JPH07307616A - Antenna device for mobile earth station - Google Patents

Antenna device for mobile earth station

Info

Publication number
JPH07307616A
JPH07307616A JP12303394A JP12303394A JPH07307616A JP H07307616 A JPH07307616 A JP H07307616A JP 12303394 A JP12303394 A JP 12303394A JP 12303394 A JP12303394 A JP 12303394A JP H07307616 A JPH07307616 A JP H07307616A
Authority
JP
Japan
Prior art keywords
sub
antenna
reflecting mirror
reflection mirror
radio waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12303394A
Other languages
Japanese (ja)
Other versions
JP2545742B2 (en
Inventor
Yoshihiro Hase
良裕 長谷
Shigehisa Yoshimoto
繁壽 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP6123033A priority Critical patent/JP2545742B2/en
Publication of JPH07307616A publication Critical patent/JPH07307616A/en
Application granted granted Critical
Publication of JP2545742B2 publication Critical patent/JP2545742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To miniaturize an antenna device for a mobile earth station, to make it light in weight and to track the azimuth of a satellite for all azimuth angles by attaining a structure provided with a rotatable sub-reflection mirror and the main reflection mirror of a tourus shape and providing a tracking mechanism capable of tracking the azimuth of the satellite in an antenna itself. CONSTITUTION:Incident waves from an X-Y direction are reflected at the range P-Q of a part of the circumference of a tourus cross section. Thus, radio waves reflected by the main reflection mirror 1 become spherical waves and advance so as to be gathered at a focus point F which is the middle of the circumference and a center. The radio waves tentatively gathered at the F are spread again and reflected again on the surface P'-Q' of the sub-reflection mirror 2. Since the sub-reflection mirror 2 is a part of a rotating ellipse, similarly to the time of a longitudinal section, the radio waves passed through one of the focus point and reflected by the sub-reflection mirror 2 are gathered at the other focus point F'. When it is defined as the phase center position of a primary radiator 3, all the radio waves reflected by the main reflection mirror 1 and the sub-reflection mirror 2 are gathered at the position of the primary radiator 3. At the time of transmission, only the advancing direction of the radio waves is reversed, complete reversibility is realized and an antenna beam can be turned to all the directions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動体衛星通信システム
で自動車や船舶等の移動体に搭載される移動地球局用ア
ンテナ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna device for a mobile earth station mounted on a mobile body such as an automobile or a ship in a mobile satellite communication system.

【0002】[0002]

【従来の技術】指向性アンテナを使った移動地球局用ア
ンテナ装置では、常に静止衛星方向にアンテナのビーム
を向けて追尾する必要がある。そのため、従来、アンテ
ナ本体とは別に、仰角方向と方位角方向とを別々に駆動
制御できる追尾機構を設け、アンテナをその上に設置し
て衛星を追尾する技術が用いられてきた。ただし、アン
テナのビーム幅の角度の広さから見て静止衛星に対する
仰角の変化範囲が小さく、ほぼ一定とみなせるような移
動範囲の限られた移動体では、方位角方向の追尾のみに
限定して追尾機構の簡素化がはかられてきた。その追尾
機構は、移動体の方位方向の動きを検知し、その反対の
回転動作をする事によって移動体の方位方向の動きを相
殺し、アンテナが常に衛星方向に向くよう保持するもの
なので、移動体が一方向に回転を続けた場合にもアンテ
ナからの信号線が回転軸に絡みつかない様にするため、
従来は、ロータリージョイント(回転部分に高周波信号
を通す部品)を使用していた。
2. Description of the Related Art In an antenna device for a mobile earth station using a directional antenna, it is necessary to always direct the beam of the antenna toward the geostationary satellite and track it. Therefore, conventionally, a technique has been used in which a tracking mechanism capable of separately driving and controlling an elevation angle direction and an azimuth angle direction is provided separately from the antenna body, and an antenna is installed on the tracking mechanism to track a satellite. However, in view of the angular width of the beam width of the antenna, the range of elevation angle change with respect to the geostationary satellite is small, and a moving body with a limited range of movement that can be considered to be almost constant is limited to tracking in the azimuth direction only. The tracking mechanism has been simplified. The tracking mechanism detects the movement of the moving body in the azimuth direction and cancels the movement of the moving body in the azimuth direction by performing the opposite rotational movement to hold the antenna so that it always faces the satellite. In order to prevent the signal line from the antenna from getting entangled with the rotation axis even when the body continues to rotate in one direction,
Conventionally, a rotary joint (a component that allows high-frequency signals to pass through the rotating part) has been used.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のような
アンテナと追尾機構を分離した構成では、アンテナ装置
全体が大きく複雑となり、小型の移動体には搭載が困難
で、価格も高くなる問題点があった。また、追尾機構に
は精密なロータリージョイントが必要なため、信頼性の
点及び高周波信号の通過損失による信号品質劣化の点で
も問題があった。
However, in the conventional structure in which the antenna and the tracking mechanism are separated from each other, the whole antenna device becomes large and complicated, and it is difficult to mount it on a small moving body, and the cost becomes high. was there. In addition, since a precise rotary joint is required for the tracking mechanism, there are problems in terms of reliability and deterioration of signal quality due to passage loss of high frequency signals.

