JPH07306294A - Contact type displacement measuring mechanism for fuel assembly in reactor - Google Patents

Contact type displacement measuring mechanism for fuel assembly in reactor

Info

Publication number
JPH07306294A
JPH07306294A JP6121886A JP12188694A JPH07306294A JP H07306294 A JPH07306294 A JP H07306294A JP 6121886 A JP6121886 A JP 6121886A JP 12188694 A JP12188694 A JP 12188694A JP H07306294 A JPH07306294 A JP H07306294A
Authority
JP
Japan
Prior art keywords
fuel assembly
displacement
gripper
measuring
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6121886A
Other languages
Japanese (ja)
Other versions
JP3002384B2 (en
Inventor
Yoshio Yokota
淑生 横田
Kuniaki Ara
邦章 荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP6121886A priority Critical patent/JP3002384B2/en
Publication of JPH07306294A publication Critical patent/JPH07306294A/en
Application granted granted Critical
Publication of JP3002384B2 publication Critical patent/JP3002384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide a mechanism for measuring the displacement of a fuel assembly conveniently, accurately, and surely while setting the fuel assembly, as it is, in a reactor even when an opaque coolant (e.g. liquid sodium) is employed. CONSTITUTION:The displacement measuring mechanism comprises the combination of a displacement measuring jig 20 suspended from the gripper 10 of a fuel handling machine and inserted into the handling head 14 of a fuel assembly, and a displacement measuring ring part 30 disposed at a lower part in the handling head 14. The jig 20 has a continuous structure of a gripping part 22 being gripped by the claw part of the gripper 10 and released therefrom, and a columnar or tubular measuring part 24 disposed under the gripping part 22 and inserted into the handling head 14 of fuel assembly. The ring part 30 is provided, on the inner peripheral surface thereof, with a concentric stepped structure having a diameter increasing gradually upward. Displacement is read out from the inserting amount of gripper when the jig 20 abuts, at the lower end thereof, against the step part of the ring part 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉用燃料集合体の
変位を、燃料集合体を原子炉から取り出すことなく、原
子炉容器内に設置されたままの状態で計測できる接触式
変位測定機構に関するものである。この技術は、特にナ
トリウム冷却型高速炉における燃料集合体の位置検出な
どに有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact type displacement measurement capable of measuring the displacement of a fuel assembly for a nuclear reactor without removing the fuel assembly from the reactor. It is related to the mechanism. This technique is particularly useful for detecting the position of a fuel assembly in a sodium cooled fast reactor.

【0002】[0002]

【従来の技術】燃料集合体は、原子炉運転中に様々な要
因により変位・変形する。このような燃料集合体の挙動
を正確に把握することは、原子炉を安全に運転する上で
極めて重要である。しかし、液体ナトリウムを冷却材と
する高速炉内では、燃料集合体は不透明なナトリウム中
に沈潜しており、肉眼で観察することはできない。その
ため燃料集合体の変位計測は、冷却水を使用する原子炉
で行われているような通常の手法では困難である。
2. Description of the Related Art A fuel assembly is displaced / deformed due to various factors during a reactor operation. Accurately grasping the behavior of such a fuel assembly is extremely important for safe operation of a nuclear reactor. However, in a fast reactor using liquid sodium as a coolant, the fuel assembly is submerged in opaque sodium and cannot be observed with the naked eye. Therefore, it is difficult to measure the displacement of the fuel assembly by a normal method such as that used in a nuclear reactor that uses cooling water.

