JPH07308030A - Charger for secondary battery - Google Patents

Charger for secondary battery

Info

Publication number
JPH07308030A
JPH07308030A JP9996094A JP9996094A JPH07308030A JP H07308030 A JPH07308030 A JP H07308030A JP 9996094 A JP9996094 A JP 9996094A JP 9996094 A JP9996094 A JP 9996094A JP H07308030 A JPH07308030 A JP H07308030A
Authority
JP
Japan
Prior art keywords
charging
battery
temperature differential
temperature
differential value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9996094A
Other languages
Japanese (ja)
Other versions
JP3445825B2 (en
Inventor
Toshinori Ishigaki
俊典 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP09996094A priority Critical patent/JP3445825B2/en
Publication of JPH07308030A publication Critical patent/JPH07308030A/en
Application granted granted Critical
Publication of JP3445825B2 publication Critical patent/JP3445825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent undercharge or overcharge due to erroneous decision at the time of boosting charge by decreasing the differentiated reference temperature sequentially stepwise as the time elapses after starting the charging operation. CONSTITUTION:When a secondary battery 2 is set in a charger 4 and boosting charge is started, the differentiated reference temperature is set at a relatively high value for a predetermined time after starting the charging operation and then it is set at a lower value. When the differentiated reference temperature is initially set at a relatively high value, erroneous decision of full charge is eliminated and thereby undercharge is prevented. When the differentiated reference temperature is set, upon elapse of a predetermined time after starting the charging operation, lower than the initially set value, the boosting charge is stopped immediately upon full charge and thereby overcharge is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池の充電装置に係
り、特にニッケルカドミウム二次電池や、ニッケル水素
二次電池などのアルカリ二次電池の急速充電に適した充
電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for a secondary battery, and more particularly to a charging device suitable for rapid charging of an alkaline secondary battery such as a nickel-cadmium secondary battery or a nickel-hydrogen secondary battery.

【0002】[0002]

【従来の技術】二次電池を短時間で充電するための急速
充電器においては、電池が満充電となったことを判定し
て急速充電を終了する。満充電の判定方式は種々考えら
れているが、その一つとして温度微分検出方式がある。
これは電池の温度微分、つまり単位時間当たりの温度上
昇量が充電末期には急激に増加することを利用し、この
温度微分が所定値、例えば1℃/分に達したことをもっ
て満充電と判定する方式である。
2. Description of the Related Art In a quick charger for charging a secondary battery in a short time, it is judged that the battery is fully charged, and the rapid charging is terminated. Various methods for determining full charge have been considered, one of which is the temperature differential detection method.
This utilizes the temperature differential of the battery, that is, the temperature rise amount per unit time rapidly increases at the end of charging, and it is determined that the battery is fully charged when the temperature differential reaches a predetermined value, for example, 1 ° C / min. It is a method to do.

【0003】ところで、この温度微分検出方式の急速充
電器においては、急速充電開始時点から一定時間(例え
ば3分間)は温度微分検出による満充電の判定を行わな
いのが普通である。これは、例えばスキー場のような寒
冷地において、屋外(例えば0℃)で使用していた電池
を室内(例えば25℃)に持ち込んで急速充電を行う場
合、最初は電池温度と周囲温度との温度差が大きいため
に、充電開始直後でも例えば1分間当たりの温度上昇量
が1℃を越えてしまい、満充電でないにもかかわらず満
充電と判定してしまうことがあるからである。このよう
な場合、電池は当然のことながら充電不足となる。
By the way, in this temperature differential detection type quick charger, it is usual not to determine the full charge by temperature differential detection for a fixed time (for example, 3 minutes) from the start of the rapid charge. For example, when a battery used outdoors (eg, 0 ° C.) is brought indoors (eg, 25 ° C.) for quick charging in a cold area such as a ski resort, the battery temperature and the ambient temperature are initially different from each other. Because the temperature difference is large, the amount of temperature rise per minute exceeds 1 ° C. even immediately after the start of charging, and it may be determined that the battery is fully charged even though it is not fully charged. In such a case, the battery is naturally insufficiently charged.

【0004】そこで、周囲温度による電池の温度上昇が
落ち着く時間として例えば3分間という時間を設定し、
この間は温度微分検出による満充電の判定を行わず、3
分間経過してから温度微分検出を行う方法が考えられて
いる。このようにすれば、充電による温度上昇を確実に
捕らえることができ、満充電を正しく判定することが可
能となる。
Therefore, for example, a time of 3 minutes is set as the time for the temperature rise of the battery to settle due to the ambient temperature,
During this period, full charge determination is not performed by temperature differential detection, and 3
A method of performing temperature differential detection after a lapse of minutes has been considered. In this way, the temperature rise due to charging can be reliably captured, and full charge can be correctly determined.

【0005】しかし、この方式では電池を低温の屋外か
ら室内に持ち込んで充電する場合には満充電を誤判定す
ることがないが、既に充電が完了している満充電状態の
電池を再充電してしまった場合には、充電開始後は3分
間といった時間は満充電の判定を行わないことから、満
充電であるにもかかわらず3分間+1分間=4分間にわ
たり再充電が行われるため、過充電になる可能性があ
る。また、温度微分検出が1℃/分でなく例えば4℃/
4分の場合には、温度微分非検出時間の3分間+温度微
分検出の単位時間の4分間の7分後に急速充電を停止す
ることになるため、7分間にわたり過充電が行われるこ
とになり、電池温度は15℃以上も上昇し、電池の劣化
が進行してまう。
However, in this method, when the battery is brought in from a low temperature outdoors to be charged indoors, a full charge will not be erroneously determined, but a fully charged battery which has already been charged can be recharged. If it does, the full charge is not judged for a time of 3 minutes after the start of charging. Therefore, even if the battery is fully charged, recharging is performed for 3 minutes + 1 minute = 4 minutes. It may be charged. Also, the temperature differential detection is not 1 ° C./min, but is 4 ° C./min.
In the case of 4 minutes, the rapid charging is stopped after 3 minutes of the temperature differential non-detection time + 7 minutes of 4 minutes of the unit time of the temperature differential detection, and therefore overcharge is performed for 7 minutes. The battery temperature rises by 15 ° C or more, and the deterioration of the battery progresses.

【0006】[0006]

【発明が解決しようとする課題】上述したように従来の
温度微分検出方式による急速充電器では、電池を周囲温
度の低い環境から高い環境に持ち込んで急速充電を行う
場合、充電開始直後に満充電を検出してしまうため充電
不足となることがあり、この問題を避けるために充電開
始後一定時間は温度微分検出による満充電の判定を行わ
ないようにすると、既に充電が完了している電池を再充
電した場合には過充電が生じ、電池を劣化させるという
問題があった。
As described above, in the conventional quick differential charger using the temperature differential detection method, when the battery is brought from a low ambient temperature environment to a high ambient temperature for quick charging, the battery is fully charged immediately after the start of charging. The battery may be insufficiently charged due to the detection of the battery charge.To avoid this problem, if the full charge determination is not performed by the temperature differential detection for a certain period of time after the start of charging, the already charged battery will be When recharged, there is a problem that overcharge occurs and the battery deteriorates.

【0007】本発明は、このような従来の温度微分検出
方式による急速充電器の問題点を解消するためになされ
たもので、満充電を誤判定することによる充電不足がな
く、また満充電状態の電池を急速充電することによる過
充電のおそれもない二次電池の充電装置を提供すること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems of the quick charger by the conventional temperature differential detection method, and there is no shortage of charge due to erroneous determination of full charge, and the state of full charge. It is an object of the present invention to provide a charging device for a secondary battery, which is free from the risk of being overcharged by rapidly charging the battery.