【0004】そこで、本発明は、仰角方向の追尾が必要
のない移動地球局のアンテナにおいて、アンテナ自体に
追尾機構を持たせ、さらに、ロータリージョイントを使
うことなく衛星方位追尾を可能として、装置の小型軽量
化、低価格化、高信頼化を期せる移動地球局用アンテナ
装置の提供を目的とする。
Therefore, according to the present invention, in an antenna of a mobile earth station which does not require tracking in the elevation angle direction, the antenna itself has a tracking mechanism, and further, satellite direction tracking is enabled without using a rotary joint, and the device It is an object of the present invention to provide an antenna device for a mobile earth station, which can be reduced in size, weight, price and reliability.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る移動地球局用アンテナ装置では、アン
テナ基台の表面に垂直でその中心を通る中心軸の回りに
放物線を回転させることにより得られる回転放物面を、
その中心軸に垂直な2つの平面で輪切りに切り取ったト
ーラス(円環体)表面の部分形状に近似した内曲面を有
する主反射鏡と;回転楕円体の一部を切り取った形状の
表面を持ち、その回転軸がトーラス中心軸から一定の傾
きを持って設置され、それがトーラス中心軸回りに回動
する構造を有する副反射鏡と;上記副反射鏡の回動量を
制御することにより、アンテナのビーム方位角と衛星方
向の方位角を常に一致させる追尾制御手段と;トーラス
中心軸上で上向きに副反射鏡を照射する様にアンテナ基
台に対して固定された構造を有する一次放射器と;を備
える構造とした。
In order to solve the above problems, in a mobile earth station antenna apparatus according to the present invention, a parabola is rotated around a central axis that is perpendicular to the surface of the antenna base and passes through its center. The parabolic surface obtained by
A main reflector with an inner curved surface that approximates the partial shape of the torus surface that is cut into two slices perpendicular to its center axis; and has a surface that is cut out from a part of the spheroid. A sub-reflecting mirror whose rotation axis is installed with a certain inclination from the torus center axis and which rotates around the torus center axis; and an antenna by controlling the amount of rotation of the sub-reflecting mirror. Tracking control means for always matching the beam azimuth angle of the satellite and the azimuth angle of the satellite; and a primary radiator having a structure fixed to the antenna base so as to irradiate the sub-reflecting mirror upward on the central axis of the torus. A structure including;

【0006】[0006]

【実施例】次に本発明に係る移動地球局用アンテナ装置
の実施例を添付図面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an antenna device for a mobile earth station according to the present invention will be described in detail with reference to the accompanying drawings.

【0007】まず、本発明のアンテナ装置の原理を図1
〜図3により説明する。図1は、主反射鏡1と副反射鏡
2と一次放射器3とからなるアンテナ構造の概略斜視図
であって、衛星方向からの電波が主反射鏡1および副反
射鏡2を通して一次放射器3に焦点を結ぶ様子を示して
いる。この基本原理は、トーラス中心軸を含む縦断面と
トーラス中心軸に直交する横断面とにおける電波の反射
状態を把握することで容易に理解できる。これら縦断面
および横断面を各々図2、図3に示す。
First, the principle of the antenna device of the present invention is shown in FIG.
~ It demonstrates by FIG. FIG. 1 is a schematic perspective view of an antenna structure including a main reflecting mirror 1, a sub-reflecting mirror 2 and a primary radiator 3, in which radio waves from the satellite direction pass through the main reflecting mirror 1 and the sub-reflecting mirror 2 and the primary radiator is shown. It shows that the focus is on 3. This basic principle can be easily understood by grasping the reflection state of radio waves in a vertical section including the central axis of the torus and a horizontal section orthogonal to the central axis of the torus. These longitudinal section and transverse section are shown in FIGS. 2 and 3, respectively.

