えてい
る。そして、超音波振動子12の中央に貫通孔20が設
けられ、貫通孔20の軸線方向に支柱18が設けられて
いる。
A sensor 10 such as an ultrasonic densitometer according to the present invention.
Is a plate-shaped ultrasonic vibrator 12 and the ultrasonic wave U generated by the ultrasonic vibrator 12 when the ultrasonic vibrator 12 is attached.
A radiating plate 14 for radiating light, a reflecting plate 16 facing the radiating plate 14 with the liquid L to be measured interposed therebetween, and reflecting an ultrasonic wave U radiated from the ultrasonic vibrator 12 toward the ultrasonic vibrator 12. Support 18 for connecting the reflector 16 and the radiator 14
And a temperature measuring element 60 provided in the column 18. Then, a through hole 20 is provided at the center of the ultrasonic transducer 12, and a column 18 is provided in the axial direction of the through hole 20.

【0016】超音波振動子12は、例えば圧電セラミッ
ク等によって円環状に形成されたものである。測温素子
60は、例えばサーミスタ等の温度により電気抵抗が変
化する素子である。なお、超音波振動子12及び測温素
子60の電極,配線等は省略して図示している。
The ultrasonic oscillator 12 is formed in an annular shape by, for example, a piezoelectric ceramic or the like. The temperature measuring element 60 is an element such as a thermistor whose electric resistance changes with temperature. The electrodes, wiring, etc. of the ultrasonic transducer 12 and the temperature measuring element 60 are omitted in the drawing.

【0017】図2は、超音波濃度計のブロック図であ
る。以下、図1及び図2を用いてセンサ10の動作を説
明する。ただし、図1と同一部分は同一符号を付して重
複説明を省略する。
FIG. 2 is a block diagram of the ultrasonic densitometer. The operation of the sensor 10 will be described below with reference to FIGS. 1 and 2. However, the same parts as those in FIG.

【0018】超音波濃度計30は、センサ10と本体3
2とから構成されている。本体32は、超音波Uが被測
定液体Lを伝搬する速度vを測定する超音波伝搬速度測
定部34と、被測定液体Lの温度Tを測定する温度測定
部36と、超音波濃度計30のオン・オフ用の外部入力
スイッチ38と、超音波伝搬速度測定部34と温度測定
部36とで得られた測定データに基づき被測定液体Lの
濃度を算出する演算処理部40と、演算処理部40を動
作させるソフトウェアを記憶したメモリ部42と、演算
処理部40での算出結果を出力する出力部44とから構
成されている。
The ultrasonic densitometer 30 comprises a sensor 10 and a main body 3
2 and. The main body 32 includes an ultrasonic wave propagation velocity measuring unit 34 for measuring the velocity v of the ultrasonic wave U propagating in the liquid L to be measured, a temperature measuring unit 36 for measuring the temperature T of the liquid L to be measured, and an ultrasonic densitometer 30. An external input switch 38 for turning on and off, an arithmetic processing unit 40 for calculating the concentration of the liquid L to be measured based on the measurement data obtained by the ultrasonic propagation velocity measuring unit 34 and the temperature measuring unit 36, and an arithmetic processing The memory unit 42 stores software for operating the unit 40, and the output unit 44 outputs the calculation result of the arithmetic processing unit 40.

【0019】容器46に被測定液体Lが満たされ、被測
定液体Lにセンサ10が浸漬されている。ここで、超音
波伝搬速度測定部34から発生した電気的パルスは、超
音波振動子12に印加される。超音波振動子12は、電
気的パルスを超音波に変換し、放射板14を通して被測
定液体L中へ超音波Uを放射する。超音波Uは、被測定
液体Lを伝搬しながら、反射板16で反射して超音波振
動子12に戻る。超音波振動子12は、戻ってきた超音
波Uを電気的な受信信号に変換して超音波伝搬速度測定
部34へ出力する。超音波伝搬速度測定部34は、電気
的パルスを超音波振動子12に印加してから超音波振動
子12による受信信号を入力するまでの時間を測定する
ことにより速度vを測定する。温度測定部36からは定
電流が測温素子60に通電されている。これにより、測
温素子60の両端には温度Tに比例した電圧が発生す
る。温度測定部36は、この電圧を測定することによっ
て温度Tを測定している。
The container 46 is filled with the liquid L to be measured, and the sensor 10 is immersed in the liquid L to be measured. Here, the electric pulse generated from the ultrasonic wave propagation velocity measuring unit 34 is applied to the ultrasonic wave oscillator 12. The ultrasonic transducer 12 converts the electric pulse into an ultrasonic wave and radiates the ultrasonic wave U into the liquid L to be measured through the radiation plate 14. The ultrasonic wave U propagates through the liquid L to be measured, is reflected by the reflection plate 16, and returns to the ultrasonic vibrator 12. The ultrasonic transducer 12 converts the returned ultrasonic wave U into an electric reception signal and outputs it to the ultrasonic wave propagation velocity measuring unit 34. The ultrasonic wave propagation velocity measuring unit 34 measures the velocity v by measuring the time from the application of the electric pulse to the ultrasonic oscillator 12 to the input of the reception signal by the ultrasonic oscillator 12. A constant current is supplied to the temperature measuring element 60 from the temperature measuring unit 36. As a result, a voltage proportional to the temperature T is generated across the temperature measuring element 60. The temperature measuring unit 36 measures the temperature T by measuring this voltage.