【0008】[0008]

【課題を解決するための手段】本発明に係る二次電池の
充電装置は、二次電池の温度を検出する温度検出手段
と、この温度検出手段により検出された温度の単位時間
当たりの温度上昇量である温度微分値を求める温度微分
検出手段と、この温度微分検出手段により求められた温
度微分値が基準温度微分値に達したとき前記急速充電を
終了させる充電制御手段と、前記基準温度微分値を充電
開始後の時間経過に伴い順次段階的に少なくとも1回以
上変化させる(従って、基準温度微分値は2種類以上と
なる)基準温度微分値制御手段とを備えたことを特徴と
する。
A charging device for a secondary battery according to the present invention comprises a temperature detecting means for detecting the temperature of the secondary battery, and a temperature rise per unit time of the temperature detected by the temperature detecting means. Temperature differential detecting means for obtaining a temperature differential value which is an amount, charge control means for terminating the rapid charging when the temperature differential value obtained by the temperature differential detecting means reaches a reference temperature differential value, and the reference temperature differential It is characterized in that it further comprises a reference temperature differential value control means for sequentially and stepwisely changing the value at least once or more with the lapse of time after the start of charging (thus, the reference temperature differential value becomes two or more types).

【0009】ここで、前記基準温度微分値制御手段は具
体的には例えば充電開始後の経過時間と基準温度微分値
との関係を格納したテーブルと、充電開始後の経過時間
を計測するタイマとを有し、該タイマにより計測された
経過時間に対応する基準温度微分値を該テーブルから読
み出すことを特徴とする。
Here, the reference temperature differential value control means specifically includes, for example, a table storing the relationship between the elapsed time after the start of charging and the reference temperature differential value, and a timer for measuring the elapsed time after the start of charging. And reading the reference temperature differential value corresponding to the elapsed time measured by the timer from the table.

【0010】また、前記充電制御手段は前記温度微分検
出手段により求められた温度微分値が充電開始時点また
はこれより一定時間経過後次第に大きくなるとき、ある
いは前回の充電時より大きくなるときは急速充電を停止
させ、温度微分値が充電開始時点またはこれより一定時
間経過後次第に小さくなるとき、あるいは前回の充電時
より小さくなるときは急速充電を続行させる制御を行う
構成としてもよい。
Further, the charge control means, when the temperature differential value obtained by the temperature differential detecting means gradually increases at the time of starting charging or after a certain time elapses from this, or when it becomes larger than at the time of the previous charging, the rapid charging is performed. May be stopped, and when the temperature differential value gradually decreases after the start of charging or after a certain period of time elapses from this, or when it becomes smaller than the previous charging, control may be performed to continue rapid charging.

【0011】[0011]

【作用】本発明では、充電装置に二次電池がセットされ
て急速充電を開始するとき、充電開始後一定時間の間は
基準温度微分値が比較的大きな値に設定され、その後、
基準温度微分値はこれより小さな値に設定される。従っ
て、最初に設定する基準温度微分値を比較的大きい適当
な値に設定すれば、満充電状態でない電池を満充電と誤
判定することがなくなるために、充電不足が防止され
る。また、充電開始時点から一定時間経過した後の基準
温度微分値を最初に設定した基準温度微分値より小さな
適当な値に設定すれば、満充電状態の電池をセットした
場合、急速充電は直ちに停止されることにより、過充電
が防止される。
According to the present invention, when the secondary battery is set in the charging device and the rapid charging is started, the reference temperature differential value is set to a relatively large value for a certain time after the start of charging, and then,
The reference temperature differential value is set to a value smaller than this. Therefore, if the reference temperature differential value initially set is set to a relatively large appropriate value, it is possible to prevent a battery that is not in a fully charged state from being erroneously determined to be fully charged, thus preventing insufficient charging. Also, if the reference temperature differential value after a lapse of a certain time from the start of charging is set to an appropriate value that is smaller than the initially set reference temperature differential value, when a fully charged battery is set, rapid charging will stop immediately. As a result, overcharging is prevented.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明に係る実施例を示す二次電池の充
電装置の回路構成図である。図1において、電池パック
1はアルカリ二次電池などの二次電池(以下、単に電池
という)2と、この電池2の近傍に配置された温度測定
用のサーミスタ3を筐体内に設けたものである。図1
は、この電池パック1が充電装置4にセットされた状態
を示している。なお、電池パック1が組み込まれた携帯
電話機その他の機器を充電装置4にセットするようにし
てもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit configuration diagram of a secondary battery charging device showing an embodiment according to the present invention. In FIG. 1, a battery pack 1 includes a secondary battery (hereinafter, simply referred to as a battery) 2 such as an alkaline secondary battery and a thermistor 3 for temperature measurement arranged near the battery 2 in a housing. is there. Figure 1
Shows a state in which the battery pack 1 is set in the charging device 4. A mobile phone or other device in which the battery pack 1 is incorporated may be set in the charging device 4.

【0013】充電装置4は、次のように構成されてい
る。充電装置4には商用交流電源5(例えば100V)
からの電力が入力され、ノイズ除去のためのフィルタ6
を介して整流平滑回路7により直流化された後、トラン
ス8の一次側に与えられる。トランス8の一次側には、
パワーMOSトランジスタからなるスイッチングトラン
ジスタ9が抵抗10を介して接続されている。スイッチ
ングトランジスタ9は、PWM(パルス幅変調)回路1
1の出力によってスイッチングされる。これによりトラ
ンス8の一次側にパルス電流が流れ、トランス8の二次
側にエネルギーが伝達される。トランス8の二次側に生
じた出力は、整流平滑回路12により直流化された後、
急速充電用トランジスタ13、またはトリクル充電用ト
ランジスタ14と抵抗15の直列回路を通り、さらに逆
流防止用ダイオード16を介して、電池2に充電電流と
して供給される。なお、整流平滑回路12の出力はフォ
トカプラ17の発光素子18にも供給され、フォトカプ
ラ17の受光素子19の出力はPWM回路11に入力さ
れる。
The charging device 4 is constructed as follows. The charging device 4 has a commercial AC power source 5 (for example, 100V)
Power from is input and filter 6 for noise removal
After being converted into a direct current by the rectifying / smoothing circuit 7 via, the signal is supplied to the primary side of the transformer 8. On the primary side of the transformer 8,
A switching transistor 9 composed of a power MOS transistor is connected via a resistor 10. The switching transistor 9 is a PWM (pulse width modulation) circuit 1
It is switched by the output of 1. As a result, a pulse current flows in the primary side of the transformer 8 and energy is transmitted to the secondary side of the transformer 8. The output generated on the secondary side of the transformer 8 is converted into a direct current by the rectifying and smoothing circuit 12,
It is supplied as a charging current to the battery 2 through the quick charging transistor 13 or the series circuit of the trickle charging transistor 14 and the resistor 15 and further through the backflow prevention diode 16. The output of the rectifying / smoothing circuit 12 is also supplied to the light emitting element 18 of the photocoupler 17, and the output of the light receiving element 19 of the photocoupler 17 is input to the PWM circuit 11.

【0014】マイクロコントローラ20は、マイクロコ
ンピュータを主体として構成され、急速充電用トランジ
スタ13、トリクル充電用トランジスタ14、フォトカ
プラ17およびLED31の制御を行うものである。こ
のマイクロコントローラ20には、抵抗21とサーミス
タ3との接続点の電圧(以下、サーミスタ電圧という)
Vtと、抵抗22,23により電池2の電圧VB を分圧
した電圧(以下、電池電圧分圧値という)Vbが入力さ
れている。
The microcontroller 20 is mainly composed of a microcomputer and controls the rapid charging transistor 13, the trickle charging transistor 14, the photocoupler 17 and the LED 31. This microcontroller 20 has a voltage at the connection point between the resistor 21 and the thermistor 3 (hereinafter referred to as the thermistor voltage).
Vt and a voltage Vb obtained by dividing the voltage VB of the battery 2 by the resistors 22 and 23 (hereinafter, referred to as a battery voltage division value) Vb are input.

【0015】抵抗24〜29および演算増幅器30は、
充電電流を一定にする制御を行うために設けられてい
る。演算増幅器30の反転入力端子には、充電路に直列
に挿入されて充電電流を検出する抵抗24の端子電圧が
抵抗27を介して入力され、非反転入力端子には+5V
の電源電圧を抵抗25,26により分圧した電圧(基準
電圧)が抵抗28を介して入力される。演算増幅器30
の反転入力端子と出力端子との間には抵抗29が接続さ
れ、抵抗27と抵抗29により演算増幅器30の利得が
決定される。演算増幅器30の出力端子は、フォトカプ
ラ17の発光素子18の整流平滑回路12の出力端子に
接続された側と反対側に接続されている。このような構
成により、演算増幅器30の反転入力端子と非反転入力
端子の電位が等しくなるようにフィードバック制御が施
される。
The resistors 24-29 and the operational amplifier 30 are
It is provided for controlling the charging current to be constant. The inverting input terminal of the operational amplifier 30 receives the terminal voltage of the resistor 24 that is inserted in series in the charging path and detects the charging current via the resistor 27, and the non-inverting input terminal of + 5V.
A voltage (reference voltage) obtained by dividing the power supply voltage of 2 by the resistors 25 and 26 is input via the resistor 28. Operational amplifier 30
A resistor 29 is connected between the inverting input terminal and the output terminal, and the gain of the operational amplifier 30 is determined by the resistors 27 and 29. The output terminal of the operational amplifier 30 is connected to the side of the light emitting element 18 of the photocoupler 17 opposite to the side connected to the output terminal of the rectifying / smoothing circuit 12. With such a configuration, feedback control is performed so that the inverting input terminal and the non-inverting input terminal of the operational amplifier 30 have the same potential.

【0016】例えば、電池2の充電電流が大きく、電流
検出用抵抗24の端子電圧が大きいときは、演算増幅器
30の非反転入力端子より反転入力端子の方が高電位と
なるため、演算増幅器30の出力電圧は低くなり、発光
素子18に流れる電流が増大する。この結果、PWM回
路11の出力パルス幅、つまりスイッチングトランジス
タ9のオン時間幅が短くなり、トランス8の二次側に伝
達されるエネルギーが減少して、充電電流が小さくな
る。
For example, when the charging current of the battery 2 is large and the terminal voltage of the current detecting resistor 24 is large, the inverting input terminal of the operational amplifier 30 has a higher potential than the non-inverting input terminal thereof, and therefore the operational amplifier 30 has a higher potential. Output voltage decreases, and the current flowing through the light emitting element 18 increases. As a result, the output pulse width of the PWM circuit 11, that is, the on-time width of the switching transistor 9 is shortened, the energy transmitted to the secondary side of the transformer 8 is reduced, and the charging current is reduced.

【0017】逆に、電池2の充電電流が小さいときは、
演算増幅器30の非反転入力端子より反転入力端子の方
が低電位となるため演算増幅器30の出力電圧は高くな
り、発光素子18に流れる電流が減少するため、PWM
回路11の出力パルス幅、つまりスイッチングトランジ
スタ9のオン時間幅が長くなり、トランス8の二次側に
伝達されるエネルギーが増加することにより、充電電流
は大きくなる。
On the contrary, when the charging current of the battery 2 is small,
Since the inverting input terminal of the operational amplifier 30 has a lower potential than the non-inverting input terminal thereof, the output voltage of the operational amplifier 30 increases and the current flowing through the light emitting element 18 decreases, so that the PWM
The output pulse width of the circuit 11, that is, the on-time width of the switching transistor 9 increases, and the energy transmitted to the secondary side of the transformer 8 increases, so that the charging current increases.

【0018】このようにして、充電電流に応じた抵抗2
4の端子電圧と抵抗25,26により得られた基準電圧
とが等しくなるようにフィードバック制御が行われ、充
電電流が定電流制御される。
In this way, the resistance 2 depending on the charging current
Feedback control is performed so that the terminal voltage of No. 4 and the reference voltage obtained by the resistors 25 and 26 become equal to each other, and the charging current is subjected to constant current control.

【0019】マイクロコントローラ20は、マイクロコ
ンピュータを用いたソフトウェア処理によって制御を行
うものである。図2に、マイクロコントローラ20の機
能ブロック図を示す。
The microcontroller 20 controls by software processing using a microcomputer. FIG. 2 shows a functional block diagram of the microcontroller 20.

【0020】図2において、サーミスタ電圧Vtおよび
電池電圧分圧値VbはA/D変換器41,42によりそ
れぞれディジタル値に変換された後、電池温度計算部4
3および電池電圧検出部44にそれぞれ入力され、電池
温度TB および電池電圧VBが求められる。電池温度計
算部43の出力は、電池温度判定部45と温度微分計算
部46に入力される。電池温度判定部45は、電池電圧
がどのような温度範囲にあるかを判定するものである。
温度微分計算部46は、電池の温度微分、つまり単位時
間当たりの温度上昇量を求めるものである。
In FIG. 2, the thermistor voltage Vt and the battery voltage division value Vb are converted into digital values by the A / D converters 41 and 42, respectively, and then the battery temperature calculation unit 4
3 and the battery voltage detector 44, respectively, to obtain the battery temperature TB and the battery voltage VB. The output of the battery temperature calculation unit 43 is input to the battery temperature determination unit 45 and the temperature differential calculation unit 46. The battery temperature determination unit 45 determines in what temperature range the battery voltage is.
The temperature differential calculation unit 46 calculates the temperature differential of the battery, that is, the amount of temperature rise per unit time.

【0021】温度微分計算部46の出力は温度微分値判
定部54に入力される。温度微分値判定部54は、温度
微分計算部46により求められた温度微分値を基準温度
微分値テーブル55から読み出された基準温度微分値と
比較して大小を判定する。基準温度微分値テーブル55
は、急速充電開始後の経過時間と基準温度微分値との関
係をROMのようなメモリに格納したものであり、その
一例を図6に示す。
The output of the temperature differential calculation section 46 is input to the temperature differential value determination section 54. The temperature differential value determination unit 54 compares the temperature differential value obtained by the temperature differential calculation unit 46 with the reference temperature differential value read from the reference temperature differential value table 55 to determine the magnitude. Reference temperature differential value table 55
Shows the relationship between the elapsed time after the start of rapid charging and the reference temperature differential value stored in a memory such as a ROM, an example of which is shown in FIG.

【0022】一方、電池電圧検出部44の出力は、電池
状態判定部47に入力される。電池状態判定部47は、
電池電圧から電池2が正常かどうかを判定するものであ
る。A/D変換器41の出力は、電池パックセット検出
部48にも入力される。電池パックセット検出部48
は、電池パック1が充電装置4にセットされているかど
うかを検出するものである。
On the other hand, the output of the battery voltage detection unit 44 is input to the battery state determination unit 47. The battery state determination unit 47
It is determined from the battery voltage whether or not the battery 2 is normal. The output of the A / D converter 41 is also input to the battery pack set detection unit 48. Battery pack set detector 48
Is for detecting whether or not the battery pack 1 is set in the charging device 4.

【0023】A/D変換器41、電池温度判定部45、
電池状態判定部47、電池パックセット検出部48およ
び温度微分値判定部54の出力は充電制御部50に入力
され、充電制御部50はこれらの出力に基づいて、急速
充電用トランジスタ13への急速充電制御信号51、ト
リクル充電用トランジスタ14へのトリクル充電制御信
号52、および充電スタート信号53を発生する。充電
スタート信号53は、図1における抵抗28の一端に供
給される。
A / D converter 41, battery temperature determination unit 45,
The outputs of the battery state determination unit 47, the battery pack set detection unit 48, and the temperature differential value determination unit 54 are input to the charging control unit 50, and the charging control unit 50 uses the outputs to rapidly charge the rapid charging transistor 13. A charge control signal 51, a trickle charge control signal 52 for the trickle charging transistor 14, and a charge start signal 53 are generated. The charge start signal 53 is supplied to one end of the resistor 28 in FIG.

【0024】さらに、充電制御部50は急速充電開始時
点からの経過時間を計測するタイマ49の出力(タイマ
値)に基づいて基準温度微分値テーブル55から該経過
時間に対応した基準温度微分値を読み出し、これを温度
微分値判定部54に与える制御も行う。
Further, the charge control unit 50 obtains the reference temperature differential value corresponding to the elapsed time from the reference temperature differential value table 55 based on the output (timer value) of the timer 49 which measures the elapsed time from the start of the rapid charging. It also controls to read out and give this to the temperature differential value determination unit 54.

【0025】次に、図3に示すフローチャートを参照し
て本実施例の動作を説明する。まず、サーミスタ電圧V
tがA/D変換器41を介して読み込まれる(ステップ
101)。電池パック1が充電装置4にセットされる
と、サーミスタ電圧Vtはそれまでの+5Vからサーミ
スタ3と抵抗21との分圧によって低下する。ここで、
サーミスタ電圧Vtが所定値(例えば、4.8V)以下
になると、電池パックセット検出部48によって電池パ
ック1が充電装置4にセットされたことが検出される
(ステップ102)。
Next, the operation of this embodiment will be described with reference to the flow chart shown in FIG. First, the thermistor voltage V
t is read via the A / D converter 41 (step 101). When the battery pack 1 is set in the charging device 4, the thermistor voltage Vt decreases from + 5V until then due to the partial pressure of the thermistor 3 and the resistor 21. here,
When the thermistor voltage Vt becomes equal to or lower than a predetermined value (for example, 4.8 V), the battery pack set detection unit 48 detects that the battery pack 1 is set in the charging device 4 (step 102).

【0026】ステップ102において電池パック1のセ
ットが検出されると、電池温度計算部43によりサーミ
スタ電圧Vtが温度データに変換されて電池温度TB が
計算され(ステップ103)、次いで電池温度判定部4
5により電池温度TB が0℃以上、かつ40℃以下の範
囲にあるかどうかが判定される(ステップ104)。電
池温度TB が0℃≦TB ≦40℃の範囲に入ると、引き
続いて充電制御部50から出力されるトリクル充電制御
信号52が“L”レベルとなることにより、トリクル充
電用トランジスタ14がオンとなって、トリクル充電が
行われる(ステップ105)。この後、電池電圧分圧値
VbがA/D変換器42を介して読み込まれ(ステップ
106)、電池電圧検出部44により電池電圧VB が求
められ、さらに電池状態判定部47によって電池電圧V
B から電池2が正常かどうかが判定される(ステップ1
07)。具体的には、単セル当りの電池電圧VB が1.
0V≦VB ≦1.7Vの範囲内のとき電池2は正常と判
定される。ここで、電池2が正常でなければ処理は終了
し、急速充電は行われない。
When the set of the battery pack 1 is detected in step 102, the battery temperature calculation unit 43 converts the thermistor voltage Vt into temperature data to calculate the battery temperature TB (step 103), and then the battery temperature determination unit 4
According to 5, it is determined whether the battery temperature TB is in the range of 0 ° C. or higher and 40 ° C. or lower (step 104). When the battery temperature TB falls within the range of 0 ° C. ≦ TB ≦ 40 ° C., the trickle charge control signal 52 output from the charge control unit 50 subsequently becomes “L” level, and the trickle charge transistor 14 is turned on. Then, trickle charging is performed (step 105). Thereafter, the battery voltage division value Vb is read via the A / D converter 42 (step 106), the battery voltage VB is obtained by the battery voltage detection unit 44, and the battery voltage VB is further obtained by the battery state determination unit 47.
It is determined from B that the battery 2 is normal (step 1
07). Specifically, the battery voltage VB per unit cell is 1.
When 0V ≦ VB ≦ 1.7V, the battery 2 is judged to be normal. Here, if the battery 2 is not normal, the process ends and rapid charging is not performed.

【0027】電池2が正常の場合は、タイマ49がスタ
ートされ(ステップ108)、充電開始時点からの経過
時間が計測されると共に、このタイマ49のタイマ値
(充電開始時点からの経過時間)と基準温度微分値テー
ブル55に基づいて基準温度微分値が設定される(ステ
ップ109)。そして、充電制御部50から出力される
急速充電制御信号51が“L”レベルとなることによ
り、急速充電用トランジスタ13がオンになると共に、
充電スタート信号53が“L”レベルとなることによっ
て、急速充電が行われる(ステップ110)。この間、
LED31がマイクロコントローラ20により制御され
て点灯し、急速充電が行われていることを示す。また、
この急速充電中、充電電流は前述したフィードバック制
御によって一定に保たれる。
When the battery 2 is normal, the timer 49 is started (step 108), the elapsed time from the charging start time is measured, and the timer value of this timer 49 (the elapsed time from the charging start time) is used. The reference temperature differential value is set based on the reference temperature differential value table 55 (step 109). Then, when the quick charge control signal 51 output from the charge control unit 50 becomes “L” level, the quick charge transistor 13 is turned on, and
When the charging start signal 53 becomes "L" level, rapid charging is performed (step 110). During this time,
The LED 31 is controlled by the microcontroller 20 and lights up to indicate that the quick charge is being performed. Also,
During this rapid charging, the charging current is kept constant by the above-mentioned feedback control.

【0028】さらに、この急速充電の間、温度微分計算
部46によって電池温度TB の温度微分、つまり単位時
間(例えば1分)当たりの温度上昇率が計算され、この
温度微分値が温度微分値判定部54においてステップ1
09で設定された基準温度微分値以上となると電池2は
満充電と判定される(ステップ111)。電池2が満充
電と判定されると、急速充電制御信号51および充電ス
タート信号53が共に“H”レベルとなることにより、
急速充電は終了する。
Further, during the rapid charging, the temperature differential calculating unit 46 calculates the temperature differential of the battery temperature TB, that is, the temperature increase rate per unit time (for example, 1 minute), and the temperature differential value is judged as the temperature differential value. Step 1 in part 54
When it becomes equal to or higher than the reference temperature differential value set in 09, it is determined that the battery 2 is fully charged (step 111). When the battery 2 is determined to be fully charged, both the quick charge control signal 51 and the charge start signal 53 become “H” level,
The quick charge ends.

【0029】次に、基準温度微分値の設定方法について
具体的に説明する。図4に、周囲温度25℃、電池温度
25℃のときの急速充電特性を示す。同図に示されるよ
うに、充電電流Iとして1.0Cを流したとすると、電
池電圧VBは次第に上昇し、それに伴い電池温度TB も
上昇していく。電池温度TB の温度上昇率は、充電開始
直後401では比較的大きく、その後は緩やかな上昇と
なり、満充電に近付いたとき402では再び大きくな
る。ここで、従来の場合は急速充電開始直後から温度微
分検出を行い、これが基準温度微分値である1℃/分に
達すると、満充電とみなして急速充電を停止していた。
Next, a method of setting the reference temperature differential value will be specifically described. FIG. 4 shows the rapid charging characteristics when the ambient temperature is 25 ° C. and the battery temperature is 25 ° C. As shown in the figure, when 1.0 C is supplied as the charging current I, the battery voltage VB gradually rises, and the battery temperature TB also rises accordingly. The temperature increase rate of the battery temperature TB is relatively large immediately after the start of charging 401, then gradually increases, and becomes large again at 402 when the battery is near full charge. Here, in the conventional case, the temperature differential detection is performed immediately after the start of the rapid charge, and when it reaches the reference temperature differential value of 1 ° C./min, it is regarded as full charge and the rapid charge is stopped.

【0030】図5の特性501は、周囲温度および電池
温度が共に25℃のときの充電に伴う電池温度の温度上
昇特性である。これに対し、例えば周囲温度が25℃で
電池温度が0℃の場合(例えばスキー場の屋外から25
℃の室内に電池パック1を持ち込んで充電したケースが
これに相当する)、電池温度TB は図5の特性502の
ように上昇する。この特性502に従うと、電池温度は
0℃から3分後に3.3℃になることから、充電しなく
とも1分間に1.1℃以上温度上昇する。この温度上昇
に充電による温度上昇を加算すると、図5の特性503
の特性となり、3分後に0℃から5℃まで上昇するた
め、急速充電開始直後の温度微分検出で満充電として誤
判定してしまう。この誤判定を避けるため、従来では急
速充電開始直後3分間は温度微分検出による満充電の判
定を行わないようにしていた。
A characteristic 501 of FIG. 5 is a temperature rise characteristic of the battery temperature due to charging when both the ambient temperature and the battery temperature are 25 ° C. On the other hand, for example, when the ambient temperature is 25 ° C. and the battery temperature is 0 ° C.
This corresponds to the case where the battery pack 1 is brought in and charged in a room at ℃), and the battery temperature TB rises as shown by the characteristic 502 in FIG. According to this characteristic 502, the battery temperature rises to 3.3 ° C. after 3 minutes from 0 ° C., so that the temperature rises by 1.1 ° C. or more in 1 minute without charging. If the temperature rise due to charging is added to this temperature rise, the characteristic 503 of FIG.
Since the temperature rises from 0 ° C. to 5 ° C. after 3 minutes, the temperature differential detection immediately after the start of the rapid charging causes a false determination as a full charge. In order to avoid this erroneous determination, conventionally, the determination of full charge by temperature differential detection is not performed for 3 minutes immediately after the start of rapid charging.

【0031】これに対し、本実施例では図6に示す基準
温度微分値テーブル55の内容に従って、基準温度微分
値を充電開始時点からの時間経過に伴い例えば1分毎に
順次段階的に小さくする。この基準温度微分値テーブル
55に従うと、基準温度微分値は充電開始時点から1分
の間は2.7℃/分、1分〜2分の間は1.8℃/分、
2分〜3分の間は1.5℃/分、3分〜4分の間は1.
1℃/分、4分以降は1.0℃/分のように可変設定さ
れる。
On the other hand, in this embodiment, according to the contents of the reference temperature differential value table 55 shown in FIG. 6, the reference temperature differential value is gradually reduced, for example, every minute with the lapse of time from the start of charging. . According to the reference temperature differential value table 55, the reference temperature differential value is 2.7 ° C./minute for 1 minute from the start of charging and 1.8 ° C./minute for 1 minute to 2 minutes.
1.5 ° C./min between 2 and 3 minutes, and 1. between 3 and 4 minutes.
The setting is variably set to 1 ° C./minute and 4 ° C./minute to 1.0 ° C./minute.

【0032】図6の基準温度微分値テーブルに示される
可変の基準温度微分値を用いると、図5の電池温度上昇
特性502,503に対する温度微分検出動作は、次の
ようになる。図7は、図5の特性502,503の充電
開始直後の変化を拡大して示したものである。図7の特
性503において、充電開始時点から1分後の電池温度
は2.3℃であり、この間の基準温度微分値2.7℃/
分より小さいので満充電とは判定されない。充電開始時
点から2分後の電池温度は3.8℃で、1分〜2分の間
の温度上昇は1.5℃であり、この間の基準温度微分値
1.8℃/分より小さいので、やはり満充電とは判定さ
れない。以下同様に、2分〜3分の間の温度上昇は1.
2℃であり、基準温度微分値1.5℃/分より小さく、
また3分〜4分の間の温度上昇は0.9℃であり、基準
温度微分値1.1℃/分より小さく、さらに4分以降も
1分当りの温度上昇は基準温度微分値1.0より小さい
ため、満充電とは判定されない。
When the variable reference temperature differential value shown in the reference temperature differential value table of FIG. 6 is used, the temperature differential detection operation for the battery temperature rise characteristics 502 and 503 of FIG. 5 is as follows. FIG. 7 is an enlarged view showing changes in the characteristics 502 and 503 of FIG. 5 immediately after the start of charging. In the characteristic 503 of FIG. 7, the battery temperature 1 minute after the start of charging is 2.3 ° C., and the reference temperature differential value during this period is 2.7 ° C. /
Since it is less than a minute, it is not judged to be fully charged. The battery temperature 2 minutes after the start of charging is 3.8 ° C, and the temperature rise between 1 minute and 2 minutes is 1.5 ° C, which is smaller than the reference temperature differential value of 1.8 ° C / minute during this period. After all, it is not judged to be fully charged. Similarly, the temperature rise during 2 to 3 minutes is 1.
2 ° C, which is smaller than the standard temperature differential value of 1.5 ° C / min,
In addition, the temperature rise between 3 minutes and 4 minutes is 0.9 ° C., which is smaller than the reference temperature differential value of 1.1 ° C./minute, and the temperature rise per minute after 4 minutes is the reference temperature differential value of 1. Since it is smaller than 0, it is not determined to be fully charged.

【0033】このように充電開始直後は基準温度微分値
を大きく設定することにより、電池パック1を0℃とい
った低温の場所から25℃といった温度の室内に持ち込
んで急速充電を行う場合、電池2が満充電でないにもか
かわらず満充電と誤判定することがなく、充電不足を回
避することができる。
In this way, when the reference temperature differential value is set to a large value immediately after the start of charging, when the battery pack 1 is brought into a room at a temperature of 25 ° C. from a low temperature place of 0 ° C. and the battery 2 is rapidly charged, the battery 2 is charged. It is possible to avoid insufficient charging without erroneously determining that the battery is fully charged even though it is not fully charged.

【0034】次に、電池温度TB が0℃で満充電状態の
電池を急速充電する場合について考える。この場合の電
池温度上昇特性は、図7の特性504に示される。この
特性504によると、充電開始時点から1分後の電池温
度は2.6℃であり、基準温度微分値2.7℃より小さ
いので満充電とは判定されない。充電開始時点から2分
後の電池温度は4.7℃で、1分〜2分の間の温度上昇
は2.1℃であり、この間の基準温度微分値1.8℃/
分より大きいので満充電と判定され、充電が停止される
ことになる。
Next, consider the case where the battery temperature TB is 0 ° C. and the fully charged battery is rapidly charged. The battery temperature rise characteristic in this case is shown by the characteristic 504 in FIG. 7. According to this characteristic 504, the battery temperature after 1 minute from the start of charging is 2.6 ° C., which is smaller than the reference temperature differential value 2.7 ° C., so it is not determined that the battery is fully charged. The battery temperature after 2 minutes from the start of charging was 4.7 ° C, and the temperature rise between 1 minute and 2 minutes was 2.1 ° C, and the reference temperature differential value during this period was 1.8 ° C /
Since it is larger than the minute, it is determined that the battery is fully charged and the charging is stopped.

【0035】このように充電開始後一定時間が経過した
後は、基準温度微分値を小さな値に設定することによ
り、満充電状態の電池をセットした場合、この時間が経
過した時点で満充電が判定され、直ちに急速充電が停止
されるため、電池2の過充電を防止することができる。
After a certain period of time has elapsed after the start of charging, the reference temperature differential value is set to a small value to set a fully charged battery. Since the determination is made and the rapid charging is immediately stopped, overcharging of the battery 2 can be prevented.

【0036】次に、電池温度TB が25℃で満充電状態
の電池を急速充電する場合について考える。この場合の
電池温度上昇特性は、図4の特性502が加算されない
ために、特性503から特性502を差し引いた特性と
なる。この特性によると、充電開始時点から1分後の温
度上昇は2.6℃−1.6℃=1.0℃であり、基準温
度微分値2.7℃/分より小さいので満充電とは判定さ
れず、2分後の電池温度は4.7℃−2.7℃で、1分
後の電池温度1.0℃に対して1.0℃の温度上昇であ
り、基準温度微分値1.8℃/分より小さいので満充電
とは検出されない。3分後も電池温度は7.3℃−3.
6℃で、2分後の電池温度2.0℃に対して1.7℃の
温度上昇であり、基準温度微分値1.5℃/分より小さ
いので満充電と判定され、急速充電が停止される。
Next, consider the case where the battery temperature TB is 25 ° C. and the fully charged battery is rapidly charged. The battery temperature rise characteristic in this case is a characteristic obtained by subtracting the characteristic 502 from the characteristic 503 because the characteristic 502 of FIG. 4 is not added. According to this characteristic, the temperature rise 1 minute after the start of charging is 2.6 ° C.-1.6 ° C. = 1.0 ° C., which is smaller than the reference temperature differential value 2.7 ° C./min. Not judged, the battery temperature after 2 minutes was 4.7 ° C-2.7 ° C, which was a temperature increase of 1.0 ° C with respect to the battery temperature of 1.0 ° C after 1 minute, and the reference temperature differential value was 1 Since it is less than 0.8 ° C / min, full charge is not detected. After 3 minutes, the battery temperature was 7.3 ° C-3.
At 6 ° C, the temperature rises by 1.7 ° C after 2.0 minutes after the battery temperature reaches 2.0 ° C. Since it is smaller than the reference temperature differential value of 1.5 ° C / min, it is determined that the battery is fully charged and the rapid charging is stopped. To be done.

【0037】すなわち、このような場合、従来では充電
開始時点から4分後に満充電が判定され、急速充電が停
止されていたため、電池温度は約15℃上昇していた
が、本実施例では充電開始時点から3分後に急速充電が
停止されるため、電池の温度上昇は7.3℃程度に抑え
られる。このため、電池の過充電がより抑えられ、サイ
クル寿命もそれだけ長くなる。
That is, in such a case, in the conventional case, the battery temperature was raised by about 15 ° C. because the full charge was determined 4 minutes after the start of charging and the rapid charging was stopped, but in the present embodiment, charging was performed. Since the rapid charging is stopped 3 minutes after the start time, the temperature rise of the battery can be suppressed to about 7.3 ° C. For this reason, overcharging of the battery is further suppressed, and the cycle life is extended accordingly.

【0038】なお、満充電に至っていない電池について
は、4分以降は基準温度微分値が通常の値(例えば1℃
/分)に設定されるので、従来通り満充電が正しく検出
されることになる。
For batteries that are not fully charged, the standard temperature differential value is a normal value (for example, 1 ° C.) after 4 minutes.
/ Min), the full charge will be correctly detected as before.

【0039】本発明は、上記実施例に限られるものでな
く、種々変形して実施することができる。例えば、上記
実施例では1分毎に電池温度測定を行い、基準温度微分
値についても1分当りの温度上昇量を定めたが、電池温
度測定の時間間隔はこれより長い時間または短い時間、
例えば30秒といった値にしてもよい。
The present invention is not limited to the above embodiments, but can be implemented with various modifications. For example, in the above-described embodiment, the battery temperature is measured every 1 minute, and the temperature rise amount per minute is determined for the reference temperature differential value, but the battery temperature measurement time interval is longer or shorter than this.
For example, the value may be 30 seconds.

【0040】また、図6のテーブルは0〜4分の間で基
準温度微分値を可変としたが、0〜10分の間で可変と
してもよい。逆に、図6のテーブルでは基準温度微分値
を5回変化させたが、2回変化させてもよい。例えば、
0〜4分の間、2.7℃の微分値とし、4分以降1.0
℃の微分値とする。
In the table of FIG. 6, the reference temperature differential value is variable from 0 to 4 minutes, but it may be variable from 0 to 10 minutes. On the contrary, in the table of FIG. 6, the reference temperature differential value is changed five times, but may be changed twice. For example,
From 0 to 4 minutes, with a differential value of 2.7 ° C, 1.0 minutes after 4 minutes
It is the differential value of ° C.

【0041】また、上記実施例で説明した温度微分検出
による満充電の判定アルゴリズムはあくまで一例であ
り、上記と異なるものであってもよい。例えば、図7に
おいて温度微分値が次第に小さくなっていくような場
合、満充電の判定を行わず、温度微分値がそれまでの温
度微分値より上回ったとき満充電の判定を行う論理でも
よい。この満充電判定方式の具体例を以下に示す。な
お、請求項3における「温度微分値が充電開始時点また
はこれより一定時間経過後次第に小さくなるとき、」の
表現の中で、『これより一定時間後次第に小さくなると
き、』とした理由は、(1) 充電開始時に微小充電電流を
一定時間流す場合があり、この場合を充電開始時点とす
ると矛盾することと、(2) 急速充電を開始して30秒毎
の温度微分値を計測したとき、電池パックによっては最
初の1分間は温度変化が生じないものもあり、この場合
は一定時間を1分とし、一定時間経過後温度微分値をチ
ェックすることがあること、の二つの場合があるためで
ある。
The full charge determination algorithm based on the temperature differential detection described in the above embodiment is merely an example, and may be different from the above. For example, in FIG. 7, when the temperature differential value gradually decreases, the full charge determination may not be performed, and the full charge determination may be performed when the temperature differential value exceeds the temperature differential value up to that point. A specific example of this full charge determination method is shown below. In the claim 3, in the expression "when the temperature differential value gradually decreases after the start of charging or after a certain period of time elapses", the reason for "when the temperature gradually decreases after a certain period of time" is as follows. (1) When charging starts, a small charging current may flow for a certain period of time, which is inconsistent with charging start time, and (2) when temperature differential value is measured every 30 seconds after starting rapid charging. Depending on the battery pack, the temperature may not change during the first minute. In this case, the fixed time may be set to 1 minute and the temperature differential value may be checked after the fixed time has passed. This is because.

【0042】(条件1)電池温度0℃、周囲温度25℃
で満充電でない電池の急速充電を開始したとき。この場
合、図4の満充電に近付いた時点402において、電池
の1分毎の温度上昇は次のようになる。
(Condition 1) Battery temperature 0 ° C., ambient temperature 25 ° C.
When a quick charge of a battery that is not fully charged is started. In this case, at the time point 402 approaching full charge in FIG. 4, the temperature rise per minute of the battery is as follows.

【0043】1分後…2.3℃(2.3℃−0℃=2.
3℃) 2分後…1.5℃(3.8℃−2.3℃=1.5℃) 3分後…1.2℃(5.0℃−3.8℃=1.2℃) 4分後…0.9℃(5.9℃−5.0℃=0.9℃) この例では、1分毎の温度上昇量が徐々に小さくなるた
め、温度微分検出に基づく満充電の判定を行わず、急速
充電を続行する。
1 minute later ... 2.3 ° C. (2.3 ° C.-0 ° C. = 2.3.
3 ° C 2 minutes later ... 1.5 ° C (3.8 ° C-2.3 ° C = 1.5 ° C) 3 minutes later 1.2 ° C (5.0 ° C-3.8 ° C = 1.2 ° C) ) 4 minutes later ... 0.9 ° C. (5.9 ° C.-5.0 ° C. = 0.9 ° C.) In this example, the amount of temperature rise per minute gradually decreases, so full charge based on temperature differential detection is performed. The quick charge is continued without making the determination.

【0044】(条件2)電池温度0℃、周囲温度25℃
で満充電の電池の急速充電を開始したとき。この場合、
電池の1分毎の温度上昇は例えば次のようになる。 1分後…2.6℃(2.6℃−0℃=2.6℃) 2分後…2.1℃(4.7℃−2.6℃=2.1℃) 3分後…2.6℃(5.3℃−4.7℃=2.6℃) この例では、2分後より3分後で電池の温度上昇が大き
くなっているので、3分後には温度微分検出に基づく満
充電状態の判定を行い、急速充電を停止させるようにす
る。
(Condition 2) Battery temperature 0 ° C., ambient temperature 25 ° C.
When the quick charge of a fully charged battery is started. in this case,
The temperature rise per minute of the battery is as follows, for example. 1 minute later ... 2.6 ° C (2.6 ° C-0 ° C = 2.6 ° C) 2 minutes later ... 2.1 ° C (4.7 ° C-2.6 ° C = 2.1 ° C) 3 minutes later ... 2.6 [deg.] C. (5.3 [deg.] C.-4.7 [deg.] C. = 2.6 [deg.] C.) In this example, the temperature rise of the battery is large 3 minutes after 2 minutes, so the temperature differential detection is performed 3 minutes later. The full charge state is determined based on the above, and the quick charge is stopped.

【0045】(条件3)電池温度25℃、周囲温度25
℃で満充電でない電池の急速充電を開始したとき。この
場合、電池の1分毎の温度上昇は例えば次のようにな
る。 1分後…2.3℃(2.3℃−1.6℃=0.7℃) 2分後…1.5℃((3.8℃−2.7℃)−0.7℃
=0.4℃) 3分後…1.2℃((5.0℃−3.6℃)−1.1℃
=0.3℃) この例では、1分毎の電池の温度上昇が徐々に小さくな
っているので、満充電状態の判定を行わず、急速充電を
続行する。
(Condition 3) Battery temperature 25 ° C., ambient temperature 25
When quick charging of a battery that is not fully charged at ℃ is started. In this case, the temperature rise of the battery every minute is as follows, for example. After 1 minute ... 2.3 ° C. (2.3 ° C.-1.6 ° C. = 0.7 ° C.) After 2 minutes ... 1.5 ° C. ((3.8 ° C.-2.7 ° C.)-0.7 ° C.
= 0.4 ° C.) 3 minutes later ... 1.2 ° C. ((5.0 ° C.-3.6 ° C.)-1.1 ° C.
= 0.3 ° C.) In this example, since the temperature rise of the battery every minute is gradually reduced, rapid charging is continued without determining the full charge state.

【0046】(条件4)電池温度25℃、周囲温度25
℃で満充電の電池の急速充電を開始したとき。この場
合、電池の1分毎の温度上昇は例えば次のようになる。 1分後…1.0℃(電池温度:2.6℃−1.6℃=
1.0℃、温度上昇:1.0℃−0℃=1.0℃) 2分後…1.0℃(電池温度:4.7℃−2.7℃=
2.0℃、温度上昇:2.0℃−1.0℃=1.0℃) 3分後…1.7℃(電池温度:7.3℃−3.6℃=
3.7℃、温度上昇:3.7℃−2.0℃=1.7℃) この例では、2分後より3分後で電池の温度上昇が大き
くなっているので、3分後に満充電状態の判定を行って
急速充電を停止させる。
(Condition 4) Battery temperature 25 ° C., ambient temperature 25
When quick charging of a fully charged battery at ℃ is started. In this case, the temperature rise of the battery every minute is as follows, for example. 1 minute later ... 1.0 ° C. (battery temperature: 2.6 ° C.-1.6 ° C. =
1.0 ° C, temperature rise: 1.0 ° C-0 ° C = 1.0 ° C) 2 minutes later ... 1.0 ° C (battery temperature: 4.7 ° C-2.7 ° C =
2.0 ° C., temperature rise: 2.0 ° C.-1.0 ° C. = 1.0 ° C. 3 minutes later ... 1.7 ° C. (battery temperature: 7.3 ° C.-3.6 ° C. =)
3.7 ° C., temperature rise: 3.7 ° C.−2.0 ° C. = 1.7 ° C.) In this example, the temperature rise of the battery is large after 3 minutes and after 2 minutes, so it takes 3 minutes to reach full temperature. The state of charge is determined and the quick charge is stopped.

【0047】以上のような論理でも、満充電の電池の急
速充電開始時点から3分後に満充電状態を検出すること
が可能であり、基本的には一定時間内に一定の電池温度
上昇が検出されたと判断することができる。
Even with the above logic, it is possible to detect the fully charged state 3 minutes after the start of the rapid charge of the fully charged battery, and basically, a constant battery temperature rise is detected within a fixed time. It can be judged that it was done.

【0048】また、急速充電開始後5分間は上述した論
理で満充電状態の判定を行い、それ以降は本来の1℃/
分以上の温度微分検出により満充電状態の判定を行う論
理を用いてもよい。
Further, for 5 minutes after the start of the rapid charge, the full-charge state is judged by the above-mentioned logic, and thereafter, the original 1 ° C. /
It is also possible to use a logic for determining the fully charged state by detecting the temperature differential for more than a minute.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば二
次電池の温度微分検出により満充電の判定を行って急速
充電を停止させる方式の充電装置において、基準温度微
分値を充電開始後の時間経過に伴い順次段階的に小さく
することにより、温度の低い環境から室内に電池パック
を持ち込んで急速充電を行う場合など、満充電状態でな
い電池を満充電と誤判定することによる充電不足がな
く、しかも満充電状態の電池を誤って急速充電すること
による過充電を防止することができる、という効果が得
られる。
As described above, according to the present invention, in the charging device of the type in which the full charge is judged by the temperature differential detection of the secondary battery to stop the rapid charging, after the reference temperature differential value is started to be charged. When the battery pack is brought into the room from a low temperature environment for quick charging, the battery will be insufficiently charged due to erroneous determination that the battery is not fully charged when it is fully charged. In addition, it is possible to prevent overcharging due to accidentally rapidly charging a fully charged battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る二次電池の充電装置の
回路構成図
FIG. 1 is a circuit configuration diagram of a secondary battery charging device according to an embodiment of the present invention.

【図2】図1におけるマイクロコントローラの機能ブロ
ック図
FIG. 2 is a functional block diagram of the microcontroller in FIG.

【図3】同実施例の動作を説明するためのフローチャー
FIG. 3 is a flowchart for explaining the operation of the embodiment.

【図4】同実施例の動作を説明するための急速充電時の
電池電圧と電池温度および充電電流の時間変化を示す図
FIG. 4 is a diagram showing changes with time in battery voltage, battery temperature, and charging current during rapid charging for explaining the operation of the embodiment.