【0008】トーラス中心軸を含む縦断面上での電波の
進む様子を幾何光学的に描いたものが図2である。衛星
からの電波は波源が遠いので平面波となりX−Y方向か
ら入射するものとする。主反射鏡の断面は放物線である
から、主反射鏡の表面P−Qで反射し、反射波は球面波
となり焦点Fに集まるように進む。放物線は、焦点Fの
位置が主反射鏡面とトーラス中心軸の真ん中にくるよう
に、また、放物線の軸の傾きが衛星仰角と一致するよう
に設定する。いったんFに集まった電波は再度広がり、
副反射鏡の表面P’−Q’で再度反射される。副反射鏡
は回転楕円体の一部であり、その縦断面は楕円である。
楕円には2つの焦点があり、一方の焦点から出た光は他
の焦点に集まることが幾何光学上よく知られている。従
って、その楕円の一方の焦点をFに一致するようにし、
他方の焦点をトーラス中心軸上に置くような楕円とすれ
ば、副反射鏡で反射された電波は第2の焦点F’に集ま
る。ここを一次放射器の位相中心位置とすれば、オフセ
ットグレゴリアンアンテナ(主反射鏡と副反射鏡の間に
実焦点が存在し、2つの反射鏡の中心軸が一致しない複
反射鏡式アンテナ)と同等となる。
FIG. 2 is a geometrical optical drawing of how a radio wave travels on a vertical section including the central axis of the torus. Since the source of the radio wave from the satellite is far, it becomes a plane wave and enters from the XY directions. Since the cross section of the main reflecting mirror is a parabola, it is reflected by the surface PQ of the main reflecting mirror, and the reflected wave becomes a spherical wave and proceeds so as to be focused on the focal point F. The parabola is set so that the position of the focal point F is located at the center of the main reflecting mirror surface and the central axis of the torus, and the inclination of the parabola axis matches the satellite elevation angle. The radio waves once gathered at F spread again,
It is reflected again on the surface P'-Q 'of the sub-reflecting mirror. The sub-reflector is part of a spheroid and its longitudinal section is elliptical.
It is well known in geometric optics that an ellipse has two focal points, and light emitted from one focal point is focused on the other focal point. Therefore, make one focus of the ellipse coincident with F,
If the other focus is an ellipse that is placed on the central axis of the torus, the radio waves reflected by the sub-reflecting mirror will be collected at the second focus F ′. If this is taken as the phase center position of the primary radiator, it can be used as an offset Gregorian antenna (a double-reflector antenna with a real focal point between the main reflector and the subreflector, and the central axes of the two reflectors do not match). Will be equivalent.

