JPH07310700A - Combination jet vacuum generating device - Google Patents

Combination jet vacuum generating device

Info

Publication number
JPH07310700A
JPH07310700A JP13772594A JP13772594A JPH07310700A JP H07310700 A JPH07310700 A JP H07310700A JP 13772594 A JP13772594 A JP 13772594A JP 13772594 A JP13772594 A JP 13772594A JP H07310700 A JPH07310700 A JP H07310700A
Authority
JP
Japan
Prior art keywords
steam
flow
gas
supersonic
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13772594A
Other languages
Japanese (ja)
Other versions
JP2903034B2 (en
Inventor
Shigeru Mitsuoka
茂 光岡
Masaru Mitsuoka
優 光岡
Satoru Mitsuoka
知 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKOU GIKEN KK
Original Assignee
SAKOU GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKOU GIKEN KK filed Critical SAKOU GIKEN KK
Priority to JP6137725A priority Critical patent/JP2903034B2/en
Priority to MYPI95001292A priority patent/MY124444A/en
Publication of JPH07310700A publication Critical patent/JPH07310700A/en
Application granted granted Critical
Publication of JP2903034B2 publication Critical patent/JP2903034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To directly discharge gas such as steam and air under vacuum into the atmospheric pressure by blowing a jet water stream, in which cooling water is pressurized and jetted, into a supersonic mixed gas flow to exchange energy with the mixed gas flow. CONSTITUTION:Pressurized and jetted cooling water D is blown into a supersonic mixed gas flow E of extraction gas C with operation steam A to exchange energy with the mixed gas flow E. This supersonic gas flow E brings about abrupt volume decrease because of a shock effect due to condensation and speed decrease and serves to reduce a load to the operation steam A, Because of a back pressure damping effect of the mixed gas flow E at the time point of passing through a diffuser throat 4, decrease in suction operation, namely decrease in operation steam quantity and decrease in operation steam pressure, can be attained. Energy exchange under supersonic speed facilitates bubble dispersion and mixing of non-condensing gas into a water current, and discharge of the gas into the atmospheric pressure is conducted by utilizing velocity energy of two-phase fluid of uniform quality gas liquid. Further, waste steam of 100 deg.C or lower can be utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明に依る眞空発生装置は眞空
2m/mHgより60m/mHg前后迄の眞空稼働範囲
と、吸引ガスの超音速下での作動であり此の為に大量抽
気を容易にし毎時1000kg程度の抽気能力を持ち、
抽気ガスが蒸気の場合も含め、大気圧への直接放出が可
能で且100℃以下の癈蒸気の利用も可能である事か
ら、眞空治金、眞空乾燥、蒸溜、脱息、抽出、分離、等
々大型抽気分野は勿論100℃以下の蒸気利用を可能に
して居る事から、ボイラー設備を持たない小規模産業分
野を含め産業上広い範囲の利用分野を持つ設備である。
BACKGROUND OF THE INVENTION The air purifying device according to the present invention has an air purifying operation range from 2 m / mHg to 60 m / mHg before and after the air, and a suction gas is operated under supersonic speed. It has a bleeding capacity of about 1000 kg per hour,
Including the case where the extracted gas is steam, it can be directly released to atmospheric pressure and can be used for steam of 100 ° C or less. Therefore, it is possible to use vacuum metallurgy, vacuum drying, distillation, deaeration, extraction, separation, Since it is possible to use steam at temperatures below 100 ° C, not to mention large-scale extraction fields, it has a wide range of industrial applications, including small-scale industrial fields that do not have boiler equipment.