【0020】測温素子60は支柱18内に設けられ、支
柱18は貫通孔20の軸線方向に設けられている。すな
わち、測温素子60は超音波Uの伝搬領域48内のほぼ
中央の温度Tを測定することになる。したがって、測定
された温度Tは、伝搬領域48内に温度ムラがあったと
しても極めて平均化された値となるので、伝搬領域48
の温度を正確に反映することになる。
The temperature measuring element 60 is provided in the column 18, and the column 18 is provided in the axial direction of the through hole 20. That is, the temperature measuring element 60 measures the temperature T at the almost center of the propagation region 48 of the ultrasonic wave U. Therefore, the measured temperature T is a value that is extremely averaged even if there is temperature unevenness in the propagation region 48.
Will accurately reflect the temperature of.

【0021】また、超音波振動子12の貫通孔20の軸
線方向に支柱18が設けられているので、支柱18が超
音波振動子12の内側になる。これにより、従来の支柱
が超音波振動子の外側に出ているものに比べて、小型化
が図れる。
Further, since the supporting column 18 is provided in the axial direction of the through hole 20 of the ultrasonic transducer 12, the supporting column 18 is inside the ultrasonic transducer 12. As a result, it is possible to reduce the size of the conventional column as compared with a column in which the column is outside the ultrasonic transducer.

【0022】[0022]

【発明の効果】本発明に係るセンサによれば、超音波伝
搬領域内の中央の温度を測定することにより、従来の超
音波伝搬領域外の温度を測定するものに比べて、超音波
伝搬領域の正確な温度を測定できる。その結果、超音波
伝搬速度の温度依存性を正確に補正できるので、測定精
度を向上できる。
According to the sensor of the present invention, by measuring the temperature at the center in the ultrasonic wave propagation region, the ultrasonic wave propagation region can be compared to the conventional temperature measurement outside the ultrasonic wave propagation region. Can measure the exact temperature of. As a result, the temperature dependence of the ultrasonic wave propagation velocity can be accurately corrected, and the measurement accuracy can be improved.

【0023】また、超音波振動子の貫通孔の軸線方向に
支柱を設けたことにより、支柱が超音波振動子の内側に
なるので、従来の支柱が超音波振動子の外側に出ている
ものに比べて、小型にできる。
Further, since the support pillar is provided inside the ultrasonic vibrator by providing the support pillar in the axial direction of the through hole of the ultrasonic vibrator, the conventional support pillar extends outside the ultrasonic vibrator. Can be made smaller than.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波濃度計等のセンサの一実施
例を示し、図1(1)は図1(2)におけるI−I線縦
断面図、図1(2)は平面図である。
1 shows an embodiment of a sensor such as an ultrasonic densitometer according to the present invention, FIG. 1 (1) is a vertical sectional view taken along the line I-I in FIG. 1 (2), and FIG. 1 (2) is a plan view. Is.

【図2】図1のセンサを用いて構成した超音波濃度計の
ブロック図である。
2 is a block diagram of an ultrasonic densitometer configured using the sensor of FIG. 1. FIG.

【図3】従来の超音波濃度計等のセンサを示し、図3
(1)は図3(2)におけるIII-III 線縦断面図、図3
(2)は平面図である。
FIG. 3 shows a sensor such as a conventional ultrasonic densitometer, and FIG.
(1) is a vertical sectional view taken along the line III-III in FIG.
(2) is a plan view.