【0009】次に、トーラス中心軸に直交する横断面と
その断面上に電波の進む様子を投影したものを幾何光学
的に描いたものが図3である。上述したように、平面波
がX−Y方向から入射する。今度の場合、主反射鏡の断
面は円であるが、円周の大きくない範囲は放物線に近似
し、その焦点は円周とその中心のちょうど真ん中となる
ことは幾何光学上よく知られており、反射望遠鏡等にも
広く応用されている。X−Y方向から入射波はトーラス
断面の円周の一部の範囲P−Qで反射される。従って、
主反射鏡で反射された電波は球面波となり、円周と中心
との真ん中である焦点Fに集まるように進む。いったん
Fに集まった電波は再度広がり、副反射鏡の表面P’−
Q’で再度反射される。副反射鏡は回転楕円体の一部で
あるので、縦断面の時と同様、一方の焦点を通り副反射
鏡で反射された電波は他方の焦点F’に集まる。ここを
一次放射器の位相中心位置とすれば、主反射鏡および副
反射鏡で反射された電波は、すべて一次放射器の位置に
集まる。
Next, FIG. 3 is a geometrical-optical drawing of a cross-section orthogonal to the central axis of the torus and a projection of the propagation of radio waves on the cross-section. As described above, the plane wave enters from the XY directions. In this case, the cross section of the main reflecting mirror is a circle, but it is well known from geometrical optics that the area where the circumference is not large approximates a parabola, and its focus is in the center of the circumference and its center. Widely applied to reflection telescopes. The incident wave from the XY direction is reflected in a partial range PQ of the circumference of the torus cross section. Therefore,
The radio wave reflected by the main reflecting mirror becomes a spherical wave, and proceeds so as to be focused on a focal point F in the center between the circumference and the center. The radio waves once gathered at F spread again and the surface P'- of the subreflector
It is reflected again at Q '. Since the sub-reflecting mirror is a part of the spheroid, the radio waves passing through one focus and reflected by the sub-reflecting mirror are focused on the other focus F ′ as in the case of the longitudinal section. If this is set as the phase center position of the primary radiator, all the radio waves reflected by the main reflecting mirror and the sub-reflecting mirror gather at the position of the primary radiator.

【0010】以上は、このアンテナが衛星からの電波を
受信する場合の電波の進み方について述べたが、送信時
は電波の進行方向が逆になるだけで、完全な可逆性が成
立する。このような構造で、副反射鏡のみをトーラス中
心軸回りに回転させると、アンテナビームはすべての方
位角方向に向けることが可能となる。
The above has described how the radio waves travel when this antenna receives radio waves from a satellite. However, at the time of transmission, only the traveling directions of the radio waves are reversed, and perfect reversibility is established. With such a structure, when only the sub-reflecting mirror is rotated around the central axis of the torus, the antenna beam can be directed in all azimuth directions.

【0011】上に述べた説明では、横断面の時に円の大
きくない一部が放物線に近似しているとして考えたが、
どの程度の大きさの範囲でこの近似が使えるかを見積も
っておく必要がある。そのため、主反射鏡状の任意の点
Pで反射し焦点Fに到達する場合と基準点Rで反射し焦
点Fに到達する場合の経路差(単位:mm)を計算し
た。計算に用いたパラメータを図4に示し、計算結果の
表を表1に示す。
In the above explanation, it was considered that a part of the circle which is not large at the time of the cross section is approximated to a parabola.
It is necessary to estimate in what size range this approximation can be used. Therefore, the path difference (unit: mm) when the light is reflected at an arbitrary point P on the main reflecting mirror and reaches the focus F and when it is reflected at the reference point R and reaches the focus F is calculated. The parameters used for the calculation are shown in FIG. 4, and the table of the calculation results is shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】図4で、平面Sはアンテナと衛星を結ぶ仮
想線に直交する仮想平面で、この平面上では電波の位相
は全て揃っている。電波は、仰角45゜方向から入射し
てくるものとする。点Qは、焦点Fを通りトーラス中心
軸に直交する線とトーラス面との交点で、ここを反射基
準点とする。点Pは、トーラス面上の任意の反射点で、
その位置を点Oから見た極座標で表示する。すなわち、
点Pの垂直方向の角度をθ、水平方向の角度をφとす
る。表の計算結果は、トーラス表面の基準点Rを通りト
ーラス中心軸に直交する円の半径ORを100mmとし
たときの経路X−P−Fと経路Z−R−Fとの差をmm
単位で表したもので、θおよびφについてそれぞれ2゜
おきに計算した結果である。経路差は、波長の10分の
1程度ならば実用上許容範囲といえる。
In FIG. 4, a plane S is a virtual plane orthogonal to a virtual line connecting the antenna and the satellite, and all phases of radio waves are aligned on this plane. Radio waves are assumed to be incident from the elevation angle of 45 °. A point Q is an intersection of a line passing through the focal point F and orthogonal to the central axis of the torus and the torus surface, and this point is a reflection reference point. Point P is an arbitrary reflection point on the torus surface,
The position is displayed in polar coordinates viewed from the point O. That is,
The angle in the vertical direction of the point P is θ, and the angle in the horizontal direction is φ. The calculation result in the table shows that the difference between the path X-PF and the path Z-RF is mm when the radius OR of the circle passing through the reference point R on the surface of the torus and orthogonal to the central axis of the torus is 100 mm.
It is expressed in units, and is the result of calculating θ and φ every 2 °. If the path difference is about 1/10 of the wavelength, it can be said to be a practically acceptable range.

