JPH0731053A - Member for magnetic flux jump type current limiter and production thereof - Google Patents

Member for magnetic flux jump type current limiter and production thereof

Info

Publication number
JPH0731053A
JPH0731053A JP5166814A JP16681493A JPH0731053A JP H0731053 A JPH0731053 A JP H0731053A JP 5166814 A JP5166814 A JP 5166814A JP 16681493 A JP16681493 A JP 16681493A JP H0731053 A JPH0731053 A JP H0731053A
Authority
JP
Japan
Prior art keywords
current limiter
superconducting
shield
flux jump
shield member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5166814A
Other languages
Japanese (ja)
Other versions
JP3333276B2 (en
Inventor
Toshitada Onishi
利只 大西
Katsuyuki Kaiho
勝之 海保
Kazuhiro Kajikawa
一弘 柁川
Masamoto Tanaka
将元 田中
Misao Hashimoto
操 橋本
Katsuyoshi Miyamoto
勝良 宮本
Mitsuru Morita
充 森田
Hidekazu Tejima
英一 手嶋
Keiichi Kimura
圭一 木村
Kiyonori Takebayashi
聖記 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Steel Corp filed Critical Agency of Industrial Science and Technology
Priority to JP16681493A priority Critical patent/JP3333276B2/en
Publication of JPH0731053A publication Critical patent/JPH0731053A/en
Application granted granted Critical
Publication of JP3333276B2 publication Critical patent/JP3333276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enhance the shielding efficiency by employing a single crystal as a hollow superconducting shield member and varying the quantity of substance composing the shield member thereby varying the field shielding characteristics. CONSTITUTION:A hollow superconducting shield member 2 is composed of a REBa2Cu3O7-x. single crystal based single crystal finely dispersed with RE2 BaCuO5 wherein the field shielding characteristics are varied by varying the quantity of RE2BaCu5 in the REBa2Cu3O7-x represents one or more kind of element selected from a group of Nd, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm, Yb, Lu. This composition enhances the shielding efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物高温超電導材料
を利用した磁束ジャンプ型超電導限流装置部材及びその
製造造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic flux jump type superconducting current limiting device using an oxide high temperature superconducting material and a manufacturing method thereof.

【0002】[0002]

【従来の技術】超電導体の電力機器への応用は、酸化物
超電導体が発見される以前より、従来の金属系超電導材
料において検討されてきた。なかでも電力用超電導機器
の有効な応用分野として、事故発生時に短絡電流を抑え
て遮断機の責務を軽減する事故時限流器(限流器)の開
発が望まれている。
2. Description of the Related Art The application of superconductors to electric power equipment has been studied in conventional metal-based superconducting materials before the discovery of oxide superconductors. In particular, as an effective application field of superconducting devices for electric power, development of an accident time limiter (current limiting device) that suppresses short circuit current and reduces duty of a circuit breaker when an accident occurs is desired.

【0003】従来、金属系超電導材料を用いた限流器に
は限流素子型、整流型、リアクトル型のものが提案され
ている。しかしながら、金属系超電導体は常電導状態で
の電気抵抗値が低く、常電導抵抗を稼ぐため、ある程度
以上の長さを必要とし大型装置化せざるを得なかった。
また、運転コストの高い液体ヘリウム温度で使用する必
要があるため、断熱等のために装置が大型化し、また高
価になるという問題があり、実用化されるに到っていな
い。。
Conventionally, there have been proposed current limiting element type, rectifying type and reactor type current limiting devices using a metal-based superconducting material. However, since the metal-based superconductor has a low electric resistance value in the normal conducting state and earns the normal conducting resistance, the metal superconductor requires a certain length or more, and it is inevitable to be a large-scale device.
Further, since it is necessary to use the liquid helium at a high operating cost, there is a problem that the device becomes large and expensive due to heat insulation or the like, and it has not been put to practical use. .

【0004】そこで近年常電導状態での電気抵抗が高
く、コストの安い液体窒素で超電導状態を維持できる酸
化物超電導体を用いた限流器が検討されている。これに
加えて、最近においては、鉄心、誘導コイル、酸化物超
電導体で形成され円筒型ジャケットを組み合わせた、誘
導/抵抗複合式電流制限器(特開平2−105402号
公報:ヘルムート デルシュ)が提案されている。この
方法は構成が比較的簡単なため全体としてのシステムを
小型化出きる可能性がある。誘導/抵抗複合式電流制限
器においては、通電時に発生する誘導磁場を、マイスナ
ー効果(完全反磁性)により発生磁場をシールドする事
が基本原理となっている。
Therefore, in recent years, a current limiter using an oxide superconductor, which has a high electric resistance in a normal conducting state and can maintain a superconducting state with liquid nitrogen at a low cost, has been studied. In addition to this, recently, an inductive / resistive combined current limiter (Japanese Patent Laid-Open No. 2-105402: Helmut Dersch) is proposed, in which an iron core, an induction coil, and a cylindrical jacket formed of an oxide superconductor are combined. Has been done. Since this method has a relatively simple configuration, there is a possibility that the entire system can be downsized. In the combined induction / resistance type current limiter, the basic principle is to shield the induced magnetic field generated during energization by the Meissner effect (complete diamagnetism).

【0005】図を用いて誘導/抵抗複合式電流制限器の
簡単な動作原理を説明する。図1に示す様に、構成要素
は3つの部品:通電誘導コイル1、高透磁率鉄心ヨーク
3、円筒型状の反応焼結法により作製された酸化物超電
導ジャケットシールド体2からなっている。この通電誘
導コイルには電流が流れ、通常の電流値においては、円
筒型ジャケットは超電導状態にあり、通電コイルが発生
する磁場を鉄心から完全にマイスナー効果によりシール
ドしている。従って、システム全体のインダクタンスは
低い。しかしながら短絡し、過大電流が通電コイルに流
れた場合、ジャケット部のシールド特性が破れ、システ
ムは通常のチョークコイルのように挙動して、短絡回路
を制限する。以上が誘導/抵抗複合式電流制限器の簡単
な動作原理である。しかしながらこの場合、動作原理は
マイスナー効果による磁気シールドであり、酸化物超電
導体を含む第二種超電導体では、マイスナー効果が破れ
た状態では、量子化磁束が超電導体内に入り込み、超電
導状態と常電導状態が混在する混合状態になっている。
この事からマイスナー状態が破れただけでは、磁場は超
電導体内に入り込むだけで、十分な限流効果は期待でき
ない。さらに、反応焼結法で作製された酸化物超電導ジ
ャケットは、多結晶体である。酸化物超電導材料は、一
般に良く知られているように結晶粒界が弱結合として作
用し、結晶粒界では磁束の出入りが容易であり、余り高
いシールド性がない。この事から焼成多結晶酸化物超電
導体を用いた、誘導/抵抗複合式電流制限器は実用化す
ることが困難のように思われる。
A simple operating principle of the combined induction / resistance type current limiter will be described with reference to the drawings. As shown in FIG. 1, the constituent elements are composed of three parts: a current-carrying induction coil 1, a high-permeability iron core yoke 3, and an oxide superconducting jacket shield 2 manufactured by a cylindrical reaction sintering method. A current flows through this energization induction coil, and at a normal current value, the cylindrical jacket is in a superconducting state, and the magnetic field generated by the energization coil is completely shielded from the iron core by the Meissner effect. Therefore, the inductance of the entire system is low. However, if there is a short circuit and an excessive current flows through the energizing coil, the shielding properties of the jacket will be broken and the system will behave like a normal choke coil, limiting the short circuit. The above is the simple operating principle of the combined induction / resistance type current limiter. However, in this case, the operating principle is magnetic shielding by the Meissner effect, and in the type II superconductor including the oxide superconductor, when the Meissner effect is broken, the quantized magnetic flux enters the superconductor, and the superconducting state and normal conduction The state is a mixed state in which the states are mixed.
If the Meissner state is broken from this, the magnetic field will only enter the superconductor, and a sufficient current limiting effect cannot be expected. Furthermore, the oxide superconducting jacket produced by the reaction sintering method is a polycrystalline body. In the oxide superconducting material, the crystal grain boundaries act as weak bonds, as is well known, and it is easy for the magnetic flux to enter and exit at the crystal grain boundaries, and there is not a very high shielding property. From this fact, it seems that it is difficult to put the combined induction / resistance current limiter using the sintered polycrystalline oxide superconductor into practical use.