【0002】[0002]

【従来の技術】戦后の眞空発生装置の主流は大量抽気、
高眞空への対応は勿論、低眞空、小容量抽気に至る迄殆
んどの設備は蒸気エゼクターに依って占められていた
が、オイルショックを機に次第に機械的な回転体を持つ
眞空ポンプに置き換えられ、高眞空大容量抽気は未だに
蒸気エゼクターが使用されているが、他の大部分は回転
体眞空ポンプが使用されている。機械的な眞空ポンプは
抽気能力は大きく期待出来ないものの空気等蒸気の混入
の少ない抽気には問題なく使用出来るものの、蒸気を含
むガスの眞空抽気は、圧縮作用に依る水滴の生成があ
り、回転体の温度上昇も在ってポンプ内での蒸気圧が高
くなり、眞空抽気が不可能になり此の対応策として眞空
ポンプの前にコールドトラップを設置して、冷凍機の併
用に依って完全な水分除去設備を附加しているが、設備
の複雑化、使用電力量の上昇と、保全業務量の日常取扱
作業量の増大も在って直接蒸気排出への要求は極めて高
い。
2. Description of the Related Art The mainstream of postwar wartime air generators is mass extraction,
Most of the equipment was occupied by the steam ejector up to low air volume and small capacity extraction, as well as high air volume, but the oil shock gradually replaced the air pump with a mechanical rotary body. Therefore, the steam ejector is still used for the high-capacity large-capacity bleed air, but for most of the other parts, the rotary-body vacuum pump is used. Although a mechanical air pump cannot be expected to have a large extraction capacity, it can be used without problems for extraction air that contains little steam such as air, but the extraction air for gas containing steam generates water droplets due to the compression action and rotates. As the body temperature rises, the vapor pressure inside the pump becomes high, and it is impossible to bleed the air completely.As a countermeasure against this, a cold trap is installed in front of the air pump, and it is completely However, the demand for direct steam emission is extremely high due to the complexity of the equipment, the increase in the amount of electric power used, and the increase in the daily handling work for maintenance work.

【0003】[0003]

【発明が解決しようとする課題】眞空中のガスを排出す
る吸入作動は、大気圧下の気体容積の数百倍の容積を持
った極めて稀薄なガス体の取り扱いであり、結局力の取
組でなく、容積との取組であり、此の面から多く使用さ
れている回転体に依る眞空ポンプは大きな容積を持つ希
薄なガス体の吸入には不向であり、此の点断熱膨張に依
る超音速蒸気流に依る作動吸入方式は比容積が大きい事
に依る加速度への効果は大きく、眞空抽気方法として、
蒸気エゼクターに依る吸引方式が最適であろう。但しエ
ゼクターの圧縮は極めて性能が悪く解決する課題は抽気
ガスを吸引した后の蒸気との超音速下に在る混合ガスの
圧縮方法を、作動効果の良い方法にするかが問題を解決
する課題である。
The suction operation for discharging the gas in the air is the handling of an extremely dilute gas body having a volume several hundred times the volume of the gas under atmospheric pressure, which is an effort after all. However, since it is an approach with volume, a vacuum pump based on a rotating body that is often used from this aspect is not suitable for inhaling a dilute gas body having a large volume, and this point The working suction method based on sonic vapor flow has a large effect on acceleration due to the large specific volume.
A suction method that relies on a steam ejector would be optimal. However, the problem with the compression of the ejector is that the performance is extremely poor, and the problem that can be solved is whether the method of compressing the mixed gas under supersonic speed with the steam after sucking the extracted gas should be a method with a good operating effect. Is.

【0004】[0004]

【問題を解決する為の手段】[Means for solving the problem]

【蒸気エゼクターの圧縮比向上対策】蒸気エゼクターに
於ける断熱落差に依って超音速蒸気流は得られる反面、
発生するミストの量も多く、7kg/cmの圧力を持
つ蒸気を10m/mHgに迄断熱膨張の場合蒸気速度1
300m毎秒、ミスト発生量は使用蒸気量の25%前后
となり此の気液混相流の中での断熱圧縮に問題が多い事
から、圧縮工程前での系内よりの水分除去、或はデフュ
ーザー入口でのミストの蒸発等、圧縮比を上昇させるべ
き対策を樹て、実験と解析に依って種々のデーターは得
られたものの約10年の年月を費して得られた成果は極
めて小さく結果として末拡がりデフューザーに依る断熱
圧縮方式の方式を断念した。圧力の回復は作動蒸気への
負荷を増加させる事に依って蒸気消費量の増加に連がり
結果として断念せざるを得なかった。
[Measures to improve the compression ratio of the steam ejector] Although a supersonic vapor flow can be obtained due to the adiabatic head of the vapor ejector,
A large amount of mist is generated, and steam with a pressure of 7 kg / cm 2 up to 10 m / mHg is subjected to adiabatic expansion.
300m / sec, the amount of mist is 25% before and after the amount of vapor used, and there are many problems with adiabatic compression in this gas-liquid multiphase flow. Therefore, water removal from the system before the compression process or the diffuser inlet Although various data were obtained based on experiments and analysis by devising measures to increase the compression ratio, such as evaporation of mist in Japan, the results obtained by spending about 10 years were extremely small. As a result, the adiabatic compression method based on the diffuser diffuser was abandoned. The recovery of pressure had to be abandoned as a result of the increase in steam consumption due to the increase in the load on the working steam.