【0014】この表から、例えば、トーラスの中心軸に
対する半径を100mmとし、電波の周波数を30GH
z(波長10mm)としたときには、θおよびφがそれ
ぞれ−30゜〜30゜、−12゜〜12゜の範囲では十
分実用になることがわかる。周波数がもっと高いときに
は、経路差が波長に比べて大きくなるので、副反射鏡の
鏡面を回転楕円体から少し修正することにより実用上差
し支えない経路差に収めることができる。このような鏡
面修正技術は様々な反射鏡式アンテナですでに実用され
ている。また、必ずしも、、主反射鏡1の反射面たる内
曲面の形状を回転放物面とする必要はなく、円弧を回転
させたトーラス表面の部分形状に厳密に一致させた形状
としても、経路差の小さい範囲で十分実用に供し得る。
From this table, for example, assuming that the radius to the central axis of the torus is 100 mm and the frequency of the radio wave is 30 GH.
It can be seen that when z (wavelength 10 mm), θ and φ are in the range of −30 ° to 30 ° and −12 ° to 12 °, respectively, it is sufficiently practical. When the frequency is higher, the path difference becomes larger than the wavelength. Therefore, by slightly modifying the mirror surface of the sub-reflecting mirror from the spheroid, the path difference that is practically acceptable can be accommodated. Such a mirror surface correction technique has already been put to practical use in various reflector antennas. In addition, the shape of the inner curved surface that is the reflecting surface of the main reflecting mirror 1 does not necessarily have to be a paraboloid of revolution, and even if the shape is made to exactly match the partial shape of the torus surface obtained by rotating the arc, the path difference It can be practically used in a small range.

【0015】次に、図5に示す具体的な本発明の実施例
について説明する。図中1はトーラス状の主反射鏡であ
る。トーラスの上下方向の幅は、一次放射器3から放射
され副反射鏡2で反射され主反射鏡1へ向かう送信電波
が外側に漏れる量が十分少なくなるように幅を設定す
る。この幅が大きければ、アンテナの利得は大きくなる
が仰角方向のビーム幅がせばまり、小さければ、利得は
小さくなるが仰角方向のビーム幅は大きくなる。車載の
移動地球局の場合には、主要道路の勾配はほぼ5°以内
なので、仰角方向のビーム幅は10°程度に設定するの
が適切と考えられる。
Next, a specific embodiment of the present invention shown in FIG. 5 will be described. In the figure, 1 is a torus-shaped main reflecting mirror. The width of the torus in the vertical direction is set so that the amount of transmitted radio waves emitted from the primary radiator 3 and reflected by the sub-reflecting mirror 2 toward the main reflecting mirror 1 leaks to the outside sufficiently. If this width is large, the gain of the antenna is large but the beam width in the elevation direction is narrowed. If it is small, the gain is small but the beam width in the elevation direction is large. In the case of a vehicle-mounted mobile earth station, the inclination of the main road is within 5 °, so it is considered appropriate to set the beam width in the elevation direction to about 10 °.

【0016】図中2は回転楕円体の一部を切り取った形
状を持つ副反射鏡である。一次放射器3からの送信電波
を主反射鏡1の上下の幅の中に入るように反射させるた
めに適当な傾斜をもって設置される。一次放射器3の指
向性は中心軸に対して回転対称であることが必要なので
真上方向から見て円形になるように楕円体を切り取るの
が無駄の無い形となる。
Reference numeral 2 in the drawing denotes a sub-reflecting mirror having a shape obtained by cutting a part of a spheroid. The primary radiator 3 is installed with an appropriate inclination so as to reflect the transmitted radio waves so as to enter the upper and lower widths of the main reflecting mirror 1. Since the directivity of the primary radiator 3 needs to be rotationally symmetric with respect to the central axis, cutting the ellipsoid into a circular shape when viewed from directly above is a wasteless shape.