【0003】ところで燃料交換は、図4のように行う。
同図のAに示すように、燃料取扱機のグリッパ10を所
定の位置に移動して、爪12を閉じた状態でゆっくりと
降下させて燃料集合体頂部のハンドリングヘッド14内
に挿入する。そして同図のBに示すように、爪12を開
いて燃料集合体を掴み、引き上げる。この操作を円滑に
行うためには、燃料集合体の位置を予め正確に把握して
おかねばならない。例えば、燃料取扱機のグリッパ10
が、取り扱う燃料集合体の正規の位置(基準アドレス位
置)に位置決めされていても、燃料集合体の変形・変位
のために該グリッパ10とハンドリングヘッド14との
芯ずれが生じていると(同図のAで仮想線aで示す位
置)、燃料取扱機のグリッパ10を降下しても、ハンド
リングヘッド14内に挿入できない事態が生じるからで
ある。
By the way, refueling is performed as shown in FIG.
As shown in A of the same figure, the gripper 10 of the fuel handling machine is moved to a predetermined position, and the claw 12 is closed and slowly lowered to be inserted into the handling head 14 at the top of the fuel assembly. Then, as shown in B of the figure, the claws 12 are opened, the fuel assembly is grasped and pulled up. In order to perform this operation smoothly, the position of the fuel assembly must be accurately grasped in advance. For example, the gripper 10 of a fuel handling machine
However, even if the fuel assembly is positioned at the regular position (reference address position) of the handled fuel assembly, the gripper 10 and the handling head 14 are misaligned due to the deformation and displacement of the fuel assembly (the same). This is because even if the gripper 10 of the fuel handling machine is lowered to the position indicated by the phantom line a in A of the figure), the situation in which it cannot be inserted into the handling head 14 occurs.

【0004】そこで従来、液体ナトリウムを冷却材とす
る高速炉において、燃料集合体の位置ずれを測定する方
法として、図4のAで仮想線bで示すように、故意に燃
料取扱機のグリッパ位置を被検査燃料集合体の基準アド
レス位置からずらせて偏芯させることにより、掴み不良
(掴み位置異常)状態を発生させ、掴める範囲を見いだ
した後、その燃料集合体のハンドリングヘッド中心位置
を計算により求める方法がある。
Therefore, conventionally, in a fast reactor using liquid sodium as a coolant, as a method for measuring the displacement of the fuel assembly, as shown by a virtual line b in FIG. 4A, the gripper position of the fuel handling machine is intentionally changed. By eccentricity by displacing from the reference address position of the fuel assembly to be inspected, a gripping failure (gripping position abnormality) condition is generated, the gripping area is found, and then the center position of the handling head of the fuel assembly is calculated. There is a way to ask.

【0005】[0005]

【発明が解決しようとする課題】しかし、この方法で
は、ハンドリングヘットの上部にテーパが設けられてい
るため、降下してくるグリッパとハンドリングヘッドの
テーパ部の作用によって、芯ずれ限界に近いずれがあっ
ても、グリッパの下降は可能であり、掴める範囲及び燃
料集合体の中心位置を正確に評価することはできなかっ
た。
However, in this method, since the upper part of the handling head is provided with a taper, the action of the descending gripper and the taper part of the handling head may cause the misalignment limit to approach. Even if there was, the gripper could be lowered, and the gripping range and the center position of the fuel assembly could not be accurately evaluated.

【0006】そこで従来、測定対象の燃料集合体を原子
炉外に取り出して計測することが行われてきた。しか
し、燃料集合体を原子炉容器から取り出して、その変位
・変形を計測する方法では、多くの時間を要し、作業も
極めて煩瑣で且つ困難となる欠点があった。また計測対
象の燃料集合体の変位・変形は、原子炉運転中に生じる
ものであり、その挙動を正確に把握する上では、炉内で
計測することが最も好ましく、原子炉から取り出した状
態では、本来の測定の目的を十分に達成し得ないという
問題もあった。
Therefore, conventionally, the fuel assembly to be measured has been taken out of the nuclear reactor and measured. However, the method of taking out the fuel assembly from the reactor vessel and measuring the displacement / deformation of the fuel assembly requires a lot of time and has a drawback that the work is extremely troublesome and difficult. Further, the displacement / deformation of the fuel assembly to be measured occurs during the operation of the reactor, and in order to accurately grasp its behavior, it is most preferable to measure inside the reactor, and when it is taken out from the reactor. There was also a problem that the original purpose of measurement could not be achieved sufficiently.