【図5】種々の条件での電池の温度上昇特性を示す図FIG. 5 is a diagram showing temperature rise characteristics of a battery under various conditions.

【図6】図における基準温度微分値テーブルの構成例を
示す図
FIG. 6 is a diagram showing a configuration example of a reference temperature differential value table in the figure.

【図7】図5の電池温度上昇特性の一部を拡大して示す
FIG. 7 is an enlarged view showing a part of the battery temperature rise characteristic of FIG.

【符号の説明】[Explanation of symbols]

1…電池パック 2…二次電池 3…サーミスタ 4…充電装置 5…商用交流電源 6…フィルタ 7…整流平滑回路 8…トランス 9…スイッチングトランジスタ 11…パルス幅変調
回路 12…整流平滑回路 13…急速充電用
トランジスタ 14…トリクル充電用トランジスタ 16…逆流防止用
ダイオード 17…フォトカプラ 20…マイクロコ
ントローラ 30…演算増幅器 32…放電用トラ
ンジスタ 41…A/D変換器 42…A/D変換
器 43…電池温度計算部 44…電池電圧検
出部 45…電池温度判定部 46…温度微分計
算部 47…電池状態判定部 48…電池パック
セット検出部 49…タイマ 50…充電制御部 51…急速充電制御信号 52…トリクル充
電制御信号 53…充電スタート信号 54…温度微分値
判定部 55…基準温度微分値テーブル
DESCRIPTION OF SYMBOLS 1 ... Battery pack 2 ... Secondary battery 3 ... Thermistor 4 ... Charging device 5 ... Commercial AC power supply 6 ... Filter 7 ... Rectification smoothing circuit 8 ... Transformer 9 ... Switching transistor 11 ... Pulse width modulation circuit 12 ... Rectification smoothing circuit 13 ... Rapid Charge transistor 14 ... Trickle charge transistor 16 ... Backflow prevention diode 17 ... Photocoupler 20 ... Microcontroller 30 ... Operational amplifier 32 ... Discharge transistor 41 ... A / D converter 42 ... A / D converter 43 ... Battery temperature Calculation unit 44 ... Battery voltage detection unit 45 ... Battery temperature determination unit 46 ... Temperature differential calculation unit 47 ... Battery state determination unit 48 ... Battery pack set detection unit 49 ... Timer 50 ... Charge control unit 51 ... Rapid charge control signal 52 ... Trickle Charge control signal 53 ... Charge start signal 54 ... Temperature differential value determination unit 55 ... Reference temperature Minute value table

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】二次電池を急速充電する機能を備えた充電
装置において、 前記二次電池の温度を検出する温度検出手段と、 この温度検出手段により検出された温度の単位時間当た
りの温度上昇量である温度微分値を求める温度微分検出
手段と、 この温度微分検出手段により求められた温度微分値が基
準温度微分値に達したとき前記急速充電を終了させる充
電制御手段と、 前記基準温度微分値を充電開始後の時間経過に伴い順次
段階的に少なくとも1回以上変化させる基準温度微分値
制御手段とを備えたことを特徴とする二次電池の充電装
置。
1. A charging device having a function of rapidly charging a secondary battery, comprising temperature detecting means for detecting the temperature of the secondary battery, and a temperature rise per unit time of the temperature detected by the temperature detecting means. Temperature differential detecting means for obtaining a temperature differential value which is an amount, charge control means for terminating the rapid charging when the temperature differential value obtained by the temperature differential detecting means reaches a reference temperature differential value, and the reference temperature differential A charging device for a secondary battery, comprising: a reference temperature differential value control unit that sequentially and stepwise changes the value at least once or more with the lapse of time after the start of charging.
【請求項2】前記基準温度微分値制御手段は、充電開始
後の経過時間と基準温度微分値との関係を格納したテー
ブルと、充電開始後の経過時間を計測するタイマとを有
し、該タイマにより計測された経過時間に対応する基準
温度微分値を該テーブルから読み出すことを特徴とする
請求項1に記載の二次電池の充電装置。
2. The reference temperature differential value control means has a table storing the relationship between the elapsed time after the start of charging and the reference temperature differential value, and a timer for measuring the elapsed time after the start of charging. The secondary battery charging device according to claim 1, wherein a reference temperature differential value corresponding to the elapsed time measured by the timer is read from the table.
【請求項3】前記充電制御手段は、前記温度微分検出手
段により求められた温度微分値が充電開始時点またはこ
れより一定時間経過後次第に大きくなるとき、あるいは
前回の充電時より大きくなるときは急速充電を停止さ
せ、温度微分値が充電開始時点またはこれより一定時間
経過後次第に小さくなるとき、あるいは前回の充電時よ
り小さくなるときは急速充電を続行させることを特徴と
する請求項1に記載の二次電池の充電装置。
3. The charge control means, when the temperature differential value obtained by the temperature differential detecting means gradually increases at the start of charging or after a certain period of time elapses from this, or when it becomes larger than that at the previous charging, rapid 2. The charging is stopped, and the rapid charging is continued when the temperature differential value gradually decreases at the start of charging or after a certain period of time elapses thereafter, or becomes smaller than the previous charging, the rapid charging is continued. Rechargeable battery charger.
JP09996094A 1994-05-13 1994-05-13 Rechargeable battery charger Expired - Fee Related JP3445825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09996094A JP3445825B2 (en) 1994-05-13 1994-05-13 Rechargeable battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09996094A JP3445825B2 (en) 1994-05-13 1994-05-13 Rechargeable battery charger

Publications (2)

Publication Number Publication Date
JPH07308030A true JPH07308030A (en) 1995-11-21
JP3445825B2 JP3445825B2 (en) 2003-09-08

Family

ID=14261254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09996094A Expired - Fee Related JP3445825B2 (en) 1994-05-13 1994-05-13 Rechargeable battery charger

Country Status (1)

Country Link
JP (1) JP3445825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152986A (en) * 2000-08-31 2002-05-24 Alcatel Battery charging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152986A (en) * 2000-08-31 2002-05-24 Alcatel Battery charging method

Also Published As

Publication number Publication date
JP3445825B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JP3911049B2 (en) Charger
US20040075417A1 (en) Charging apparatus
JP2776834B2 (en) Battery operated device
JP2006318682A (en) Charger
JPH07274410A (en) Battery recharging method wherein charging is finished according to voltage drop grade in response to signal/noise ratio
JPH07235332A (en) Method for charging secondary battery
JP3637758B2 (en) Battery charging method
US20020060552A1 (en) Battery charger capable of accurately determining fully charged condition regardless of batteries with different charge chracteristics
JP3445825B2 (en) Rechargeable battery charger
JPH07308031A (en) Charger for secondary battery
JPH08103032A (en) Charging for secondary battery
JPH07312231A (en) Charging device for secondary battery
JPH0737621A (en) Device for judging residual capacity of secondary battery and charging device using it
JPH07312229A (en) Charging device for secondary battery
JPH0865912A (en) Battery charger
JPH0898423A (en) Charger for secondary battery
JPH09238431A (en) Method of charging cell and charger
JP3656379B2 (en) Battery charger
JPH10201111A (en) Charging control method and charging control device
JPH0865910A (en) Battery charger
JPH07312230A (en) Charging device for secondary battery
JP3238938B2 (en) Battery charger
CN111585326B (en) Charging power supply device and method for automatically identifying battery
JP3394824B2 (en) Rechargeable battery charger
JP3426616B2 (en) Battery charger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080627

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090627

LAPS Cancellation because of no payment of annual fees