【0017】副反射鏡2の縁は支柱で支えられ、アンテ
ナ基台6上に取り付けられた回転リング4に固定され
る。この支柱は、図では棒状だが、電波の通る部分だけ
くり抜いた円筒状の物でもよい。円筒の場合には、回転
リングと一体に部品を製作することができる。回転リン
グ4は駆動モータ5によりトーラス中心軸回りに回動す
るようになっている。従って、この回転機構により、副
反射鏡2もトーラス中心軸回りに回動する。なお、本図
に示す駆動機構は、駆動モータ5の回転力を回転リング
4に直接伝達して回転リング4を従動回転させるものと
したが、駆動機構はこれに限定されるものではない。例
えば、駆動モータ5の回転軸をトーラス中心軸と平行に
設置し、プーリーとベルト等の動力伝達手段を介して回
転リング4を間接的に従動回転させるようにしても良
い。
The edge of the sub-reflecting mirror 2 is supported by a column and is fixed to a rotating ring 4 mounted on an antenna base 6. Although the pillar is rod-shaped in the figure, it may be a cylindrical one in which only the portion through which radio waves pass is hollowed out. In the case of a cylinder, the part can be manufactured integrally with the rotating ring. The rotary ring 4 is rotated by a drive motor 5 about the central axis of the torus. Therefore, the sub-reflecting mirror 2 also rotates around the central axis of the torus by this rotating mechanism. Although the drive mechanism shown in this drawing is configured to directly transmit the rotational force of the drive motor 5 to the rotary ring 4 to rotate the rotary ring 4 as a follower, the drive mechanism is not limited to this. For example, the rotary shaft of the drive motor 5 may be installed parallel to the central axis of the torus, and the rotary ring 4 may be indirectly driven by the power transmission means such as a pulley and a belt.

【0018】図中3は一次放射器で、副反射鏡2がどの
方向を向いてもアンテナの利得とビーム形状が同じにな
るために、その指向性は中心軸に対して対称となるよう
なペンシル型の指向特性を持つ必要がある。具体的に
は、ホーンアンテナ、パッチアンテナ等、ペンシル型の
指向特性を持つアンテナ素子ならば何でもよい。ホーン
アンテナの場合には帯域幅が大きくとれる利点がある
が、長細い形状のためにアンテナ全体の高さが大きくな
る。パッチアンテナの場合には非常に薄いので、アンテ
ナ全体の高さを小さくすることができるが、帯域幅は狭
くなるので送受の周波数差が大きい場合には送受兼用が
困難な場合も生ずる。
Reference numeral 3 in the drawing is a primary radiator, and since the antenna gain and beam shape are the same no matter which direction the sub-reflecting mirror 2 faces, its directivity is symmetrical with respect to the central axis. It must have a pencil-type directional pattern. Specifically, any antenna element having a pencil type directional characteristic such as a horn antenna or a patch antenna may be used. In the case of a horn antenna, there is an advantage that a wide bandwidth can be obtained, but the height of the entire antenna becomes large due to the long and thin shape. In the case of a patch antenna, the height of the whole antenna can be reduced because it is very thin, but since the bandwidth becomes narrow, it may be difficult to perform both transmission and reception when the frequency difference between transmission and reception is large.

【0019】図中6は基台で、全体を支えると共に、こ
れを移動体の表面、例えば自動車の屋根に固定する。図
ではわかりやすいように主反射鏡1よりも大きくなって
いるが、実際には主反射鏡を支えるだけの大きさがあれ
ばよい。
Reference numeral 6 in the drawing denotes a base, which supports the whole and is fixed to the surface of the moving body, for example, the roof of the automobile. In the figure, the size is larger than the main reflecting mirror 1 for the sake of easy understanding, but in actuality, it is sufficient if the size is large enough to support the main reflecting mirror.

【0020】ここには図示していないが、移動地球局用
アンテナ装置として動作するためには、移動体の内部に
追尾制御手段となる追尾装置が必要である。追尾装置
は、アンテナからの受信信号、又は、移動体の進行方向
を検出するセンサーからの信号、もしくはその両方の信
号を使ってアンテナのビームの方位が常に衛星の方位方
向に一致するよう駆動モータ5を制御するための装置で
ある。
Although not shown here, in order to operate as a mobile earth station antenna device, a tracking device serving as tracking control means is required inside the moving body. The tracking device uses a drive signal so that the azimuth of the beam of the antenna always matches the azimuth direction of the satellite by using the received signal from the antenna, the signal from the sensor that detects the traveling direction of the moving body, or both signals. 5 is a device for controlling 5.