【符号の説明】[Explanation of symbols]

10 センサ 12 超音波振動子 14 放射板 16 反射板 18 支柱 20 超音波振動子の貫通孔 60 測温素子 U 超音波 L 被測定液体 10 Sensor 12 Ultrasonic Transducer 14 Radiating Plate 16 Reflecting Plate 18 Support 20 Ultrasonic Transducer Through Hole 60 Temperature Measuring Element U Ultrasonic L Liquid to be Measured

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板状の超音波振動子と、この超音波振動
子を装着するとともにこの超音波振動子から発生した超
音波を放射する放射板と、この放射板に被測定液体を挟
んで対向するとともに前記超音波振動子から放射された
超音波を前記超音波振動子へ向けて反射する反射板と、
この反射板と前記放射板とを連結する支柱と、この支柱
内に設けられた測温素子とを備えた超音波濃度計等のセ
ンサにおいて、 前記超音波振動子の中央に貫通孔が設けられ、この貫通
孔の軸線方向に前記支柱が設けられたことを特徴とする
超音波濃度計等のセンサ。
1. A plate-shaped ultrasonic transducer, a radiation plate for mounting the ultrasonic transducer and radiating ultrasonic waves generated from the ultrasonic transducer, and a liquid to be measured sandwiched between the radiation plates. A reflecting plate that is opposed and reflects the ultrasonic waves emitted from the ultrasonic vibrator toward the ultrasonic vibrator,
In a sensor such as an ultrasonic densitometer provided with a pillar connecting the reflection plate and the radiation plate and a temperature measuring element provided in the pillar, a through hole is provided in the center of the ultrasonic transducer. A sensor such as an ultrasonic densitometer, wherein the support is provided in the axial direction of the through hole.
JP12977994A 1994-05-19 1994-05-19 Sensors such as ultrasonic densitometers Expired - Fee Related JP3201145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12977994A JP3201145B2 (en) 1994-05-19 1994-05-19 Sensors such as ultrasonic densitometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12977994A JP3201145B2 (en) 1994-05-19 1994-05-19 Sensors such as ultrasonic densitometers

Publications (2)

Publication Number Publication Date
JPH07311183A true JPH07311183A (en) 1995-11-28
JP3201145B2 JP3201145B2 (en) 2001-08-20

Family

ID=15018019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12977994A Expired - Fee Related JP3201145B2 (en) 1994-05-19 1994-05-19 Sensors such as ultrasonic densitometers

Country Status (1)

Country Link
JP (1) JP3201145B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117329A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Nondestructive inspection device and nondestructive inspection method
JP2019045444A (en) * 2017-09-07 2019-03-22 タイコエレクトロニクスジャパン合同会社 Concentration measuring device
CN109541020A (en) * 2019-01-18 2019-03-29 凯泰(滁州)流体控制有限公司 Media defect detection method and device suitable for various media Containers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117329A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Nondestructive inspection device and nondestructive inspection method
US9032799B2 (en) 2008-11-14 2015-05-19 Mitsubishi Heavy Industries, Ltd. Apparatus and method for nondestructive inspection
JP2019045444A (en) * 2017-09-07 2019-03-22 タイコエレクトロニクスジャパン合同会社 Concentration measuring device
US11536695B2 (en) 2017-09-07 2022-12-27 Tyco Electronics Japan G.K. Concentration measuring instrument
CN109541020A (en) * 2019-01-18 2019-03-29 凯泰(滁州)流体控制有限公司 Media defect detection method and device suitable for various media Containers

Also Published As

Publication number Publication date
JP3201145B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
US20200003593A1 (en) Ultrasonic meter and method for sensing a flow variable
JPH09126867A (en) Ultrasonic wave converter
US4117716A (en) Densitometer apparatus
JPH11352114A (en) Ultrasonic measurement method and device
JP3201145B2 (en) Sensors such as ultrasonic densitometers
JP2002209861A (en) Ultrasonic diagnostic equipment
JP2004340911A (en) Level detector for vehicle
JP2001215143A (en) Ultrasonic measuring apparatus
KR101421137B1 (en) Ultrasonic level meter
JP3047588B2 (en) Ultrasonic transducer for liquid concentration meter
JP3136002B2 (en) Ultrasonic flow meter
JPH07311184A (en) Sensor and method for measuring ultrasonic propagation time
JP2987468B2 (en) Level detection method and apparatus
JPH0486525A (en) Ultrasonic level meter
JP2004294073A (en) Liquid level detecting apparatus for vehicle
JPH0350207B2 (en)
JPH0843359A (en) Sensor for ultrasonic concentration meter and the like and ultrasonic concentration measuring method using the sensor
JP3099485B2 (en) Ultrasonic transducer for stress measurement device
JPH05164631A (en) Method and apparatus for measuring stress
JPH10197233A (en) Delay material supporting film thickness meter
JP2000180146A (en) Ultrasonic wave thickness measuring device
JP2537709Y2 (en) Ultrasonic liquid level gauge
JP3014204U (en) 2-wave ultrasonic sensor
JP2616910B2 (en) Coordinate input device
JP2000097683A (en) Ultrasonic thin film thickness measuring apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010522

LAPS Cancellation because of no payment of annual fees