【0007】本発明の目的は、上記のような従来技術の
欠点を解消し、液体ナトリウムのように不透明な冷却材
を使用する形式の原子炉であっても、簡便に、精度よ
く、且つ確実に、原子炉内に設置したままの状態で燃料
集合体の変位を測定できる機構を提供することである。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a simple, accurate, and reliable nuclear reactor of the type that uses an opaque coolant such as liquid sodium. Another object of the present invention is to provide a mechanism capable of measuring the displacement of a fuel assembly while being installed in a nuclear reactor.

【0008】[0008]

【課題を解決するための手段】本発明は、原子炉内燃料
集合体の接触式変位測定機構であって、基本的には図1
に示すように、燃料取扱機のグリッパ10で吊り下げら
れて燃料集合体のハンドリングヘッド14内に挿通可能
な変位量測定治具20と、該ハンドリングヘッド14の
内部下方に設けた変位量測定リング部30の組み合わせ
からなる。前記変位量測定治具20は、グリッパ10の
複数の爪部12によって掴み離し可能な把持部22と、
その下方で燃料集合体のハンリングヘッド14内に挿通
可能な計測用の柱状部もしくは筒状部24とが連続した
構造をなしている。また前記変位量測定リング部30
は、その内周面に、上方ほど順次大径となる同心状の階
段構造を有する。そして、前記変位量測定治具20の下
端が変位測定リング部30の段部に当接した時のグリッ
パ挿入量から芯ずれ量を読み取るように構成されてい
る。
SUMMARY OF THE INVENTION The present invention is a contact type displacement measuring mechanism for a fuel assembly in a nuclear reactor.
As shown in FIG. 3, a displacement amount measuring jig 20 that is hung by the gripper 10 of the fuel handling machine and can be inserted into the handling head 14 of the fuel assembly, and a displacement amount measuring ring provided below the inside of the handling head 14. It consists of a combination of parts 30. The displacement amount measuring jig 20 includes a grip portion 22 that can be gripped and separated by the plurality of claw portions 12 of the gripper 10,
A columnar portion or a cylindrical portion 24 for measurement which can be inserted into the hulling head 14 of the fuel assembly is formed below the continuous structure. Further, the displacement amount measuring ring portion 30
Has a concentric staircase structure on the inner peripheral surface of which the diameter gradually increases toward the top. Then, the misalignment amount is read from the gripper insertion amount when the lower end of the displacement amount measuring jig 20 abuts on the step portion of the displacement measuring ring portion 30.

【0009】[0009]

【作用】燃料取扱機のグリッパを、変位量を測定する燃
料集合体の正規の位置(基準アドレス位置)に位置決め
した場合に、燃料集合体の変形により両者間に芯ずれが
生じていると、燃料取扱機のグリッパを下降させた時に
変位量測定用治具と階段状の変位量測定リングとの間に
干渉(接触)が発生する。燃料取扱機は、それ自身、位
置検出器と荷重計を備えており、測定中に変位測定用治
具と階段状の変位量測定リングとの間に干渉が生じた場
合に、荷重の変動及び燃料取扱機の下降ができない現象
が確認でき、この時の芯ずれ量をグリッパの挿入量(ス
トローク)から読み取る。
When the gripper of the fuel handling machine is positioned at the regular position (reference address position) of the fuel assembly for measuring the displacement amount, when the fuel assembly is deformed, a misalignment occurs between the two. When the gripper of the fuel handling machine is lowered, interference (contact) occurs between the displacement amount measuring jig and the stepwise displacement amount measuring ring. The fuel handling machine itself is equipped with a position detector and a load cell, and when interference occurs between the displacement measuring jig and the step-like displacement amount measuring ring during measurement, fluctuations in load and The phenomenon that the fuel handling machine cannot be lowered can be confirmed, and the misalignment amount at this time is read from the gripper insertion amount (stroke).