【コンビネーションジェットに依る圧縮効果】デフュー
ザースロート部を通過する超音速の蒸気ガスの混合気流
は、水との接触を行わせて衝撃接触を行い熱エネルギー
の水への転換に依って容積の急激な減少効果に依る。凝
縮チャンバー内への吸引作用を起こさせる事に依って作
動蒸気への断熱圧縮と異なる負荷仕事量の減少を計る事
が出来た。即ち超音速の混合気流中に冷却水を加圧噴出
させたジェット水流を吹き込んで、混合ガス流との間で
エネルギー授受を行わせる。噴出水流の速度の数10倍
の速度を持つガス混合蒸気流は流下する噴出流と激しい
追突衝撃接触が行われ減圧圧縮作用と共に温度上昇を斉
らすが、水流に依る。温度の抑制効果に依って混合ガス
中の蒸気等の凝縮性ガスは冷却に伴う凝縮が行われ、水
流に合流して温度上昇と速度エネルギー増加を斉らす。
混合ガス流中の非凝縮性ガスも温度抑制下での減速に依
って圧力の回復が計られ水の持つ蒸気圧迄の圧力の回復
が行われ、1次圧縮の役割を果し、以后は文字通りの流
水の激しい洗礼に依る圧縮と混合効果に依って水流中へ
均一な気泡の分散混入を果し、最終的に均質な気液二層
混合水流の速度エネルギーの利用に依る圧力の回復が計
られ、大気圧下に放出されて、2次圧縮を完了させる。
此のガス液の接触直后の気液併走下での混合ガス容積の
急激な縮小に依って、デフューザー通過時点での混合ガ
ス流の背圧の大巾な減衰効果に依り、作動蒸気が果す仕
事量を大巾に減少させる事から使用する作動蒸気量を減
少させ、更には従来の蒸気エゼクターには達成出来なか
った大気圧を下回る圧力の蒸気、即ち100℃を下廻る
温度の蒸気使用に依る眞空発生を行う事が出来た。例と
して0.7kg/cmの蒸気即ち温度90℃の飽和蒸
気を10m/mHg迄断熱膨張を行った場合の断熱落差
は約130kcal/kg流速は1050m毎秒、濕り
度18%となって高圧蒸気に比べて蒸気の作動効率が高
くなり省エネルギーへの効果は極めて大きい。
[Compression effect by combination jet] The mixed flow of supersonic vapor gas that passes through the diffuser throat makes contact with water and makes impact contact, and the volume of the mixture rapidly increases due to conversion of heat energy into water. It depends on the reduction effect. It was possible to measure the reduction of the load work, which is different from the adiabatic compression to the working vapor, by causing the suction action into the condensation chamber. That is, a jet water flow obtained by pressurizing the cooling water is blown into the supersonic mixed air flow to transfer energy with the mixed gas flow. A gas-mixed vapor flow having a velocity several tens of times the velocity of the jet water flow makes a violent rear-end impact contact with the jet flow that is flowing down to make the temperature rise together with the decompression compression action, but it depends on the water flow. Condensable gases such as steam in the mixed gas are condensed by cooling due to the effect of suppressing the temperature, and condense with the water flow to increase the temperature and increase the velocity energy.
The non-condensable gas in the mixed gas flow also recovers its pressure by decelerating under temperature control and recovers the pressure up to the vapor pressure of water, and plays the role of primary compression. The compression and mixing effect of the literally vigorous flowing water causes the uniform air bubbles to be dispersed and mixed into the water flow, and finally the recovery of the pressure due to the utilization of the velocity energy of the homogeneous gas-liquid two-layer mixed water flow. Measured and released under atmospheric pressure to complete secondary compression.
Due to the rapid reduction in the volume of the mixed gas under gas-liquid co-traveling immediately after the contact of the gas and liquid, the working vapor plays a role in the large damping effect of the back pressure of the mixed gas flow when passing through the diffuser. The amount of working steam used is greatly reduced because the work amount is greatly reduced, and further, it is possible to use steam at a pressure below atmospheric pressure that could not be achieved by the conventional steam ejector, that is, at a temperature below 100 ° C. It was possible to generate a true sky. As an example, when 0.7 kg / cm 2 of steam, that is, saturated steam at a temperature of 90 ° C. is subjected to adiabatic expansion up to 10 m / mHg, the adiabatic head is about 130 kcal / kg, the flow velocity is 1050 m / sec, and the moat rate is 18%. The operating efficiency of steam is higher than that of steam, and the effect on energy saving is extremely large.