【0006】これとは独立に第二種超電導体独特の原理
を応用した、超電導磁束スイッチング効果を応用した限
流器が提案されている[電総研:大西他、平成2年第4
3回春期低温工学・超電導学会予稿集B1−14(19
90)、電総研:大西他、平成3年電気学会全国大会予
稿集938(1991)、]。動作原理は、超電導体内
に入り込んだ磁束が、短絡時において過大電流が流れる
ことにより発生した磁場が増加することにより、超電導
体内の磁束が高透磁率鉄心ヨークへジャンプする事を利
用するものである。この原理に基づき、金属超電導材料
を用いて、液体ヘリウム温度で動作することが、既に上
記参考文献内で報告されている。これは金属系超電導材
料のシールド特性が優れていること、およびある一定磁
場で磁束がジャンプ可能なピンニングサイト導入によ
る。ここでは、超電導磁束スイッチング効果を応用した
限流器を、その特徴から磁束ジャンプ型限流器とも呼ぶ
ことにする。既に開発されている金属超電導利用磁束ジ
ャンプ型限流器は、液体ヘリウムを利用するためシステ
ムとしては比較的大型化せざるを得なく、経済的メリッ
トは現段階では少ない。
[0006] Independently of this, a current limiting device has been proposed which applies the superconducting magnetic flux switching effect by applying the principle peculiar to the second type superconductor [Electrotechnical Laboratory: Ohnishi et al., 4th, 1990].
3rd Spring Low Temperature Engineering / Superconductivity Society Proceedings B1-14 (19
90), Research Institute of Electrical Engineers: Onishi et al., Proceedings 1993 (1991) of the 1st Annual Meeting of the Institute of Electrical Engineers of Japan,]. The operating principle is that the magnetic flux generated in the superconductor jumps to the high-permeability iron core yoke due to the increase in the magnetic field generated by the excessive current flowing in the superconductor during a short circuit. . Based on this principle, it has already been reported in the above references that metallic superconducting materials are used to operate at liquid helium temperatures. This is due to the excellent shielding properties of metal-based superconducting materials and the introduction of pinning sites that allow magnetic flux to jump in a certain magnetic field. Here, the current limiter applying the superconducting magnetic flux switching effect will be referred to as a flux jump type current limiter because of its characteristics. The magnetic flux jump type fault current limiter using metal superconductivity that has already been developed has a relatively large size as a system because it uses liquid helium, and its economic merit is small at this stage.

【0007】酸化物超電導体を磁束ジャンプ型電流制限
器に応用した場合、安価で比較的保冷システムが簡単な
液体窒素を活用できるため小型化することが可能であ
り、経済的な意味で実用化できる可能性が大きい。しか
しながら、酸化物超電導体の液体窒素温度におけるシー
ルド特性は材料製造方法に大きく依存する。通常の焼結
方法で作製された超電導材料は多結晶体であり、超電導
体全体を流れる超電導遮蔽電流を阻害する弱結合である
結晶粒界を含んでいる。そのため超電導粒間の臨界電流
密度は77K、1Tの磁場下で数十A/cm2 と低いこと
が知られている。これは実用上要求される臨界電流密度
値(104 〜106 A/cm2 )に比べて著しく小さい。
これまで検討された結果からは、焼結体等多結晶体では
数十から数百ガウス程度の外部磁場しか磁場シールドで
きていない("IEEE Transactions on magnetics" Vol.
25, No. 2, March 1989, p.2506-2510)。シールド体全
体を流れる遮蔽電流が小さく、そのため限流器に使われ
るような強磁場シールドには、酸化物超電導体を用いる
ことは不可能であるとされてきた。加えて、ある一定以
上磁場で超電導体内の磁束がジャンプする必要があり、
これは超電導体内のピンニングサイトを制御することに
より臨界電流密度値を制御しなければならない。このよ
うな制御は、従来の焼結法を用いた超電導材料では不可
能であった。
When an oxide superconductor is applied to a magnetic flux jump type current limiter, liquid nitrogen, which is inexpensive and has a relatively simple cold insulation system, can be used, so that it can be miniaturized and put into practical use in an economical sense. There is a great possibility. However, the shield property of the oxide superconductor at the liquid nitrogen temperature depends largely on the material manufacturing method. The superconducting material produced by the usual sintering method is a polycrystalline body, and contains a grain boundary which is a weak bond that obstructs the superconducting shielding current flowing through the entire superconductor. Therefore, it is known that the critical current density between superconducting grains is as low as several tens A / cm 2 under a magnetic field of 77K and 1T. This is remarkably smaller than the critical current density value (10 4 to 10 6 A / cm 2 ) required for practical use.
From the results examined so far, polycrystalline bodies such as sintered bodies can only shield an external magnetic field of several tens to several hundred Gauss ("IEEE Transactions on magnetics" Vol.
25, No. 2, March 1989, p.2506-2510). It has been considered impossible to use an oxide superconductor in a strong magnetic field shield used in a current limiter because the shielding current flowing through the entire shield body is small. In addition, it is necessary for the magnetic flux in the superconductor to jump in a magnetic field above a certain level,
It must control the critical current density value by controlling the pinning site in the superconductor. Such control has not been possible with a superconducting material using a conventional sintering method.

【0008】上述したように酸化物超電導体を磁束ジャ
ンプ型電流制限器に活用するためには、特に大電力およ
び中電力応用の場合、シールド特性の優れた材料を用い
なければならない。そのため、酸化物超電導体を用いた
磁束ジャンプ型電流制限器は実現されるに至っていな
い。
As described above, in order to utilize the oxide superconductor in the magnetic flux jump type current limiter, a material having excellent shielding property must be used especially for high power and medium power applications. Therefore, a flux jump type current limiter using an oxide superconductor has not been realized yet.

【0009】[0009]

【発明が解決しようとする課題】従って本発明者らは、
酸化物超電導体を磁束ジャンプ型限流器に組み込みかつ
動作可能とするためには、液体窒素温度で高いシールド
特性を有する円筒型形状の超電導部材を開発することが
重要であると認識し、実用上十分な超電導遮蔽電流をシ
ールド体全体に流せ、また臨界電流値を制御することに
より磁束ジャンプするシールド値を制御でき、それを容
易かつ安価に実施し得る方法を鋭意検討してきた。
Therefore, the present inventors have
Recognizing that it is important to develop a cylindrical superconducting member with high shielding properties at liquid nitrogen temperature in order to incorporate and operate an oxide superconductor in a flux jump type fault current limiter, We have studied earnestly how to make it possible to control the shield value that causes the magnetic flux jump by allowing a sufficient superconducting shielding current to flow through the entire shield body and controlling the critical current value, and to implement it easily and inexpensively.

【0010】以上のことから、液体窒素温度において
0.3T以上のシールド特性を有し、磁束ジャンプ値を
制御できるように臨界電流密度値が制御でき、かつ磁束
ジャンプ型電流制限器に組み込めるような円筒型形状を
有する酸化物超電導部材、さらにはシールド効率を向上
させる為の鍔付き形状状のシールド部材を提供すること
を課題とする。
From the above, it has a shield characteristic of 0.3 T or more at the liquid nitrogen temperature, the critical current density value can be controlled so that the magnetic flux jump value can be controlled, and it can be incorporated in the magnetic flux jump type current limiter. An object of the present invention is to provide an oxide superconducting member having a cylindrical shape, and further, a shield member having a brim shape for improving shield efficiency.

【0011】[0011]

【課題を解決するための手段】本発明者らは、臨界電流
密度特性およびシールド特性に優れた酸化物超電導材料
を開発するために、研究を鋭意推進してきた。特にYB
2 Cu3 7-x 系酸化物超電導材料を溶融法により製
造することにより、従来の焼結法に比較して2桁以上高
い臨界電流密度を有する材料を開発することに成功して
きた。その材料開発過程で培った技術を基本とし、円筒
状の片側に蓋がついた形状の前駆体を作製し、更に蓋の
付いた方から結晶を成長させることにより、上記課題を
解決できることを発見し、本発明を完成させた。
The inventors of the present invention have earnestly promoted research in order to develop an oxide superconducting material excellent in critical current density characteristics and shield characteristics. Especially YB
By producing an a 2 Cu 3 O 7-x- based oxide superconducting material by a melting method, we have succeeded in developing a material having a critical current density that is two orders of magnitude higher than that of a conventional sintering method. Based on the technology cultivated in the material development process, we discovered that the above problems can be solved by producing a precursor with a cylindrical one sided lid and growing crystals from the side with the lid. Then, the present invention has been completed.

【0012】即ち、磁束ジャンプ型超電導限流器用部材
として、超電導部材がREBa2 Cu3 7-x 系(R
E:Yを含む希土類元素およびそれらの組み合わせ)お
びRE2 BaCuO5 が微細に分散した超電導材料から
なり、磁場シールド限流性を向上させるため、中空超電
導材料部が単一結晶粒からなり、かつREBa2 Cu3
7-x 中のRE2 BaCuO5 の量を変えることにより
磁場シールド特性を変えることを特徴とするものであ
る。これまで我々の得た実験知見からは、仕込組成を変
化させることによりREBa2 Cu3 7-x 中の微細均
一分散RE2 BaO5 の量は制御でき、RE2 BaCu
5 の量を変化せせることにより臨界電流度を制御でき
るという知見を得た。具体的にはREBa2 Cu3
7-x 中のRE2BaCuO5 の量が0%から40%にな
るように仕込組成を変化させた場合、臨界電流密度は1
万A/cm2 から3万A/cm2 へ直線的に変化する。最も
簡単な臨界状態モデルによれば、最大磁場シールド特性
は臨界電流密度に比例する。よってREBa2 Cu3
7-x 中のRE2 BaCuO5 の量を変化させることによ
りシールド特性を制御することが可能となる。
That is, as a member for a magnetic flux jump type superconducting fault current limiter, the superconducting member is a REBa 2 Cu 3 O 7-x system (R
E: a rare earth element including Y and a combination thereof) and RE 2 BaCuO 5 are composed of a finely dispersed superconducting material, and in order to improve the magnetic field shield current limiting property, the hollow superconducting material portion is composed of a single crystal grain, and REBa 2 Cu 3
It is characterized in that the magnetic field shield characteristics are changed by changing the amount of RE 2 BaCuO 5 in O 7-x . Previously from our obtained experimental findings, REBa 2 Cu 3 amount of O fine uniform dispersion in 7-x RE 2 BaO 5 can be controlled by changing the feed composition, RE 2 BaCu
It was found that the critical current degree can be controlled by changing the amount of O 5 . Specifically, REBa 2 Cu 3 O
When the charge composition was changed so that the amount of RE 2 BaCuO 5 in 7-x was 0% to 40%, the critical current density was 1
It varies linearly from ten thousand A / cm 2 to 30,000 A / cm 2. According to the simplest critical state model, the maximum magnetic field shield property is proportional to the critical current density. Therefore, REBa 2 Cu 3 O
The shield characteristics can be controlled by changing the amount of RE 2 BaCuO 5 in 7-x .

【0013】また、磁束ジャンプ型限流器部材製造方法
として、REBa2 Cu3 7-x 超電導材料の原料粉を
混合し、片端穴開き円筒形状に成形した後、未開口上部
表面を半溶融状態時に、希土類を置換したRE系種結晶
を用いた種付け法で結晶方位を揃えて成長させた後、結
晶成長開始部を含む上部表面を穴開け加工することによ
り中空円筒単一結晶粒状のシールド部材を作製すること
を特徴とするものである。
Further, as a method of manufacturing a flux jump type fault current limiter member, raw material powder of REBa 2 Cu 3 O 7-x superconducting material is mixed and molded into a cylindrical shape with one end bored, and then the unopened upper surface is semi-melted. In the state, after growing by aligning the crystal orientation by the seeding method using the RE-based seed crystal in which the rare earth is substituted, the upper surface including the crystal growth start portion is perforated to form a hollow cylindrical single crystal granular shield. It is characterized by producing a member.

【0014】さらには、磁束ジャンプ型超電導限流器に
おいて、中空シールド部材の両端に鍔状のシールド部材
形状を加工付加もしくは成形後の接合により付加し、漏
れ磁場によるロスを少なくすることを特徴とするもので
ある。
Further, in the magnetic flux jump type superconducting fault current limiter, a collar-like shield member shape is added to both ends of the hollow shield member by processing or joining after molding to reduce loss due to a leakage magnetic field. To do.

【0015】上述した液体窒素温度で高いシールド特性
が得られる様に、高臨界電流密度を有し、更に結晶粒界
の少ない酸化物超電導体円筒型部材が作製できれば、限
流器として動作させるに必要なシールド特性が得られ
る。また結晶成長時に、中心部が既に空洞化しているた
め、後で孔空け加工することによりクラック等が導入さ
れる心配がない。そのためより高いシールド特性を得る
ことが出きる。
If an oxide superconductor cylindrical member having a high critical current density and a small number of crystal grain boundaries can be produced so that a high shielding property can be obtained at the above-mentioned liquid nitrogen temperature, it can be operated as a current limiting device. The required shield characteristics are obtained. In addition, since the central portion has already been hollowed during crystal growth, there is no concern that cracks or the like will be introduced by the later punching. Therefore, higher shield characteristics can be obtained.

【0016】[0016]

【作用】本発明においては、磁束ジャンプ型超電導限流
器部材として、REBa2 CuO5 (211相)が微細
に分散した単一粒状REBa2 Cu3 7-x (123
相)を用いる。ここで単一粒状と称するのは、本部材製
造方法は基本的に包晶反応であるため、全体としては単
結晶状になっていても内部に反応残りの微細な211相
を含むため、単一結晶粒状と表現する。この123相の
臨界温度は90K以上であり、液体窒素温度では超電導
状態になるものであり、超電導相である123相に非超
電導相である211相が微細に分散したことにより高い
臨界電流密度が得られている。このような材料は、溶融
法、例えばQMG(Qench and Melt G
rowth)法および改良QMG法を用いることで製造
することが出来る。(QMG法:特願昭63−1374
64、特願昭63−261607,改良QMG法:特願
平4−55203)
In the present invention, as a magnetic flux jump type superconducting fault current limiter member, a single granular REBa 2 Cu 3 O 7-x (123) in which REBa 2 CuO 5 (211 phase) is finely dispersed.
Phase) is used. Here, the term “single grain” means that since the present method for producing a member is basically a peritectic reaction, even if it is in the form of a single crystal as a whole, it contains a fine 211 phase that remains after the reaction, Expressed as one crystal grain. The 123 phase has a critical temperature of 90 K or higher, and is in a superconducting state at a liquid nitrogen temperature. The 123 phase, which is a superconducting phase, is finely dispersed in the 211 phase, which is a non-superconducting phase. Has been obtained. Such materials can be prepared by the melting method, for example, QMG (Qench and Melt G).
It can be manufactured by using the “rowth) method and the improved QMG method. (QMG method: Japanese Patent Application No. 63-1374
64, Japanese Patent Application No. 63-261607, Improved QMG method: Japanese Patent Application No. 4-55203)

【0017】ここで用いる基本組成は、RE2 3 、C
u酸化物、Ba酸化物が、各々の金属元素比(RE:B
a:Cu)が原子パーセントで(10:60:30)、
(10:20:70)、(50:20:30)の点で囲
まれる領域内の組成になるものとする。上記混合物に、
PtまたはRh粉末、あるいはPtまたはRhの化合物
を0.001wt%から1.0wt%を添加し混練す
る。十分混練した混合紛を、円筒状の金型で加圧成形、
静水圧プレス処理した後、ボール盤等により中心部を片
方からもう片方に突きでない程度にくり貫き前駆体を作
製する。またくり貫き工程を省略することを可能とする
方法もある。図2に示すような金型4で加圧成形し、静
水圧プレス処理するか、酸化物超電導体の前駆体を作製
する。こうすることによりくり貫き工程が省略できる。
また同様に図3に示した様な金型5において、チューブ
状の軟らかいパイプ6に混合混練紛を導入し、中心部に
円柱状の棒を挿入し、静水圧プレス処理を行う。このよ
うな手法により、片側の閉じた円筒型形状の酸化物超電
導前駆体を作製する。
The basic composition used here is RE 2 O 3 , C.
u oxide and Ba oxide have metal element ratios (RE: B
a: Cu) in atomic percent (10:60:30),
It is assumed that the composition is in the region surrounded by the points (10:20:70) and (50:20:30). In the above mixture,
0.001 wt% to 1.0 wt% of Pt or Rh powder or Pt or Rh compound is added and kneaded. Sufficiently kneaded mixed powder is pressure molded with a cylindrical mold,
After hydrostatic pressing, a precursor is prepared by punching the center part from one side to the other side with a drilling machine etc. There is also a method that makes it possible to omit the boring step. It pressure-molds with the metal mold | die 4 as shown in FIG. 2, and it hydrostatically press-processes, or produces the precursor of an oxide superconductor. By doing so, the boring step can be omitted.
Similarly, in the mold 5 as shown in FIG. 3, the mixing and kneading powder is introduced into the tube-shaped soft pipe 6, a cylindrical rod is inserted in the central portion, and hydrostatic pressing is performed. By such a method, an oxide superconducting precursor having a closed cylindrical shape on one side is produced.

【0018】次に、これら前駆体を炉に開口部を下にし
て設置し、部分溶融温度(希土類元素がYの場合約10
00℃)以上である1100℃程度に加熱する。加熱
後、冷却速度:5℃/hで炉温を900℃まで冷却し、
その際、1030℃で希土類サイトを置換した種結晶
(特願平2−402204、特願平2−299025)
を前駆体上部に安置し、前駆体全体が単一結晶粒となる
ように結晶成長させる。
Next, these precursors are placed in a furnace with the opening facing down, and the partial melting temperature (about 10 when the rare earth element is Y) is set.
It is heated to about 1100 ° C, which is higher than 00 ° C. After heating, cool the furnace temperature to 900 ° C at a cooling rate of 5 ° C / h,
At that time, seed crystals in which rare earth sites were substituted at 1030 ° C. (Japanese Patent Application No. 2-402204, Japanese Patent Application No. 2-299025)
Is placed on the upper part of the precursor, and crystal is grown so that the entire precursor becomes a single crystal grain.

【0019】上述したような手法により、結晶方位の揃
った均一かつ結晶粒界の少ない酸化物超電導円筒型部材
の作製が達成される。これを磁束ジャンプ型限流器用部
材とするために種付け上部位を加工し、円筒上の部材を
作製する。これにより従来は結晶粒界における弱結合の
ため、液体窒素温度では数十ガウス程度のシールド特性
しか示せなかったものが、数千ガウス以上をシールドす
ることを可能となる。
By the method as described above, it is possible to manufacture an oxide superconducting cylindrical member having a uniform crystal orientation and a small number of crystal grain boundaries. In order to use this as a member for a magnetic flux jump type current limiting device, the seeding upper portion is processed to produce a cylindrical member. As a result, it is possible to shield several thousand gausses or more, which has been conventionally shown to have a shielding property of several tens of gausses at the liquid nitrogen temperature because of weak bonding in the crystal grain boundaries.

【0020】加えて出発材料を調整することによりRE
Ba2 Cu3 7-x 中のRE2 BaCuO5 の量および
サイズを変え、限流器部材の臨界電流密度値を制御する
ことも可能になる。これは上記改良QMG法中で述べた
白金添加および出発組成制御により臨界電流密度値が変
わることを限流器に適用するものである。従来は高い臨
界電流密度値を創出するために、これらの手法は用いら
れてきたが、逆に限流器の場合は任意の磁場値で磁束ジ
ャンプを起こさせるため211相を制御し、臨界電流密
度値を下げることに適用できる。
In addition, by adjusting the starting materials, RE
It is also possible to change the amount and size of RE 2 BaCuO 5 in Ba 2 Cu 3 O 7-x to control the critical current density value of the fault current limiter member. This applies to the current limiter that the critical current density value is changed by the addition of platinum and the control of the starting composition described in the improved QMG method. Conventionally, these methods have been used to create a high critical current density value. Conversely, in the case of a fault current limiter, the 211 phase is controlled to cause a magnetic flux jump at an arbitrary magnetic field value, and the critical current It can be applied to reduce the density value.

【0021】さらに、磁束ジャンプ型限流器部材とし
て、円筒外部に巻かれたコイル状送電線からの漏れ磁場
による定常状態のインピーダンスを増加させない様にす
る為に超電導円筒形状両端に鍔状シールド体を付加する
ことにより、さらなる高シールド特性が得られる。この
鍔状シールド体は部分溶融する前の前駆体に加工処理し
て付加するか、円筒形状作製後に、同様の手法で作製し
た鍔状の部材を、希土類置換し融点を低下させたREB
2 Cu7-x をソルダーとして鍔状部材と筒形状部材間
に挿入し、ソルダーの溶融温度以上部材の溶融温度以下
の温度まで加熱し接合しても、優れたシールド特性を有
する鍔付き部材を作製することが可能である。
Further, as a flux jump type fault current limiter member, in order to prevent an increase in steady-state impedance due to a leakage magnetic field from a coil-shaped power transmission line wound on the outside of the cylinder, both ends of the superconducting cylinder are provided with flanged shields. By adding, a further high shield characteristic can be obtained. This brim-shaped shield body is processed by adding it to the precursor before partial melting, or after making a cylindrical shape, a brim-shaped member manufactured by the same method is replaced with a rare earth element to reduce the melting point of REB.
a 2 Cu 7-x as a solder is inserted between the brim-shaped member and the tubular member, and even if it is heated to a temperature not lower than the melting temperature of the solder and not higher than the melting temperature of the member and joined, a flanged member having excellent shielding properties Can be produced.

【0022】以上の円筒部材の断面形状は円形、多角形
さらに鍔状部材の形状は円形、多角形など自由である。
The cross-sectional shape of the above-mentioned cylindrical member may be circular, polygonal, or the shape of the collar-shaped member may be circular, polygonal, or the like.

【0023】[0023]

【実施例】(実施例1)外径約20mm,内径約8mm、高
さ約40mmの円筒形状磁束ジャンプ型限流器部材を改良
QMG法に本提案法を組み合わせることにより作製し
た。本部材中にはY2 BaCuO5 が微細に分散してお
り、YBa2 Cu3 7-x (123)とY2 BaCuO
5 (Y−211)のモル比が7:3なる単一結晶粒状バ
ルク限流器用部材である。本実施例の場合、結晶C軸は
円筒の軸と平行になるようにした。
Example 1 A cylindrical magnetic flux jump type fault current limiter member having an outer diameter of about 20 mm, an inner diameter of about 8 mm and a height of about 40 mm was produced by combining the proposed method with the improved QMG method. Y 2 BaCuO 5 is finely dispersed in this member, and YBa 2 Cu 3 O 7-x (123) and Y 2 BaCuO
5 (Y-211) is a single crystal granular bulk current limiting member having a molar ratio of 7: 3. In the case of this example, the crystal C-axis was made parallel to the axis of the cylinder.

【0024】以下に、バルク限流器用部材の製造法、得
られたバルクの成分、211の分散状態、および円筒形
状を得る方法について詳述する。市販の以下の粉末、Y
2 3 ,BaO2 ,BaCuO2 ,CuO,PtO2
用い、これらをY−123とY−211がモル比で7:
3かつPtが0.5wt%になるように秤量し、自動混
練機で約1時間混練した後、直径20mm、高さ40mm円
柱形状に金型を用いて整形した。さらに成形した粉体を
ゴムの袋に真空封入し、冷間静水圧プレスで2t/cm2
の荷重をかけ、前駆体を作製した。この円柱形前駆体の
底部から直径8mmのドリルで上部から10mm残して穴開
け加工を施した。こうして得られた片端穴開き円柱状前
駆体を箱型炉内で、改良QMG法と同様の熱処理パター
ンにて、部分溶融状態からY−123が成長するような
熱処理を行った。この熱処理の途中1030℃付近でS
m−123の種結晶を箱型炉内部の部分溶融状態にある
円柱前駆体の上面中心部に、劈開面(ab面)が接する
ように置いた。この熱処理後室温において取り出し、酸
素雰囲気管状炉に移し、600℃で20時間の酸素付加
処理を施した。
The method for producing the member for the bulk current limiter, the components of the obtained bulk, the dispersion state of 211, and the method for obtaining the cylindrical shape will be described in detail below. The following commercially available powders, Y
2 O 3 , BaO 2 , BaCuO 2 , CuO, PtO 2 are used, and these are Y-123 and Y-211 in a molar ratio of 7:
3 and Pt were weighed to be 0.5 wt% and kneaded with an automatic kneader for about 1 hour, and then shaped into a cylindrical shape having a diameter of 20 mm and a height of 40 mm using a mold. The molded powder is vacuum-sealed in a rubber bag and 2t / cm 2 with a cold isostatic press.
Was applied to prepare a precursor. A hole having a diameter of 8 mm was drilled from the bottom of this cylindrical precursor, leaving 10 mm from the top. The thus-obtained columnar precursor with a single-ended hole was subjected to heat treatment in a box furnace in the same heat treatment pattern as in the modified QMG method so that Y-123 was grown from the partially melted state. During this heat treatment, S
The seed crystal of m-123 was placed so that the cleavage plane (ab plane) was in contact with the center of the upper surface of the cylindrical precursor in the partially molten state inside the box furnace. After this heat treatment, it was taken out at room temperature, transferred to an oxygen atmosphere tubular furnace, and subjected to oxygen addition treatment at 600 ° C. for 20 hours.

【0025】この様にして作製した超電導体は、振動試
料型磁化測定機(VSM)の測定では臨界電流密度は3
×104 A/cm2 であり、AC帯磁率測定からは臨温度
92Kを示した。この片端穴開き円柱バルクの上下面部
および側面を研磨し、偏光光学顕微鏡および2次電子走
査型顕微鏡(SEM)で観察したところ、粒界は認めら
れなかった。また結晶軸方向をラウエ法X線回折によ
り、上下面部を測定したところ、円柱長手方向とc軸方
向が平行であることがわかった。すなわち種付けにより
片端穴開き円柱全体が、単一結晶粒から成っていること
がわかった。エネルギー分散型X線組成分析を行ったと
ころ、マトリックスはY:Ba:Cu=0.98:2.
02:2.97の原子比であった。包晶反応残留物であ
る211相の平均粒径は1μmであり、0.5〜5μm
の間で分布しており、体積分率は約27%であった。こ
うして得られた片端穴開き単一結晶粒状バルクの上面中
心部をダイヤモンド砥石にて切削加工し、中心部に直径
8mmの穴を開け、全体を貫通させ、両端開口の中空円筒
とした。以後これを部材Aと呼ぶ。
The superconductor thus produced has a critical current density of 3 when measured by a vibrating sample magnetometer (VSM).
The temperature was × 10 4 A / cm 2 , and the temperature was 92K when measured by AC susceptibility. The upper and lower surfaces and the side surfaces of this single-ended holed cylindrical bulk were polished and observed with a polarization optical microscope and a secondary electron scanning microscope (SEM), but no grain boundary was observed. Further, when the upper and lower surface portions were measured by Laue X-ray diffraction in the crystal axis direction, it was found that the longitudinal direction of the cylinder and the c-axis direction were parallel to each other. That is, it was found that the whole of the cylinder with one end bored by seeding was composed of a single crystal grain. When energy dispersive X-ray composition analysis was performed, the matrix was Y: Ba: Cu = 0.98: 2.
The atomic ratio was 02: 2.97. The average particle size of the 211 phase, which is the peritectic reaction residue, is 1 μm and is 0.5 to 5 μm.
And the volume fraction was about 27%. The center portion of the upper surface of the single-crystal open-ended bulk obtained as described above was cut with a diamond grindstone, a hole having a diameter of 8 mm was opened in the center portion, and the whole was penetrated to form a hollow cylinder with both ends opened. Hereinafter, this is referred to as member A.

【0026】比較のため種結晶を用いずに、それ以外は
全く同様な製造過程で多結晶バルクの部材Bを作製し
た。部材Bの上下面および側面の一部を研磨して、顕微
鏡観察したところ平均結晶粒サイズ5mm程度の多結晶か
らなっていることがわかった。以上のようにして得られ
た磁束ジャンプ型限流器部材のシールド特性の評価を、
部材Aを超電導ソレノイドマグネット中のボアー中にお
き、シールド特性を評価した。その液体窒素温度におけ
る結果を図4に示す。比較のための多結晶部材Bの結果
も同一図面上に示す。部材Bの場合8に示す如くほとん
どシールド効果がみられず、磁場が少しずつ侵入してい
ることがわかる。一方本発明の部材のシールド特性7で
は、0.4Tまで外部磁場を高い効率でシールドしてお
り、磁束ジャンプ型限流器部材としての機能を十分に満
たすことがわかる。
For comparison, a polycrystalline bulk member B was prepared by using the same manufacturing process except that a seed crystal was not used. The upper and lower surfaces and a part of the side surface of the member B were polished and observed under a microscope. As a result, it was found that they were composed of polycrystals having an average grain size of about 5 mm. Evaluation of the shield characteristics of the magnetic flux jump type current limiting device obtained as described above,
The member A was placed in the bore of the superconducting solenoid magnet, and the shield characteristics were evaluated. The results at the liquid nitrogen temperature are shown in FIG. The result of the polycrystalline member B for comparison is also shown on the same drawing. In the case of the member B, almost no shielding effect was observed as shown in 8, and it can be seen that the magnetic field gradually entered. On the other hand, in the shield characteristic 7 of the member of the present invention, it can be seen that the external magnetic field is shielded with high efficiency up to 0.4 T, and the function as the flux jump type fault current limiter member is sufficiently satisfied.

【0027】磁束ジャンプ型限流器の円筒形状部材の場
合、過大電流が流れた場合のみ、磁場がシールドを破り
内部に入り、全体としてのインダクタンスを増加させる
ことが不可欠であるが、多結晶部材の場合、ある程度の
磁場から磁場が部材内部に入り込み、使えないことは明
らかである。
In the case of the cylindrical member of the magnetic flux jump type fault current limiter, it is essential that the magnetic field breaks the shield and enters the inside to increase the inductance as a whole only when an excessive current flows. In the case of, it is obvious that the magnetic field enters the member from a certain magnetic field and cannot be used.

【0028】前駆体の加工法を変えた場合、すなわち金
型自体が片端穴開き前駆体を作製する方法やチューブ内
に棒を差し込み静水圧処理後に棒をぬき、片端穴開き前
駆体を作製した場合でも、本実施例と同様の結果が得ら
れた。このことからも明らかなように、磁束ジャンプ型
限流器の円筒形状部材を作製するためには、種付けを行
い、部材全体を単一粒から成ることが大切であり、本発
明の有効性が確認できた。
When the processing method of the precursor was changed, that is, a method of preparing a precursor with one end holed by the mold itself, or inserting a rod into a tube and removing the rod after hydrostatic pressure treatment, a precursor with one end holed was produced. Even in this case, the same results as in this example were obtained. As is clear from this, in order to manufacture the cylindrical member of the magnetic flux jump type fault current limiter, it is important that seeding is performed and the entire member is made of a single grain, and the effectiveness of the present invention is It could be confirmed.

【0029】また、Y2 3 ,BaO2 ,BaCu
2 ,CuO,PtO2 を用い、らをY−123とY−
211がモル比で9:1および10:0かつPtが0.
5wt%になるように秤量し、上述作製法と同様にして
作製した試料の臨界電流密度を測定した。モル比で9:
1の試料の臨界電流密度は1.5×104 A/cm2 であ
り、モル比で10:0の試料の臨界電流密度は0.9×
104 A/cm2 であった。出発混合粉比を制御すること
により臨界電流密度値を制御することができる。臨界電
流密度値を制御することにより磁場シールド特性を制御
できるので、磁束ジャンプ型限流器部材製造に応用でき
ることが解った。
In addition, Y 2 O 3 , BaO 2 , BaCu
O 2 , CuO and PtO 2 are used, and Y-123 and Y-
211 is 9: 1 and 10: 0 in molar ratio and Pt is 0.
It was weighed so as to be 5 wt%, and the critical current density of the sample manufactured in the same manner as the above manufacturing method was measured. Molar ratio 9:
The critical current density of the sample of No. 1 is 1.5 × 10 4 A / cm 2 , and the critical current density of the sample of 10: 0 is 0.9 ×.
It was 10 4 A / cm 2 . The critical current density value can be controlled by controlling the starting mixed powder ratio. Since the magnetic field shield characteristics can be controlled by controlling the critical current density value, it was found that the method can be applied to the manufacture of flux jump type fault current limiter members.

【0030】(実施例2)実施例1と同様の方法で鍔付
き形状を作製した。市販の以下の粉末、Y2 3,Ba
2 ,BaCuO2 ,CuO,PtO2 を用い、これら
をY−123とY−211がモル比で7:3かつPtが
0.5wt%になるように秤量し、自動混練機で約1時
間混練した後、直径25mm、高さ40mm円柱形状に金型
を用いて整形した。さらに成形した粉体をゴムの袋に真
空封入し、冷間静水圧プレスで2t/cm2 の荷重をか
け、前駆体を作製した。この円柱形前駆体の底部から直
径8mmのドリルで上部から10mm残して穴開け加工を施
した。さらに図5に示すような両端が鍔付き形状になる
ように切削加工を施した。こうして得られた鍔付き形状
片端穴開き円柱状前駆体を箱型炉内で、改良QMG法と
同様の熱処理パターンにて、部分溶融状態からY−12
3が成長するような熱処理を行った。この熱処理の途中
1030℃付近でSm−123の種結晶を箱型炉内部の
部分溶融状態にある円柱前駆体の上面中心部に、劈開面
(ab面)が接するように置いた。この熱処理後室温に
おいて取り出し、酸素雰囲気管状炉に移し、600℃で
20時間の酸素付加処理を施した。
(Example 2) A collared shape was produced in the same manner as in Example 1. The following commercially available powders, Y 2 O 3 , Ba
O 2 , BaCuO 2 , CuO, PtO 2 was used, and these were weighed so that Y-123 and Y-211 were in a molar ratio of 7: 3 and Pt was 0.5 wt%, and then they were weighed in an automatic kneader for about 1 hour. After kneading, it was shaped into a cylindrical shape having a diameter of 25 mm and a height of 40 mm using a mold. Further, the molded powder was vacuum-sealed in a rubber bag, and a load of 2 t / cm 2 was applied by a cold isostatic press to prepare a precursor. A hole having a diameter of 8 mm was drilled from the bottom of this cylindrical precursor, leaving 10 mm from the top. Further, cutting was performed so that both ends had a brim shape as shown in FIG. The thus obtained flanged columnar precursor having a single-ended hole was subjected to Y-12 from a partially molten state in a box furnace in a heat treatment pattern similar to that of the improved QMG method.
Heat treatment was carried out so that 3 would grow. A seed crystal of Sm-123 was placed at about 1030 ° C. during the heat treatment so that the cleavage plane (ab plane) was in contact with the center of the upper surface of the columnar precursor in the partially molten state inside the box furnace. After this heat treatment, it was taken out at room temperature, transferred to an oxygen atmosphere tubular furnace, and subjected to oxygen addition treatment at 600 ° C. for 20 hours.

【0031】さらに限流器部材化するために、得られた
鍔付き形状片端穴開き単一結晶粒状バルクの上面中心部
をダイヤモンド砥石にて切削加工し、中心部に直径8mm
の穴を開け、全体を貫通させ、両端開口の鍔付き形状中
空円筒とした。本部材の鍔間にコイルを巻き、シールド
特性を評価したところ、鍔無し形状部材と比較して円筒
両端部からの磁場漏れが少なく、0.42Tまで良好な
シールド特性が得られることが確認できた。
Further, in order to make a current limiting member, the center portion of the upper surface of the obtained single-ended granular bulk with a flanged shape is cut with a diamond grindstone, and the center portion has a diameter of 8 mm.
The hole was opened, and the whole was penetrated to form a flanged hollow cylinder with openings at both ends. When a coil was wound between the collars of this member and the shield characteristics were evaluated, it was confirmed that magnetic field leakage from both ends of the cylinder was less than that of a collarless member, and good shield characteristics up to 0.42T were obtained. It was

【0032】(実施例3)実施例1と同様の方法で円筒
型磁束ジャンプ型限流器部材を作製した後、以下に説明
するような接合法を用いて、円筒形状の両端に磁場もれ
防止用Y123から成る鍔を付加した。すなわち市販の
以下の粉末、Y2 3 ,BaO2 ,BaCuO2 ,Cu
O,PtO2 を用い、これらをY−123とY−211
がモル比で7:3かつPtが0.5wt%になるように
秤量し、自動混練機で約1時間混練した後、直径20m
m、高さ40mm円柱形状に金型を用いて整形した。さら
に成形した粉体をゴムの袋に真空封入し、冷間静水圧プ
レスで2t/cm2 の荷重をかけ、前駆体を作製した。こ
の円柱形前駆体の底部から直径10mmのドリルで上部か
ら10mm残して穴開け加工を施し、部材前駆体Cを作製
した。さらに、外径30mm、厚さ5mmの円盤状鍔前駆体
Dを、上述手法で作製した。こうして得られた片端穴開
き円柱状前駆体Cおよび円盤状前駆体Dを箱型炉内で、
改良QMG法と同様の熱処理パターンにて、部分溶融状
態からY−123が成長するような熱処理を行った。こ
の熱処理の途中1030℃付近でSm−123の種結晶
を箱型炉内部の部分溶融状態にある円柱前駆体の上面中
心部に、劈開面(ab面)が接するように置いた。この
熱処理後室温において取り出し、部材CおよびDを酸素
雰囲気管状炉に移し、600℃で20時間の酸素付加処
理を施した。
(Embodiment 3) After manufacturing a cylindrical magnetic flux jump type fault current limiter member by the same method as in Embodiment 1, the magnetic field leakage is applied to both ends of the cylindrical shape by using a joining method as described below. A collar made of Y123 for prevention was added. That is, the following commercially available powders, Y 2 O 3 , BaO 2 , BaCuO 2 , Cu
O and PtO 2 are used, and these are Y-123 and Y-211.
Was weighed so that the molar ratio was 7: 3 and Pt was 0.5 wt% and kneaded with an automatic kneader for about 1 hour.
It was shaped into a cylindrical shape with a m and a height of 40 mm using a mold. Further, the molded powder was vacuum-sealed in a rubber bag, and a load of 2 t / cm 2 was applied by a cold isostatic press to prepare a precursor. A member precursor C was prepared by punching a hole having a diameter of 10 mm from the bottom of this cylindrical precursor, leaving 10 mm from the top. Further, a disk-shaped brim precursor D having an outer diameter of 30 mm and a thickness of 5 mm was produced by the above method. In the box-shaped furnace, the columnar precursor C and the disc-shaped precursor D thus obtained with a single-ended hole were
The heat treatment was performed in the same heat treatment pattern as in the modified QMG method so that Y-123 grew from the partially melted state. A seed crystal of Sm-123 was placed at about 1030 ° C. during the heat treatment so that the cleavage plane (ab plane) was in contact with the center of the upper surface of the columnar precursor in the partially molten state inside the box furnace. After this heat treatment, the members C and D were taken out at room temperature, transferred to an oxygen atmosphere tubular furnace, and subjected to oxygen addition treatment at 600 ° C. for 20 hours.

【0033】さらに限流器部材化するために、得られた
鍔付き形状片端穴開き単一結晶粒状バルク(C)の上面
中心部をダイヤモンド砥石にて切削加工し、中心部に直
径8mmの穴を開け、全体を貫通させ、両端開口の鍔付き
形状中空円筒とした。同様に円盤状部材D2枚の中心部
をダイヤモンド砥石にて切削加工し、中心部に直径8mm
の穴を開けた。この両部材をシールド性を損なうことな
く接合するため、YbBa2 Cu3 7-x 焼結粉をソル
ダーとして部材間に挿入し、箱型炉中で980℃まで加
熱し、室温まで徐冷した。こうすることによりソルダー
は部分溶融し、部材は溶融しないため部材の結晶方位を
ソルダー部分は引継、結晶粒界のない接合ができた。こ
のようにして作製された本部材の鍔間にコイルを巻き、
シールド特性を評価したところ、鍔無し形状部材と比較
して円筒両端部からの磁場漏れが少なく、実施例2と同
様な良好なシールド特性が得られることが確認できた。
In order to make the current limiting member further, the center part of the upper surface of the obtained single-crystal granular bulk with a flanged shape (C) is cut with a diamond grindstone, and a hole having a diameter of 8 mm is formed in the center part. The hollow cylinder was opened, and the whole was penetrated to form a flanged hollow cylinder with openings at both ends. Similarly, the center part of two disk-shaped members D is cut with a diamond grindstone, and the center part has a diameter of 8 mm.
I made a hole. In order to join the two members without impairing the shielding property, YbBa 2 Cu 3 O 7-x sintered powder was inserted between the members as a solder, heated to 980 ° C. in a box furnace, and gradually cooled to room temperature. . By doing so, the solder was partially melted and the member was not melted, so that the crystal orientation of the member was succeeded by the solder part, and the bonding without crystal grain boundaries was possible. A coil is wound between the collars of the member produced in this way,
When the shield characteristics were evaluated, it was confirmed that the magnetic field leakage from both ends of the cylinder was smaller than that of the collarless member, and the same good shield characteristics as in Example 2 were obtained.

【0034】[0034]

【発明の効果】上述したごとく、本発明はこれまで酸化
物超電導体では理論的に可能であるが実現不可能であっ
た、磁束ジャンプ型限流器を実現するものである。本発
明は、特に液体窒素温度における限流作用を可能とする
磁束ジャンプ型限流器部材を提供するものであり、極め
て工業的効果が大きい。
As described above, the present invention realizes a magnetic flux jump type fault current limiter which has been theoretically possible but not possible with oxide superconductors. INDUSTRIAL APPLICABILITY The present invention provides a magnetic flux jump type current limiting device member which enables a current limiting action especially at a liquid nitrogen temperature, and has an extremely great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束ジャンプ型限流器の基本構成要素を示す
図。
FIG. 1 is a diagram showing basic components of a flux jump type current limiting device.

【図2】本発明前駆体を作製するための金型の断面図。FIG. 2 is a cross-sectional view of a mold for producing the precursor of the present invention.

【図3】本発明前駆体を作製するためのゴムチューブ型
の断面図。
FIG. 3 is a cross-sectional view of a rubber tube mold for producing the precursor of the present invention.

【図4】本発明の磁束ジャンプ型超電導限流器部材の磁
気シールド特性と種付けを行わなかった部材の磁気シー
ルド特性とを示したグラフ。
FIG. 4 is a graph showing the magnetic shield characteristics of the magnetic flux jump type superconducting fault current limiter member of the present invention and the magnetic shield characteristics of a member without seeding.

【図5】本発明の鍔付き磁束ジャンプ型限流器部材の前
駆体の例を示す。
FIG. 5 shows an example of a precursor of a magnetic flux jump type current limiting device with a collar according to the present invention.

【符号の説明】[Explanation of symbols]

1 銅巻線で構成される誘導コイル 2 中空形状の超電導磁気シールド体 3 高透磁率鉄心 4 金型 5 金型 6 ラバーチューブ 7 本発明部材の磁気シールド特性 8 種付けを行わなかった部材のシールド特性 1 Induction coil composed of copper winding 2 Hollow superconducting magnetic shield 3 High magnetic permeability core 4 Mold 5 Mold 6 Rubber tube 7 Magnetic shield property of the member of the present invention 8 Shield property of member without seeding

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海保 勝之 茨城県つくば市梅園1丁目1番4 電子技 術総合研究所内 (72)発明者 柁川 一弘 茨城県つくば市梅園1丁目1番4 電子技 術総合研究所内 (72)発明者 田中 将元 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 橋本 操 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 宮本 勝良 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 森田 充 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 手嶋 英一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 木村 圭一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 竹林 聖記 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuyuki Kaiho 1-4-1 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute (72) Inventor Kazuhiro Kyokawa 1-4-1 Umezono, Tsukuba-shi, Ibaraki Electronic technique (72) Inventor Masamoto Tanaka 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Laboratories (72) Inventor Misao Hashimoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa (72) Inventor Katsuyoshi Miyamoto, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd., Advanced Technology Laboratory (72) Inventor, Mitsuru Morita Ida, Nakahara-ku, Kawasaki-shi, Kanagawa 1618 Nippon Steel Corporation Advanced Technology Research Laboratories (72) Inventor Eiichi Teshima 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Advanced Technology Research Institute, Inc. (72) Inventor Keiichi Kimura 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Advanced Technology Research Institute (72) Inventor, Shobayashi 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Advanced Technology Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中空超電導シールド部材が単一結晶状
で、RE2 BaCuO5 細に分散したREBa2 Cu3
7-x 系からなり、かつREBa2 Cu3 7-x 中のR
2 BaCuO5 の量を変えることにより磁場シールド
特性を変えることを特徴とする磁束ジャンプ型超電導限
流器用シールド部材。(ここでREはNd,Sm,E
u,Gd,Dy,Y,Ho,Er,Tm,Yb,Luか
らなる群から選ばれた一種類以上の元素をいう)
1. A hollow superconducting shield member having a single crystal shape and REBa 2 Cu 3 finely dispersed in RE 2 BaCuO 5.
R in REBa 2 Cu 3 O 7-x consisting of O 7-x system
A magnetic flux jump type superconducting fault current limiter shield member characterized in that the magnetic field shield characteristics are changed by changing the amount of E 2 BaCuO 5 . (Here RE is Nd, Sm, E
u, Gd, Dy, Y, Ho, Er, Tm, Yb, Lu means one or more elements selected from the group consisting of)
【請求項2】 REBa2 Cu3 7-x 超電導材料の原
料粉を混合し、片端穴開き円筒形状に成形した後、未開
口上部表面を半溶融状態時に、希土類を置換したRE系
種結晶を用いた種付け法で結晶方位を揃えて成長させた
後、結晶成長開始部を含む上部表面を穴開け加工するこ
とにより中空円筒単一結晶粒状のシールド部材を作製す
ることを特徴とする磁束ジャンプ型限流器部材製造方
法。
2. A RE-based seed crystal in which a raw material powder of REBa 2 Cu 3 O 7-x superconducting material is mixed and formed into a cylindrical shape with one end open, and then a rare earth is substituted when the unopened upper surface is in a semi-molten state. Flux jump characterized by producing a shield member with a hollow cylindrical single crystal grain by making the upper surface including the crystal growth start portion by drilling after growing the crystal orientation by the seeding method using Type current limiter member manufacturing method.
【請求項3】 磁束ジャンプ型超電導限流器において、
中空シールド部材の両端に鍔状のシールド部材形状を加
工付加もしくは成形後の接合により付加し、漏れ磁場に
よるロスを少なくすることを特徴とする磁束ジャンプ型
超電導限流器部材。
3. A flux jump type superconducting fault current limiter,
A flux jump type superconducting fault current limiter member characterized in that a flange-shaped shield member shape is added to both ends of a hollow shield member by processing or joining after molding to reduce loss due to a leakage magnetic field.
JP16681493A 1993-07-06 1993-07-06 Method of manufacturing flux jump type current limiting member Expired - Lifetime JP3333276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16681493A JP3333276B2 (en) 1993-07-06 1993-07-06 Method of manufacturing flux jump type current limiting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16681493A JP3333276B2 (en) 1993-07-06 1993-07-06 Method of manufacturing flux jump type current limiting member

Publications (2)

Publication Number Publication Date
JPH0731053A true JPH0731053A (en) 1995-01-31
JP3333276B2 JP3333276B2 (en) 2002-10-15

Family

ID=15838162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16681493A Expired - Lifetime JP3333276B2 (en) 1993-07-06 1993-07-06 Method of manufacturing flux jump type current limiting member

Country Status (1)

Country Link
JP (1) JP3333276B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730893B1 (en) * 1999-11-11 2004-05-04 Sintef Energiforskning As Induction heating apparatus
JP2012015515A (en) * 2010-07-02 2012-01-19 Bruker Hts Gmbh Current adjusting method, and current adjusting method especially for fault current limiter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730893B1 (en) * 1999-11-11 2004-05-04 Sintef Energiforskning As Induction heating apparatus
JP2012015515A (en) * 2010-07-02 2012-01-19 Bruker Hts Gmbh Current adjusting method, and current adjusting method especially for fault current limiter

Also Published As

Publication number Publication date
JP3333276B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
Hari Babu et al. Artificial flux pinning centers in large, single-grain (RE)-Ba-Cu-O superconductors
Yoo et al. Melt processing for obtaining NdBa2Cu3O y superconductors with high T c and large J c
US6331199B1 (en) Biaxially textured articles formed by powder metallurgy
Tenbrink et al. Development of technical high-T/sub c/superconductor wires and tapes
EP0374263B1 (en) Oxide superconductive material and process for its production
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
EP0660423B1 (en) Superconductor and method of producing same
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
Alford et al. Processing, properties and devices in high-Tc superconductors
JP3333276B2 (en) Method of manufacturing flux jump type current limiting member
KR20030022336A (en) MgB2 BASED SUPERCONDUCTOR HAVING HIGH CRITICAL CURRENT DENSITY AND METHOD FOR PREPARATION THEREOF
JP3767841B2 (en) Oxide superconductor with high critical current density
JP2007527350A (en) Method for manufacturing a doped superconductor material
US5084439A (en) Meltable high temperature Tb-R-Ba-Cu-O superconductor
JPH07115924B2 (en) Method for manufacturing oxide superconductor
US5444039A (en) (Hg,Pb)-Ba-Ca-Cu-O superconductor and method of manufacturing the same
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
USH1399H (en) Process for transforming pure Y2 BaCuO5 into a superconducting matrix of YBa2 Cu3 O7-x with fine and homogeneously dispersed Y2 BaCuO5 inclusions
Koike et al. Crystal structure and superconductivity of iodine-intercalated Bi2Sr2CaCu2O8Ix (0≦ x≦ 1): Dependence on the iodine concentration
Geballe et al. Superconducting materials up to now and into the future
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
JPH10125146A (en) Oxide superconductor current limiter
KR970005161B1 (en) Method of fabricating a superconductive body and apparatus and systems comprising the body
JPS63307150A (en) Oxide cremics based superconductor and production thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term