【0010】[0010]

【実施例】図2は本発明に係る原子炉内燃料集合体の接
触式変位測定機構の一実施例を示す詳細構造図であり、
図3はその計測状態の説明図である。この接触式変位測
定機構は、燃料取扱機先端のグリッパ10で吊り下げら
れて燃料集合体のハンドリングヘッド14内に挿通可能
な変位量測定治具20と、該ハンドリングヘッド14の
内部下方に設けた変位量測定リング部30の組み合わせ
からなる。
FIG. 2 is a detailed structural diagram showing an embodiment of a contact type displacement measuring mechanism for a fuel assembly in a nuclear reactor according to the present invention,
FIG. 3 is an explanatory diagram of the measurement state. This contact type displacement measuring mechanism is provided below the inside of the handling head 14 and a displacement amount measuring jig 20 which is suspended by a gripper 10 at the tip of the fuel handling machine and can be inserted into the handling head 14 of the fuel assembly. The displacement amount measuring ring unit 30 is combined.

【0011】前記変位量測定治具20は、グリッパ10
の爪部12の開閉によって掴み離し可能な構造の把持部
22と、その下方で燃料集合体のハンリングヘッド14
内に挿通可能な計測用の円形筒状部24とが連続した構
造をなしている。図2の上方において、左半分は爪部1
2を開いた掴み状態、右半分は爪部12を閉じた離し状
態を表している。ここで、把持部22は燃料集合体頂部
のハンドリングヘッド14に類似した構造であり、内周
部にグリッパ10の爪部12の端部が嵌まる溝26を有
し、その溝26に治具芯ずれ防止機構28が設けられて
いる。この治具芯ずれ防止機構28は、グリッパ10の
中心軸と筒状部24の芯が一致するように維持するもの
で、グリッパ10の爪部12が完全に開(掴み)状態と
なった時に爪部12の端部と変位量測定治具20との間
に隙間が生じないように両者を線接触させ、芯ずれを防
止する機能を果たす。その形状は、ここでは断面が円弧
状のリングであるが、当然のこととして、爪部12の端
面の形状に対応したものとする必要がある。筒状部24
は、前記のように外形が円形で、その直径がφ0 であ
り、その中心軸が把持部22の中心軸と一致するように
なっている。
The displacement amount measuring jig 20 comprises a gripper 10
The grip portion 22 having a structure that can be gripped and separated by opening and closing the claw portion 12 of the fuel assembly, and the lower portion of the gripping portion 14 of the fuel assembly below the grip portion 22.
A circular cylindrical portion 24 for measurement that can be inserted into the inside has a continuous structure. In the upper part of FIG. 2, the left half is the claw portion 1.
2 shows the gripped state in which the claw portion 12 is opened, and the right half shows the released state in which the claw portion 12 is closed. Here, the grip portion 22 has a structure similar to that of the handling head 14 at the top of the fuel assembly, and has a groove 26 in which the end portion of the claw portion 12 of the gripper 10 fits, and the jig is provided in the groove 26. A misalignment prevention mechanism 28 is provided. The jig misalignment prevention mechanism 28 keeps the center axis of the gripper 10 and the core of the tubular portion 24 aligned, and when the claw portion 12 of the gripper 10 is completely opened (grasped). The ends of the claws 12 and the displacement amount measuring jig 20 are brought into line contact with each other so as to prevent a gap from occurring, and the function of preventing misalignment is achieved. The shape here is a ring having an arcuate cross section, but it is, of course, necessary to correspond to the shape of the end surface of the claw portion 12. Tubular part 24
As described above, the outer shape is circular, its diameter is φ 0 , and its central axis coincides with the central axis of the grip portion 22.