【0021】このほか、移動地球局として通信をするた
めには、送受信装置を移動体の内部に持つことが必要で
ある。また、本装置は、送受信両用の通信アンテナ装置
として使えるほか、衛星放送の受信装置のような受信専
用のアンテナ装置としても利用できる。
In addition, in order to perform communication as a mobile earth station, it is necessary to have a transmitter / receiver inside the mobile unit. Further, this device can be used not only as a communication antenna device for both transmission and reception but also as a reception-only antenna device such as a satellite broadcasting receiver.

【0022】[0022]

【発明の効果】以上説明したように、本発明に係る移動
地球局用アンテナ装置によれば、回動できる副反射鏡と
トーラス形状の主反射鏡を設ける構造としたので、衛星
方位追尾が可能な追尾機構をアンテナ自身が持つことが
でき、さらにロータリージョイントも不要となる。従っ
て、移動地球局用アンテナ装置の小型化、軽量化、低価
格化、高信頼化を期せるものである。
As described above, according to the antenna apparatus for a mobile earth station of the present invention, since the rotatable sub-reflecting mirror and the torus-shaped main reflecting mirror are provided, the satellite azimuth tracking is possible. The antenna itself can have a unique tracking mechanism, and no rotary joint is required. Therefore, the antenna device for a mobile earth station can be made smaller, lighter, less expensive, and more reliable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る移動地球局用アンテナ装置の基本
原理を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing the basic principle of an antenna device for a mobile earth station according to the present invention.

【図2】本発明に係る移動地球局用アンテナ装置の基本
原理を示す中心軸を含む断面上での電波の通路を示す図
である。
FIG. 2 is a diagram showing paths of radio waves on a cross section including a central axis, which shows a basic principle of an antenna device for a mobile earth station according to the present invention.

【図3】本発明に係る移動地球局用アンテナ装置の基本
原理を示す中心軸に垂直な断面と、その断面に電波の通
路を投影した図である。
FIG. 3 is a cross-sectional view showing a basic principle of the antenna device for a mobile earth station according to the present invention, the cross-section being perpendicular to the central axis, and a radio wave path projected on the cross-section.

【図4】本発明に係る移動地球局用アンテナ装置の主反
射鏡上の任意の点で反射した電波の経路と基準の経路と
の経路差の計算時のパラメータを説明するための図であ
る。
FIG. 4 is a diagram for explaining parameters when calculating a path difference between a path of a radio wave reflected at an arbitrary point on the main reflector of the antenna apparatus for a mobile earth station according to the present invention and a reference path. .

【図5】本発明の実施例を示す斜視図である。FIG. 5 is a perspective view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 主反射鏡 2 副反射鏡 3 一次放射器 4 回転リング 5 駆動モータ 6 基台 1 main reflecting mirror 2 sub-reflecting mirror 3 primary radiator 4 rotating ring 5 drive motor 6 base