【0005】[0005]

【作用−1】本装置は「図1」に示す装置で竪形装置の
吹下流下作動のコンビネーションジェットを示す。作動
蒸気は頂部中心Aより供給され「2」の蒸気ノズルを経
て「1」の吸入室内に吸込まれる。抽気ガスはCより吸
入室に供給され作動蒸気流に依って加速度が与えられ、
作動蒸気流に混入して「3」の末細りデフューザーを通
りデフューザースロート部を通過して超音速の速度を若
干上昇させ「6」の凝縮チャンバー頂部中心部より吹き
下げられる。凝縮チャンバーの天井部混合ガス流入口周
辺には「5」のジェット水ノズルが複数セットされて居
りD部に供給された加圧冷却水をガス流の周辺頂部から
混合気流中をチャンバー下部中心に向けFジェット水流
で示した如く吹き下げられる。超音速の混合ガス流Eは
吹込まれたジェット水流の数10倍の速度で噴出冷却水
に追突する形で衝撃接触が行われ混合ガス流の持つエネ
ルギーをジェット水流に与えて、水流の温度上昇を斉ら
し速度増加を来す。混合ガスEは噴射ジェツト水流との
接触に依り凝縮と速度減少に依る急激な背圧の減衰効果
に依り凝縮チャンバー内へ引き込む作用が働き此の負荷
軽減効果に依って従来の蒸気エゼクターでは得られない
Aの作動蒸気量の減少が計られ、更には作動蒸気圧大気
圧以下の廃蒸気等の使用に依る眞空発生作動を可能にし
た。「6」の凝縮チャンバーは末細まり形の形状を持ち
混合ガス中の非凝縮性ガスは水流に先行する形でチャン
バー下部に到達して2次圧縮への準備を終了させる。即
ちチャンバー下端に近附く程流路面積は減少して上部よ
り噴射水の衝撃を受け流下する水流中に気泡の均質流と
なって排出水と共に系外に排出され、眞空中より「7」
ジェット水マウスリング通過時の速度エネルギーに依っ
て大気圧下に排出された降水管を経て「9」の貯水槽か
らHの如く排出され、冷却塔に依る冷却の后、圧縮ポン
プを経てDの冷却水入口に導かれ循環使用される。
FUNCTION-1 This device is a device shown in FIG. 1 and shows a combination jet which is operated downstream of a vertical device. The working steam is supplied from the top center A and is sucked into the "1" suction chamber through the "2" steam nozzle. The extracted gas is supplied from C to the suction chamber and is accelerated by the working vapor flow.
It is mixed with the working steam flow, passes through the tapered diffuser of "3", passes through the diffuser throat, and slightly increases the supersonic velocity, and is blown down from the central portion of the top of the condensation chamber of "6". A plurality of "5" jet water nozzles are set around the mixed gas inlet on the ceiling of the condensing chamber, and the pressurized cooling water supplied to the D section is introduced from the top of the periphery of the gas flow to the center of the lower part of the chamber. It is blown down as shown by the F-jet water flow. The supersonic mixed gas flow E makes impact contact with the jet cooling water at a speed several tens of times faster than the injected jet water flow, giving the energy of the mixed gas flow to the jet water flow and increasing the temperature of the water flow. And increase the speed. The mixed gas E is condensed by the contact with the jet jet water flow and is drawn into the condensation chamber due to the rapid back pressure damping effect due to the velocity reduction. Due to this load reduction effect, the conventional vapor ejector can be obtained. The amount of working vapor of A, which is not present, was measured, and further, it was possible to perform a vacuum generation operation by using waste vapor having a working vapor pressure of atmospheric pressure or less. The condensing chamber of “6” has a tapered shape, and the non-condensable gas in the mixed gas reaches the lower part of the chamber in a form preceding the water flow, and completes the preparation for the secondary compression. That is, the closer to the lower end of the chamber, the smaller the flow passage area is, and the impact of jet water from the upper part reduces the flow of water into a homogeneous flow of bubbles, which is discharged together with the discharged water to the outside of the system.
Jet water is discharged like H through the downcomer discharged under atmospheric pressure due to the velocity energy when passing through the mouth ring. After being cooled by the cooling tower, it is cooled by the cooling tower and then discharged through the compression pump. It is led to the cooling water inlet and used for circulation.