【0012】また前記変位量測定リング部30は、その
内周面に、上方ほど順次大径となる同心状の階段構造を
有する。その段数は、ここではn段であり、高さhのピ
ッチでφ1 〜φn まで変化している。この変位量測定リ
ング30は、燃料集合体の本体部分と頂部のハンドリン
グヘッド14の間に位置する。この変位量測定リング部
30は、ハンドリングヘッド14と一体で加工するのが
好ましい。一体で加工することで、落下などによる流動
の障害が生じるのを確実に防止できる。
Further, the displacement amount measuring ring portion 30 has a concentric staircase structure on its inner peripheral surface, the diameter of which gradually increases toward the top. The number of stages is n here, and changes from φ 1 to φ n at a pitch of height h. The displacement measuring ring 30 is located between the main body of the fuel assembly and the top handling head 14. This displacement amount measuring ring portion 30 is preferably machined integrally with the handling head 14. By integrally processing, it is possible to surely prevent the flow obstacle due to dropping or the like.

【0013】そして本発明の接触式変位測定機構では、
前記変位量測定治具20の円形筒状部24の下端が変位
測定リング部30の段部に当接した時のグリッパ挿入量
(ストローク)から芯ずれ量を読み取る。グリッパ10
は、基本的には正規の位置で(基準アドレス位置で偏芯
させずに)下降させる。燃料取扱機のグリッパ10を変
位量を測定する燃料集合体の正規の位置に位置決めした
場合に、燃料集合体の変形により両者間に芯ずれが生じ
ていると、燃料取扱機のグリッパ10を下降させた時に
変位量測定用治具20の筒状部24の下端と階段状の変
位量測定リング部30との間に干渉(接触)が発生す
る。燃料取扱機は、それ自身、位置検出器と荷重計を有
しているので、測定中に変位量測定治具20と変位量測
定リング部30との間に干渉が生じた場合に、荷重の変
動及び燃料取扱機の下降ができない現象が確認できる。
この時の燃料取扱機のグリッパの位置を検出し、芯ずれ
量をグリッパの挿入量(ストローク)から読み取る。そ
して以下の式から芯ずれ量の範囲を求めることができ
る。
In the contact type displacement measuring mechanism of the present invention,
The misalignment amount is read from the gripper insertion amount (stroke) when the lower end of the circular tubular portion 24 of the displacement measuring jig 20 abuts on the step portion of the displacement measuring ring portion 30. Gripper 10
Is basically lowered at a normal position (without eccentricity at the reference address position). When the gripper 10 of the fuel handling machine is positioned at the proper position of the fuel assembly for measuring the displacement amount, if the misalignment occurs between the two due to the deformation of the fuel assembly, the gripper 10 of the fuel handling machine is lowered. When this is done, interference (contact) occurs between the lower end of the tubular portion 24 of the displacement amount measuring jig 20 and the stepwise displacement amount measuring ring portion 30. Since the fuel handling machine itself has a position detector and a load meter, if interference occurs between the displacement amount measuring jig 20 and the displacement amount measuring ring portion 30 during measurement, the load It is possible to confirm the fluctuation and the phenomenon that the fuel handling machine cannot be lowered.
The position of the gripper of the fuel handling machine at this time is detected, and the misalignment amount is read from the gripper insertion amount (stroke). Then, the range of the misalignment amount can be obtained from the following formula.