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アンテナのビーム方向を常に衛星方向に
一致させる追尾機構を備え、陸上又は水上での移動体に
搭載された状態で、静止衛星との通信を行う移動地球局
用アンテナ装置において、 アンテナ基台の表面に垂直でその中心を通る中心軸の回
りに放物線を回転させることにより得られる回転放物面
を、その中心軸に垂直な2つの平面で輪切りに切り取っ
たトーラス表面の部分形状に近似した内曲面を有する主
反射鏡と、 回転楕円体の一部を切り取った形状の表面を持ち、その
回転軸がトーラス中心軸から一定の傾きを持って設置さ
れ、それがトーラス中心軸回りに回動する構造を有する
副反射鏡と、 上記副反射鏡の回動量を制御することにより、アンテナ
のビーム方向の方位角と衛星方向の方位角を常に一致さ
せる追尾制御手段と、 トーラス中心軸上で上向きに副反射鏡を照射する様にア
ンテナ基台に対して固定された構造を有する一次放射器
と、 を持つことを特徴とする移動地球局用アンテナ装置。
1. An antenna device for a mobile earth station, comprising a tracking mechanism for making the beam direction of an antenna always coincide with a satellite direction, and carrying out communication with a geostationary satellite when mounted on a mobile body on land or on water, Partial shape of a torus surface obtained by cutting a paraboloid of revolution obtained by rotating a parabola around a central axis perpendicular to the surface of the antenna base and passing through its center into two planes perpendicular to the central axis. It has a main reflecting mirror with an inner curved surface that approximates to, and a surface of a spheroid with a part cut off, and its rotation axis is installed with a certain inclination from the center axis of the torus. A sub-reflecting mirror having a structure for rotating the sub-reflecting mirror, and tracking control means for always matching the azimuth of the beam direction of the antenna with the azimuth of the satellite by controlling the amount of rotation of the sub-reflecting mirror. An antenna device for a mobile earth station, comprising: a primary radiator having a structure fixed to an antenna base so as to irradiate a sub-reflecting mirror upward on a central axis of a torus.
JP6123033A 1994-05-12 1994-05-12 Mobile Earth Station Antenna Device Expired - Lifetime JP2545742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6123033A JP2545742B2 (en) 1994-05-12 1994-05-12 Mobile Earth Station Antenna Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6123033A JP2545742B2 (en) 1994-05-12 1994-05-12 Mobile Earth Station Antenna Device

Publications (2)

Publication Number Publication Date
JPH07307616A true JPH07307616A (en) 1995-11-21
JP2545742B2 JP2545742B2 (en) 1996-10-23

Family

ID=14850555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6123033A Expired - Lifetime JP2545742B2 (en) 1994-05-12 1994-05-12 Mobile Earth Station Antenna Device

Country Status (1)

Country Link
JP (1) JP2545742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000539A (en) * 2001-06-26 2003-01-06 이엠씨테크(주) Unadjustable Antenna for Satellite
US6972730B2 (en) 1999-10-14 2005-12-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Antenna system
JP2008199407A (en) * 2007-02-14 2008-08-28 Nec Corp Antenna device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972730B2 (en) 1999-10-14 2005-12-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Antenna system
KR20030000539A (en) * 2001-06-26 2003-01-06 이엠씨테크(주) Unadjustable Antenna for Satellite
JP2008199407A (en) * 2007-02-14 2008-08-28 Nec Corp Antenna device

Also Published As

Publication number Publication date
JP2545742B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP5450106B2 (en) In-vehicle antenna and method for transmitting and receiving signals
US8743001B2 (en) Mechanically steered reflector antenna
US4062018A (en) Scanning antenna with moveable beam waveguide feed and defocusing adjustment
US5673057A (en) Three axis beam waveguide antenna
JPH10247812A (en) Re-configuration method and communication system on orbit of reflector formed by defocus of feeder/reflector and gimbal operation of reflector
EP3035444B1 (en) Feed re-pointing technique for multiple shaped beams reflector antennas
JPH11186827A (en) Antenna system for low orbit satellite communication
US6747604B2 (en) Steerable offset antenna with fixed feed source
US3745582A (en) Dual reflector antenna capable of steering radiated beams
JP3742303B2 (en) Lens antenna device
JP2545742B2 (en) Mobile Earth Station Antenna Device
US9337535B2 (en) Low cost, high-performance, switched multi-feed steerable antenna system
EP0921590A2 (en) Antenna for communicating with low earth orbit satellite
CA2013632C (en) Antenna pointing device
JP2686288B2 (en) Antenna device
JP2602026B2 (en) Large scanning antenna for use especially at very high frequencies supported on a satellite having a fixed main reflector and feeder, and a satellite structure equipped with such an antenna
WO1998015033A1 (en) Dielectric lens assembly for a feed antenna
JP3189050B2 (en) Mobile station antenna device
JP2642889B2 (en) Mobile Earth Station Antenna Device
JP2567916Y2 (en) Dual beam antenna
JPS634361B2 (en)
JP2000082918A (en) Multi-beam antenna
JP2003110349A (en) Electromagnetic lens antenna apparatus
JP2643560B2 (en) Multi-beam antenna
JP3034262B2 (en) Aperture antenna device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term