【0008】[0008]

【作用−2】「図2」はデフューザースロート面積の調
節を行う機構を持つコンビネーションジェットの主要部
を示す図面である。「10」バッフルブロックは図に示
された如く円錐型の形状を持ち「4」デフューザースロ
ート部及び凝縮チャンバー上部に収納され其の間を上下
移動が出来る機能を備えている。図に示す如く下位の凝
縮チャンバー上部に位置する場合デフューザースロート
部面積は最大値を示すが、次第に上部へ移動させる事に
依ってバッフルブロックが造り出す二重円筒状の流路と
なり最上部に位置させた場合のデフューザー流路面積は
最小値を示す。此のデフューザー通過面積の調節に依っ
てE混合ガスの流速が変化し眞空度、抽気量、更には季
節水温の変化に依る圧縮仕事への変化に対応し得る作動
条件の範囲を拡大させる事を目的とし、作動蒸気量の調
節等と併せて稼働範囲を拡大させる為の装置デフューザ
ースロート面積調節機能を持つコンビネーションジェッ
ト眞空発生装置。
[Operation-2] "FIG. 2" is a view showing a main part of the combination jet having a mechanism for adjusting the diffuser throat area. The "10" baffle block has a conical shape as shown in the figure, and is housed in the "4" diffuser throat and the upper part of the condensation chamber and has the function of vertically moving between them. As shown in the figure, the area of the diffuser throat shows the maximum value when it is located at the upper part of the lower condensation chamber. The diffuser flow path area shows the minimum value. By adjusting the passage area of the diffuser, the flow velocity of the E mixed gas changes, and the range of operating conditions that can respond to changes in compression work due to changes in vacancy, extraction amount, and seasonal water temperature is expanded. Equipment for the purpose of expanding the operating range together with adjusting the amount of working steam, etc. A combination jet air blower with a diffuser throat area adjustment function.

【0007】[0007]

【実施例】本機に依る実施は生産装置、実験装置を含め
数基の実施を行ない現在生産稼働中の機器も含め、4基
の実施例を下表に記載する。
[Examples] With this machine, several units including a production device and an experimental device were carried out, and four examples including the devices currently in production operation are described in the table below.

【0008】[0008]

【発明の効果】本発明は以上記載した特徴を備えた設備
であり以下5項目に記載する。低圧蒸気の使用を可能に
し10m/mHg作動蒸気圧0.9kg/mの作動が
出来た。作動蒸気量の軽減を計り10m/mHg蒸気比
抽気量の2倍での対応を可能にした。大量抽気実績省エ
ネルギー抽気を実現させた。蒸気量比1で眞空30m/
mHg。高眞空0.5m/mHgの抽気実績が得られ
た。但し蒸気比20前后。2段コンビネーションジェッ
トの試作テスト結果作動蒸気比5で1m/mHgの実績
を得る事が出来、高眞空分野への対応の可能性は充分持
ち併せている。設備構成が単純で、常時運動機構を持た
ない保全不要の設備で、蒸気と水洗に依る洗浄効果に依
る経年変化への対応配慮の必要のない単純化された装置
で前条記載の如く多段直結組合せに依る0.1m/mを
上回る低眞空領域への将来性を持つ、装置である。
EFFECTS OF THE INVENTION The present invention is equipment equipped with the features described above, and is described in the following 5 items. It enabled the use of low-pressure steam and was able to operate at a steam pressure of 10 m / mHg of 0.9 kg / m 2 . By reducing the amount of working steam, it has become possible to deal with twice the amount of 10m / mHg steam specific extraction. Mass extraction results Energy saving extraction has been realized. 30m / in the sky with a steam amount ratio of 1
mHg. The bleeding record was 0.5 m / mHg of high air. But before and after the steam ratio 20. Prototype test results for a two-stage combination jet We obtained a track record of 1 m / mHg with a working steam ratio of 5, and there is ample possibility of supporting the high sky field. Maintenance-free equipment that has a simple equipment structure and does not have a constant motion mechanism, and is a simplified device that does not require consideration for aging due to the cleaning effect of steam and water washing. It is a device that has the potential for a low sky region exceeding 0.1 m / m.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコンビネーションジェット、眞空発生
装置の断面図である。
FIG. 1 is a cross-sectional view of a combination jet of the present invention and a vacuum generating device.

【図2】本発明のデフューザースロート面積調節機構を
持つコンビネーションジェット眞空発生装置の要部断面
図である。
FIG. 2 is a cross-sectional view of the essential parts of a combination jet air-conditioning generator having a diffuser throat area adjusting mechanism of the present invention.

【符号の説明】 1. 吸入室 2. 蒸気ノズル 3. 末細まりデフューザー 4. デフューザースロート 5. ジェット水ノズル 6. 凝縮チャンバー 7. ジェット水マウスリング 8. 降水管 9. 貯水槽 10. バッフルブロック A. 作動蒸気 B. ジェット噴出蒸気 C. 抽気ガス D. 冷却水 E. 混合ガス流 F. ジェット水流 G. 放出水流 H. 排水[Explanation of symbols] 1. Inhalation chamber 2. Steam nozzle 3. Tapered diffuser 4. Diffuser throat 5. Jet water nozzle 6. Condensation chamber 7. Jet water mouth ring 8. Downcomer 9. Water tank 10. Baffle block A. Working steam B. Jet jet steam C. Extraction gas D. Cooling water E. Mixed gas flow F. Jet water flow G. Discharged water flow H. Drainage

【手続補正書】[Procedure amendment]

【提出日】平成6年9月27日[Submission date] September 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 コンビネーションジェット眞
空発生装置
[Title of Invention] Combination jet air-conditioning generator

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明に依る眞空発生装置は眞空
2m/mHgより60m/mHg前后迄の眞空稼働範囲
と、吸引ガスの超音速下での作動であり此の為に大量抽
気を容易にし毎時1000kg程度の抽気能力を持ち、
抽気ガスが蒸気の場合も含め、大気圧への直接放出が可
能で且100℃以下の廢蒸気の利用も可能である事か
ら、眞空治金、眞空乾燥、蒸溜、脱臭、抽出、分離、等
々大型抽気分野は勿論100℃以下の蒸気利用を可能に
して居る事から、ボイラー設備を持たない小規模産業分
野を含め産業上広い範囲の利用分野を持つ設備である。
BACKGROUND OF THE INVENTION The air purifying device according to the present invention has an air purifying operation range from 2 m / mHg to 60 m / mHg before and after the air, and a suction gas is operated under supersonic speed. It has a bleeding capacity of about 1000 kg per hour,
Including the case where the extracted gas is steam, it can be directly discharged to atmospheric pressure and can be used for steam less than 100 ° C, so it is possible to use vacuum metallurgy, vacuum drying, distillation, deodorization, extraction, separation, etc. This is a facility that has a wide range of industrial applications, including small-scale industrial fields that do not have boiler equipment, because it is possible to use steam at temperatures below 100 ° C, not to mention large-scale extraction fields.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【実施例】本機に依る実施は生産装置、実験装置を含め
数基の実施を行ない現在生産稼働中の機器も含め、4基
の実施例を下表に記載する。
[Examples] With this machine, several units including a production device and an experimental device were carried out, and four examples including the devices currently in production operation are described in the table below.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 眞空下の吸入室内に蒸気を吹き込み超音
速の抽気ガスと蒸気の混合流を造る。此の混合ガス流に
加圧噴出の冷却水を吹き込み混合流との間でエネルギー
授受を行わせる。超音速ガス流は凝縮と速度減少に依る
衝撃効果に依って急激な容積減少を斉らし作動蒸気への
負荷軽減の役割を果す。此のデフューザースロート通過
時点での混合ガス流の背圧減衰効果に依って吸入作動へ
の軽減即ち作動蒸気量の減少と作動蒸気圧の低減が可能
となり、大気圧を下廻る100℃以下の温度を示す蒸気
に依る作動をも可能にした。更に超音速下のエネルギー
授受は非凝縮ガスの水流中への気泡分散混合を容易に
し、均質なガス液の2相流体の速度エネルギーを利用し
て大気圧下への放出を行わせる。二次圧縮を可能にし
た、蒸気と冷却水の「コンビネーションジェット」に依
る眞空発生装置の発明。
1. A steam is blown into a suction chamber under a fresh air to form a mixed flow of supersonic extraction gas and steam. Cooling water of a pressure jet is blown into this mixed gas flow to exchange energy with the mixed flow. The supersonic gas flow serves to reduce the load on the working steam by condensing a sudden volume decrease due to the impact effect of condensation and velocity decrease. Due to the back pressure damping effect of the mixed gas flow at the time of passing through the diffuser throat, it is possible to reduce the suction operation, that is, the amount of working steam and the working steam pressure, and to reduce the temperature below 100 ° C below atmospheric pressure. It also enabled the operation by the steam showing. Furthermore, energy transfer under supersonic speed facilitates bubble dispersion and mixing in the water flow of non-condensed gas, and discharges under atmospheric pressure by utilizing the velocity energy of a two-phase fluid of a homogeneous gas liquid. The invention of a vacuum generator that uses a "combination jet" of steam and cooling water that enables secondary compression.
【請求項2】 末細まりデフューザーのスロート部及凝
縮チャンバー内を上下動し得る円錐状若しくわ之に準ず
る形状を持つ「バッフルブロック」を収納し、此のブロ
ックの軸方向の上下位置を移動させる事に依るデフュー
ザースロート部内筒との間で形造られる、二重円筒形流
路面積を増減させて、此の面積を通過する混合ガス超音
速流の速度変化を与える事に依り作動蒸気に依って作り
出す、眞空度並びに抽気ガス量への適応能力を拡大させ
る事を目的とした、デフューザースロート部面積調節機
構を持つ、「コンビネーションジェット」眞空発生装置
の発明。
2. A "baffle block" having a shape similar to that of a conical or a waffle which can move up and down in the throat part of the tapered diffuser and the condensation chamber is stored, and the vertical position of this block in the axial direction is stored. Double-cylinder shaped by the movement of the diffuser throat and the inner cylinder. The area of the flow passage is increased or decreased to change the velocity of the mixed gas supersonic flow passing through this area. The invention of the "combination jet" air space generation device with the diffuser throat area adjustment mechanism for the purpose of expanding the air space and the adaptability to the amount of extracted gas.
JP6137725A 1994-05-17 1994-05-17 Combination jet vacuum generator Expired - Lifetime JP2903034B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6137725A JP2903034B2 (en) 1994-05-17 1994-05-17 Combination jet vacuum generator
MYPI95001292A MY124444A (en) 1994-05-17 1995-05-17 Combination jet/vacuum generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6137725A JP2903034B2 (en) 1994-05-17 1994-05-17 Combination jet vacuum generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27124696A Division JPH09166100A (en) 1996-09-06 1996-09-06 Combination jet vacuum generator