【0014】図2に示すように、変位量測定リング部3
0の階段の段高さピッチをhとした場合、変位量測定治
具20の筒状部24の下端が変位量測定リング部30の
1段目のリング(内径:φ1 )と干渉する時の位置をS
1 (計算と実測による確認)とし、前述の読み取った位
置をS2 とすると、 (a) S1 =S2 の時 1/2(φ1 −φ0 )<芯ずれ量<1/2(φ2
φ0 ) (b) S1 ≠S2 の時 |S1 −S2 |/h=n、即ち位置の差は階段のピッチ
hのn(整数)倍となるので、芯ずれ量の範囲は、 1/2(φn+1 −φ0 )<芯ずれ量<1/2(φn+2
φ0 )… で表される。結局、S1 =S2 の時、n=0となり、全
て式から芯ずれの範囲を求めることができる。
As shown in FIG. 2, the displacement amount measuring ring portion 3
When the step height pitch of the stairs of 0 is h and the lower end of the tubular portion 24 of the displacement amount measuring jig 20 interferes with the first stage ring (inner diameter: φ 1 ) of the displacement amount measuring ring portion 30. The position of S
1 (confirmation by calculation and actual measurement), and the above-mentioned read position is S 2 , (a) when S 1 = S 2 1/2 (φ 1 −φ 0 ) <amount of misalignment <1/2 ( φ 2
φ 0 ) (b) When S 1 ≠ S 2 | S 1 −S 2 | / h = n, that is, the position difference is n (integer) times the stair pitch h, so the range of misalignment is , 1/2 (φ n + 1 −φ 0 ) <center misalignment amount <1/2 (φ n + 2
φ 0 ) ... After all, when S 1 = S 2 , n = 0, and the range of misalignment can be calculated from all the equations.

【0015】例えば、実際の設計では、変位量測定リン
グ部30の階段構造の高さhは5mm程度とする。しか
し、燃料取扱機の位置検出精度が±4mm以内であれば、
更に測定精度を上げる観点から段数を増やすため、5mm
以下とすることも可能である。また階段構造の直径の変
化は、φ2 −φ1 =2mm程度とし、1段当たりの芯ずれ
量を1mmの精度で確認できるようにする。燃料集合体の
取り扱いに支障をきたさないことを前提とすることか
ら、変位測定用リング部30の全高が定まり、上記のよ
うにして階段高さが定まることにより段数が決定され
る。
For example, in an actual design, the height h of the staircase structure of the displacement measuring ring portion 30 is set to about 5 mm. However, if the position detection accuracy of the fuel handling machine is within ± 4 mm,
5mm to increase the number of steps from the viewpoint of improving the measurement accuracy
The following is also possible. The change in the diameter of the staircase structure, and φ 21 = 2mm about, so that the misalignment amount per stage can be confirmed by 1mm accuracy. Since it is premised that the handling of the fuel assembly is not hindered, the total height of the displacement measuring ring portion 30 is determined, and the stair height is determined as described above, whereby the number of stages is determined.

【0016】上記のように、グリッパ10は基本的には
正規の位置で(偏芯させずに)下降させるが、偏芯の方
向をある程度確認するため、正規の位置から故意にずら
して繰り返しグリッパ10を降下することによって、真
の燃料集合体の中心位置を求め、芯ずれ方位を求めるこ
とも可能である。なお、測定値の精度は、階段の段数及
び変位量測定リング部の内径(φn )に依存する。この
実施例では変位量測定リング部30において、定ピッチ
の段高さを採用した場合を説明したが、燃料取扱機の位
置検出器の精度に応じた階段の段高さを任意に適用する
ことも可能である。
As described above, the gripper 10 is basically lowered at the regular position (without eccentricity), but in order to confirm the direction of the eccentricity to some extent, the gripper 10 is intentionally shifted from the regular position and repeatedly grippered. It is also possible to obtain the center position of the true fuel assembly and obtain the misalignment azimuth by descending 10. The accuracy of the measured value depends on the number of steps of the stairs and the inner diameter (φ n ) of the displacement measuring ring portion. In this embodiment, the displacement measuring ring unit 30 has been described as having a constant pitch step height. However, it is possible to arbitrarily apply the stair step height according to the accuracy of the position detector of the fuel handling machine. Is also possible.

【0017】この変位測定機構では、階段状の変位量測
定リング部を付加した変位量測定リング部付きハンドリ
ングヘッドと燃料集合体のグリッパにて嵌合可能な変位
量測定治具とを組み合わせているため、従来の方式のよ
うに、グリッパがハンドリングヘッド内に挿入されるこ
とによる燃料集合体の芯ずれを矯正するような作用を避
けることができ、より真値に近い芯ずれ量を炉内におい
て計測することが可能となる。
In this displacement measuring mechanism, a handling head with a displacement amount measuring ring portion having a stepwise displacement amount measuring ring portion is combined with a displacement amount measuring jig that can be fitted by a gripper of a fuel assembly. Therefore, as in the conventional method, it is possible to avoid the action of correcting the misalignment of the fuel assembly due to the gripper being inserted into the handling head, and the misalignment amount closer to the true value in the furnace can be avoided. It becomes possible to measure.