Publications (2)

Publication Number Publication Date
JPH07310700A true JPH07310700A (en) 1995-11-28
JP2903034B2 JP2903034B2 (en) 1999-06-07

Family

ID=15205376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6137725A Expired - Lifetime JP2903034B2 (en) 1994-05-17 1994-05-17 Combination jet vacuum generator

Country Status (2)

Country Link
JP (1) JP2903034B2 (en)
MY (1) MY124444A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248154B1 (en) * 1997-10-29 2001-06-19 Evgueni Petroukhine Operation process of a pumping-ejection apparatus and related apparatus
JP2011127789A (en) * 2009-12-15 2011-06-30 Tlv Co Ltd Waste steam recovering device
JP2011127788A (en) * 2009-12-15 2011-06-30 Tlv Co Ltd Waste steam recovering device
JP2011127787A (en) * 2009-12-15 2011-06-30 Tlv Co Ltd Waste steam recovering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717947U (en) * 1980-07-02 1982-01-29
JPS60111100A (en) * 1983-11-18 1985-06-17 Sakou Giken:Kk Steam ejector
JPS6176800A (en) * 1984-09-25 1986-04-19 Sakou Giken:Kk Steam ejector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717947U (en) * 1980-07-02 1982-01-29
JPS60111100A (en) * 1983-11-18 1985-06-17 Sakou Giken:Kk Steam ejector
JPS6176800A (en) * 1984-09-25 1986-04-19 Sakou Giken:Kk Steam ejector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248154B1 (en) * 1997-10-29 2001-06-19 Evgueni Petroukhine Operation process of a pumping-ejection apparatus and related apparatus
JP2011127789A (en) * 2009-12-15 2011-06-30 Tlv Co Ltd Waste steam recovering device
JP2011127788A (en) * 2009-12-15 2011-06-30 Tlv Co Ltd Waste steam recovering device
JP2011127787A (en) * 2009-12-15 2011-06-30 Tlv Co Ltd Waste steam recovering device

Also Published As

Publication number Publication date
MY124444A (en) 2006-06-30
JP2903034B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
CN1123395C (en) Nozzle for supersonic gas flow and inertia separator
CN1133014C (en) Method for isothermal compression of compressible medium, and atomizing device and nozzle structure thereby
US6484503B1 (en) Compression and condensation of turbine exhaust steam
US3439724A (en) Method and apparatus for the concentration of dilute black liquor
AU556192B2 (en) Compact mist flow power generator
CN110835565B (en) Natural gas-liquid separation device
JPH07310700A (en) Combination jet vacuum generating device
JPH09166100A (en) Combination jet vacuum generator
US4027483A (en) Device for converting internal energy of hot fluids to shaft work
US5219270A (en) Reaction barrel with rocket nozzles in staggered alignment and connecting ducts of unequal length
CN210544236U (en) Acceleration type downstream rotation spraying type gas washing tower
CN101002992A (en) Supersonic, combination type jetting tube for whirl condensation separation
CN216605671U (en) Turbulent atomizing nozzle of perforated plate
US3170007A (en) Apparatus for cleaning dust-laden gases
US5147564A (en) Method for recovering energy from a wet oxidation products stream flow using rotational energy
US4880357A (en) Method and apparatus for producing high vacuum
US550853A (en) Eduard theisen
CN203577566U (en) Calcium oxide hydrated tail gas extracting device used in nano calcium carbonate production
RU2291736C2 (en) Method of the gas-dynamic separation
CN214131006U (en) Slag flushing water exhaust steam fog dispersing equipment
US2406017A (en) Vacuum apparatus
US2457605A (en) Feed-water heater
CN103884203B (en) Gas-liquid contact type waste-heat recoverer
RU2142581C1 (en) Jet condenser unit of steam turbine and its operating process (options)
CN217989667U (en) Wet cyclone dust removal equipment