【0018】[0018]

【発明の効果】本発明は上記のように構成したので、次
のような効果を有する。 液体ナトリウムのように不透明な冷却材を使用する原
子炉であっても、原子炉容器内で燃料集合体の変位及び
変形等の測定が遠隔にて実施できる。 測定が容易であり、通常の燃料交換作業時と同じ要領
・時間で実施できる。 構造が簡単であり、製作費及び保守費共に安価にでき
る。 燃料集合体ハンドリングヘッドに付加する階段状の変
位量測定リング部は、通常の燃料取扱の障害とならない
位置に取り付けが可能であり、且つリング状であるため
燃料集合体を通過する冷却材の流路を確保できる。 燃料取扱機の構造(形状)を変更することなく使用す
ることができる。 階段状の変位量測定リング部を付加したハンドリング
ヘッドと、燃料取扱機のグリッパにて嵌合可能な変位量
測定治具とを組み合わせることにより、従来方式の欠点
である計測時の燃料集合体の芯ずれを矯正するような作
用を避けることができ、より真値に近い芯ずれ量を炉内
において計測することが可能となる。
Since the present invention is configured as described above, it has the following effects. Even in a nuclear reactor that uses an opaque coolant such as liquid sodium, the displacement and deformation of the fuel assembly can be remotely measured in the reactor vessel. It is easy to measure and can be performed in the same procedure and time as during normal refueling work. The structure is simple, and the manufacturing cost and maintenance cost can be reduced. The staircase displacement measuring ring part added to the fuel assembly handling head can be installed at a position that does not interfere with normal fuel handling, and because of the ring shape, the flow of the coolant passing through the fuel assembly is The road can be secured. It can be used without changing the structure (shape) of the fuel handling machine. By combining a handling head with a stepped displacement measurement ring and a displacement measurement jig that can be fitted with a gripper of a fuel handling machine, the fuel assembly during measurement, which is a drawback of the conventional method, can be It is possible to avoid the effect of correcting the misalignment, and it is possible to measure the misalignment amount closer to the true value in the furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示す説明図。FIG. 1 is an explanatory diagram showing a basic configuration of the present invention.

【図2】本発明に係る変位測定機構の一実施例を示す詳
細構造図。
FIG. 2 is a detailed structural diagram showing an embodiment of a displacement measuring mechanism according to the present invention.

【図3】本発明に係る変位測定機構による計測状態の説
明図。
FIG. 3 is an explanatory diagram of a measurement state by the displacement measuring mechanism according to the present invention.

【図4】燃料取扱機による燃料集合体の取り扱い状態の
説明図。
FIG. 4 is an explanatory diagram showing how a fuel handling machine handles a fuel assembly.

【符号の説明】[Explanation of symbols]

10 グリッパ 12 爪部 14 ハンドリングヘッド 20 変位量測定治具 22 把持部 24 筒状部 30 変位測定リング部 10 gripper 12 claw portion 14 handling head 20 displacement amount measuring jig 22 gripping portion 24 tubular portion 30 displacement measuring ring portion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料取扱機のグリッパで吊り下げられて
燃料集合体のハンドリングヘッド内に挿通可能な変位量
測定治具と、該ハンドリングヘッドの内部下方に設けた
変位量測定リング部の組み合わせからなり、 前記変位量測定治具は、前記グリッパによって掴み離し
可能な把持部と、その下方で燃料集合体のハンリングヘ
ッド内に挿通可能な計測用の柱状部もしくは筒状部とが
連続した構造をなし、 前記変位量測定リング部は、その内周面に、上方ほど順
次大径となる同心状の階段構造をなし、 前記変位量測定治具の下端が変位測定リング部の段部に
当接した時のグリッパ挿入量から芯ずれ量を読み取るこ
とを特徴とする原子炉内燃料集合体の接触式変位測定機
構。
1. A combination of a displacement amount measuring jig, which is suspended by a gripper of a fuel handling machine and can be inserted into a handling head of a fuel assembly, and a displacement amount measuring ring portion provided below the inside of the handling head. The displacement amount measuring jig has a structure in which a gripping part that can be gripped and separated by the gripper and a measuring columnar part or a cylindrical part that can be inserted into the hulling head of the fuel assembly under the gripping part are continuous. The displacement amount measuring ring part has a concentric staircase structure in which the diameter gradually increases toward the top on the inner peripheral surface thereof, and the lower end of the displacement amount measuring jig contacts the step part of the displacement measuring ring part. A contact displacement measuring mechanism for a fuel assembly in a nuclear reactor, which is characterized by reading an amount of misalignment from a gripper insertion amount when contacted.
JP6121886A 1994-05-11 1994-05-11 Contact-type displacement measurement mechanism for fuel assemblies in reactors Expired - Fee Related JP3002384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6121886A JP3002384B2 (en) 1994-05-11 1994-05-11 Contact-type displacement measurement mechanism for fuel assemblies in reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6121886A JP3002384B2 (en) 1994-05-11 1994-05-11 Contact-type displacement measurement mechanism for fuel assemblies in reactors

Publications (2)

Publication Number Publication Date
JPH07306294A true JPH07306294A (en) 1995-11-21
JP3002384B2 JP3002384B2 (en) 2000-01-24

Family

ID=14822351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6121886A Expired - Fee Related JP3002384B2 (en) 1994-05-11 1994-05-11 Contact-type displacement measurement mechanism for fuel assemblies in reactors

Country Status (1)

Country Link
JP (1) JP3002384B2 (en)

Also Published As

Publication number Publication date
JP3002384B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
KR900008662B1 (en) Method and device for checking a fuel assembly of a nuclear reactor
JPH07306294A (en) Contact type displacement measuring mechanism for fuel assembly in reactor
JPH036494A (en) Pressurization measuring device and gage for nuclear fuel rod, etc.
KR960013027B1 (en) Gauge plate for use in customizing a replacement upper core plate in a nuclear reactor &amp; method of using the gauge plate
US4862079A (en) Magnetic method and apparatus for measuring and locating wear of control rods in nuclear reactors
JPH0115038B2 (en)
JP4043656B2 (en) Spent fuel measuring device
CN115831412B (en) Reactor charging method and reactor charging system
CN216977739U (en) Special gauge for distance between spline fork pin holes
CN216132366U (en) Special measuring tool for detecting axial size of part
CN211476955U (en) Aluminum alloy wheel hub bolt hole diameter detection device
CN216064339U (en) Magnetic pole inner diameter measuring tool of electromagnetic brake
US4832901A (en) Nuclear reactor fuel assembly mixing vane repair method
KR840000855Y1 (en) Column and taper measurement machine
JPH0326340B2 (en)
JPH085778A (en) Dimension and shape measuring device for control rod drive mechanism housing placement part and the like
JPH07333381A (en) Dimension measuring method for channel box
JPS62228198A (en) Nuclear-fuel pellet sampling inspection device
JP2975360B1 (en) Irradiated test piece spacer
JP3647545B2 (en) Measuring method of taper shaft hole of plate roll
JPS6037918B2 (en) Eccentricity measuring device for fuel assembly of fuel exchanger in nuclear reactor
JP3038173B2 (en) Fuel rod end gripper
KR20000018967A (en) Tool for removing missing bar-end stopper of a control rod in a light water reactor
JP3034900B2 (en) Furnace flow vibration test method
JPS62274297A (en) Fuel channel-box size measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees