JPH07305121A - Electrode for remelting electroslag and production of electroslag-remelted steel ingot - Google Patents

Electrode for remelting electroslag and production of electroslag-remelted steel ingot

Info

Publication number
JPH07305121A
JPH07305121A JP6116091A JP11609194A JPH07305121A JP H07305121 A JPH07305121 A JP H07305121A JP 6116091 A JP6116091 A JP 6116091A JP 11609194 A JP11609194 A JP 11609194A JP H07305121 A JPH07305121 A JP H07305121A
Authority
JP
Japan
Prior art keywords
electrode
electroslag
steel ingot
esr
remelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6116091A
Other languages
Japanese (ja)
Other versions
JP3302506B2 (en
Inventor
Katsutoshi Orita
勝利 折田
Iwao Asano
岩生 浅野
Kana Ueda
奏 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP11609194A priority Critical patent/JP3302506B2/en
Publication of JPH07305121A publication Critical patent/JPH07305121A/en
Application granted granted Critical
Publication of JP3302506B2 publication Critical patent/JP3302506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce an ESR steel ingot having different component areas without increasing the transition range. CONSTITUTION:A contracted part 3a is formed at the boundary part of the different component areas 1, 2 of an ESR electrode 4. This electrode for remelting electroslag is used to produce the ESR steel ingot by making the melting speed in the contracted part 3a smaller than the melting speed in the ordinary diameter part 3b. By this method, since the transition range of this ESR steel ingot is made small and the desired characteristic can be obtd. near the boundary part, the reliability of the product is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異成分領域を有する高
低圧一体タービンロータなどの製造に使用されるエレク
トロスラグ再溶解(以下「ESR」という)用電極およ
びこの電極を用いたESR鋼塊の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for remelting electroslag (hereinafter referred to as "ESR") used for manufacturing a high and low pressure integrated turbine rotor having a heterogeneous region, and an ESR steel ingot using this electrode. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】従来、高低圧一体タービンロータでは、
高圧部、中圧部、低圧部によってそれぞれ要求される特
性が異なるため、それぞれの特性に合わせて各圧力部に
使用される材料の組成を変えた組成複合型のロータが提
案されている。ところで、特に大型のタービンロータで
は偏析の防止などの観点からESR法を用いた製造方法
が広く採用されているが、上記した組成複合型のロータ
を一体的に製造するためには、ロータの組成に合わせて
組成を変えたESR電極が必要である。このため具体的
には、成分の異なる鋼塊を軸方向に接合したESR電極
(特公昭52−4254号、同56−14842号等)
や、異なる成分の電極を連続して使用する方法(特開昭
56−23367号等)が提案されている。
2. Description of the Related Art Conventionally, in a high-low pressure integrated turbine rotor,
Since the required characteristics differ depending on the high-pressure portion, the medium-pressure portion, and the low-pressure portion, there has been proposed a composition-composite type rotor in which the composition of the material used for each pressure portion is changed according to each characteristic. By the way, a manufacturing method using the ESR method is widely adopted especially from the viewpoint of preventing segregation in a large-sized turbine rotor. However, in order to integrally manufacture the above-described composition composite type rotor, the composition of the rotor is It is necessary to have an ESR electrode whose composition is changed according to the above. Therefore, specifically, ESR electrodes in which steel ingots having different components are joined in the axial direction (Japanese Patent Publication Nos. 52-4254 and 56-14842, etc.)
Alternatively, a method of continuously using electrodes having different components (Japanese Patent Laid-Open No. 23367/56 etc.) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、いずれの場合
においても、得られたESR鋼塊には異なる成分が混じ
りあった遷移領域が広く形成されて、意図した特性が得
られない場合があり、製品としての信頼性に劣るという
問題がある。これに対し、組成の異なる領域間に予め両
成分が融合された中間部分を設けたESR電極(特開昭
60−135536号)も提案されているが、遷移領域
を十分に減少させるまでには至っていない。この発明は
上記事情を背景としてなされたものであり、遷移領域を
有効に減少させて信頼性の高い製品を製造することがで
きるESR用電極およびESR鋼塊の製造方法を提供す
ることを目的とする。
However, in any case, the obtained ESR steel ingot may have a wide transition region in which different components are mixed, and the intended properties may not be obtained. There is a problem of poor reliability as a product. On the other hand, an ESR electrode (Japanese Patent Laid-Open No. 60-135536) in which an intermediate portion in which both components are fused in advance is provided between regions having different compositions has also been proposed, but it is necessary to sufficiently reduce the transition region. I haven't arrived. The present invention has been made in view of the above circumstances, and an object thereof is to provide an ESR electrode and an ESR steel ingot manufacturing method capable of effectively reducing a transition region to manufacture a highly reliable product. To do.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明のうち、第1の発明のエレクトロスラグ再溶
解用電極は、軸方向において化学成分が異なる2以上の
異成分領域からなり、これら異成分領域間の境界部分に
くびれ部が形成されていることを特徴とする。第2の発
明のエレクトロスラグ再溶解用電極は、くびれ部の最小
太さ部が、断面積比で通常太さ部分の0.04〜0.6
4倍であることを特徴とする。
In order to solve the above problems, the electroslag remelting electrode of the first invention of the present invention comprises two or more different component regions having different chemical components in the axial direction, It is characterized in that a constricted portion is formed at the boundary between these different component regions. In the electroslag remelting electrode of the second invention, the minimum thickness portion of the constricted portion has a cross-sectional area ratio of 0.04 to 0.6 of the normal thickness portion.
It is characterized by being 4 times.

【0005】第3の発明のエレクトロスラグ再溶解鋼塊
の製造方法は、エレクトロスラグ再溶解に際して、第1
または第2の発明のエレクトロスラグ再溶解用電極を使
用するとともに、この電極のくびれ部の溶解速度を通常
太さ部分の溶解速度よりも小さくしたことを特徴とす
る。第4の発明のエレクトロスラグ再溶解鋼塊の製造方
法は、電極のくびれ部の溶解速度が、通常太さ部分の溶
解速度の20〜80%であることを特徴とする。
The method for producing an electroslag remelted steel ingot according to the third aspect of the present invention is the first method for remelting electroslag.
Alternatively, the electroslag remelting electrode of the second invention is used, and the dissolution rate of the constricted portion of the electrode is set to be smaller than the dissolution rate of the normally thick portion. The method for producing an electroslag remelted steel ingot according to the fourth aspect of the invention is characterized in that the melting rate of the constricted portion of the electrode is usually 20 to 80% of the melting rate of the thick portion.

【0006】本発明のESR電極は、軸方向で成分の異
なる2以上の異成分領域が例えば溶接や機械的方法で接
合されたものであり、代表的には高低圧一体型タービン
ロータの製造に供される。ただし、本発明としては、異
成分領域の数や用途等が限定されるものでない。また、
この電極は製造される製品に応じた径を有するものであ
り、例えば大型の高低圧一体型タービンロータの製造に
おいては、通常太さ部分で900〜1350mmの径を
有するような電極が使用されるが、本発明としては電極
太さが限定されるものでもない。
The ESR electrode of the present invention is one in which two or more different component regions having different components in the axial direction are joined by, for example, welding or a mechanical method, and is typically used for manufacturing a high and low pressure integrated turbine rotor. Be served. However, the present invention is not limited to the number of different-component regions, usage, and the like. Also,
This electrode has a diameter according to the product to be manufactured. For example, in the manufacture of a large-sized high-low pressure integrated turbine rotor, an electrode having a diameter of 900 to 1350 mm is normally used. However, the electrode thickness is not limited in the present invention.

【0007】なお、本発明の電極のくびれ部は、第2の
発明に示すように最小太さ部を、断面積比で通常太さ部
の0.04〜0.64倍とするのが望ましく、さらには
0.04〜0.25倍とするのが一層望ましい。一般に
電極形状は断面円形であり、円柱電極では上記内容を換
言すれば、くびれ部の最小太さ部を、通常太さ部分の
0.2〜0.8倍(さらには0.2〜0.5倍)の径と
するのが望ましいことになる。
In the constricted portion of the electrode of the present invention, as shown in the second invention, the minimum thickness portion is preferably 0.04 to 0.64 times the normal thickness portion in terms of sectional area ratio. Further, it is more desirable to set it to 0.04 to 0.25 times. In general, the shape of the electrode is circular in cross section. In other words, in the case of a cylindrical electrode, in other words, the minimum thickness portion of the constricted portion is 0.2 to 0.8 times the normal thickness portion (further 0.2 to 0. It is desirable to set the diameter to 5 times.

【0008】また、くびれ部の通常太さ部から最小太さ
部にかけては、急激な太さの変化がないように外壁面を
テーパー状に形成するのが望ましく、このテーパー部の
傾斜角度は30〜60度とするのが望ましい。この角度
が30度よりも小さいと、テーパー部が必要以上に長く
なり、テーパーの形成作業が面倒になる。また、傾斜角
度が60度よりも大きいと、断面積の変化が急激であ
り、溶解速度の制御が難しくなるためである。
Further, it is desirable to form the outer wall surface in a tapered shape from the normal thickness portion to the minimum thickness portion of the constricted portion so that there is no sudden change in thickness, and the inclination angle of the tapered portion is 30. It is desirable to set it to -60 degrees. If this angle is smaller than 30 degrees, the taper portion becomes longer than necessary, and the work of forming the taper becomes troublesome. Further, when the inclination angle is larger than 60 degrees, the change in the cross-sectional area is rapid and it becomes difficult to control the dissolution rate.

【0009】上記電極を用いてESR鋼塊を製造する際
には、フィルレシオ(電極径/鋼塊径)を0.5〜0.
8に設定するのが望ましい。そして電極の溶解速度は、
第3、第4の発明で示すように、くびれ部で通常太さ部
分よりも小さくし(望ましくは20〜80%)、さらに
は最小太さ部で最小にするのが望ましい。また、溶解速
度の低下は、急激に変化させないようにくびれ部の前後
の通常太さ部分で徐々に変化(低下または増大)させる
ものであってもよい。
When manufacturing an ESR steel ingot using the above electrode, the fill ratio (electrode diameter / steel ingot diameter) is 0.5 to 0.
It is desirable to set it to 8. And the dissolution rate of the electrode is
As shown in the third and fourth aspects of the invention, it is desirable to make the waist portion smaller than the normal thickness portion (desirably 20 to 80%), and further to minimize the minimum thickness portion. Further, the decrease in the dissolution rate may be gradually changed (decreased or increased) in the normal thickness portion before and after the constricted portion so as not to change rapidly.

【0010】[0010]

【作用】すなわち本発明によれば、異なる成分が混じり
合った遷移領域をできるだけ小さくすることができ、異
成分領域の境界部近傍でも所望の特性を得ることができ
る。また、異成分の材料を溶接などによって接合する際
にも、接合部分が小さくなり、作業能率が向上する。次
に、本発明における数値範囲の限定理由を説明する。
In other words, according to the present invention, the transition region in which different components are mixed can be made as small as possible, and desired characteristics can be obtained even in the vicinity of the boundary between different component regions. Also, when joining materials of different components by welding or the like, the joint area becomes smaller and the work efficiency is improved. Next, the reason for limiting the numerical range in the present invention will be described.

【0011】断面積比:0.04〜0.64倍 異成分領域の境界部に、断面積の小さいくびれ部を形成
することによって、電極溶解量を減らし、遷移領域を小
さくすることが可能となる。この作用を確実に得るため
には、最小太さ部(通常は上記境界に位置する)の断面
積を通常太さ部分の0.64倍以下にするのが望まし
い。一方、この断面積比を0.04倍未満にしても、上
記作用の向上は殆どないばかりでなく、電極として強度
が不十分になるので上記断面積比が望ましい。また、同
様の理由で、0.04〜0.25倍が一層望ましい。
Cross-sectional area ratio: 0.04 to 0.64 times By forming a constricted portion having a small cross-sectional area at the boundary between different component regions, it is possible to reduce the amount of electrode dissolution and the transition region. Become. In order to surely obtain this effect, it is desirable that the cross-sectional area of the minimum thickness part (usually located at the above-mentioned boundary) be 0.64 times or less of the normal thickness part. On the other hand, if the cross-sectional area ratio is less than 0.04 times, not only the above-mentioned action is not improved, but also the strength as an electrode becomes insufficient, so the cross-sectional area ratio is desirable. Further, for the same reason, 0.04 to 0.25 times is more desirable.

【0012】溶解速度:20〜80% 上記したように、電極にくびれ部を設け、このくびれ部
の溶解速度を通常太さ部分よりも小さくすることによっ
て、溶融プールを浅くして遷移領域を小さくできる。上
記作用を十分に得るためには、くびれ部の溶解速度を通
常太さ部分の溶解速度の80%以下にするのが望まし
い。一方、上記溶解速度を20%未満にしても、作用の
向上は僅かであり、さらに溶解に長い時間を要して作業
能率が低下するので20〜80%にするのが望ましい。
なお、同様の理由で40〜70%の範囲にするのが一層
望ましい。この溶解速度は、通常の太さ部の溶解速度に
対する比率で示されるので、絶対的な数値が限定される
ものではないが、例えば、通常太さ部分の溶解速度が8
00〜2000kg/hrの場合には、くびれ部の溶解
速度を400〜1600kg/hrに限定するのが望ま
しいこととなる。
Dissolution rate: 20-80% As described above, by providing a constricted portion on the electrode and making the dissolution rate of this constricted portion smaller than that of the normal thickness portion, the molten pool is made shallow and the transition region is made small. it can. In order to obtain the above effect sufficiently, it is desirable that the dissolution rate of the constricted portion is usually 80% or less of the dissolution rate of the thick portion. On the other hand, even if the dissolution rate is less than 20%, the improvement of the action is slight, and further, it takes a long time to dissolve and the work efficiency is lowered, so that it is desirable to set it to 20 to 80%.
For the same reason, it is more desirable to set it in the range of 40 to 70%. Since this dissolution rate is shown as a ratio to the dissolution rate of a normal thick portion, the absolute value is not limited, but, for example, the dissolution rate of a normal thick portion is 8
In the case of 00 to 2000 kg / hr, it is desirable to limit the dissolution rate of the necked portion to 400 to 1600 kg / hr.

【0012】また、前述したように、電極のフィルレシ
オ(電極径/モールド径)を所定範囲内(通常太さ部で
0.5〜0.8)に定めるのが望ましい。これは、フィ
ルレシオが0.5未満であると、必要溶解量を得るには
電極長さを長くしなければならず、作業能率が低下する
ためであり、また、0.8を越えると、モールド壁と電
極との隙間が小さくなり、スラグ注入などの作業が難し
くなること及びモールド壁と電極のスパーク現象が起き
易くなるためである。
Further, as described above, it is desirable to set the fill ratio (electrode diameter / mold diameter) of the electrode within a predetermined range (usually 0.5 to 0.8 in the thick portion). This is because if the fill ratio is less than 0.5, the electrode length must be lengthened to obtain the required amount of dissolution, and the work efficiency decreases, and if it exceeds 0.8, This is because the gap between the mold wall and the electrode becomes small, the work such as slag injection becomes difficult, and the spark phenomenon between the mold wall and the electrode easily occurs.

【0013】[0013]

【実施例】表1に示す組成のCrMoV鋼塊1とNiC
rMoV鋼塊2を常法によって溶製、鍛造した後、それ
ぞれの一端部に機械加工によって先細のテーパー部1
a、2aを形成する。次に、これらテーパー部1a、2
aを突き合わせるようにして鋼塊同士を溶接し、くびれ
部3a、通常太さ部分3bを有する本発明のESR電極
4を製造した。なお、3cは、補助電極である。この電
極4の製造に際し、テーパー部同士の溶接は周囲長も短
く短時間で容易に行うことができた。
EXAMPLE CrMoV steel ingot 1 and NiC having the composition shown in Table 1
The rMoV steel ingot 2 is melted and forged by a conventional method, and then one end of each is tapered by a taper 1
a and 2a are formed. Next, these tapered portions 1a, 2
Steel ingots were welded to each other so that a was abutted with each other to manufacture an ESR electrode 4 of the present invention having a constricted portion 3a and a normally thick portion 3b. In addition, 3c is an auxiliary electrode. In manufacturing the electrode 4, the tapered portions were welded to each other with a short peripheral length and could be easily performed in a short time.

【0014】このESR電極4は、通常太さ部分3bが
径1350mm、くびれ部3aの最小太さ部分(接合
部)が径514mmで、断面積比が約0.145であ
る。さらに、テーパー部1aは、長さが320mm、傾
斜角度αが約53度であり、テーパー部2aは、長さが
400mm、傾斜角度βが約46度であった。また、比
較のため、テーパー部を形成することなくCr−Mo−
V鋼塊とNi−Cr−Mo−V鋼塊とをそのまま溶接し
た、従来の比較ESR電極を用意した。この電極の溶接
作業は、本発明のESR電極と異なり、周囲長も長く、
作業に長い時間を要した。
The ESR electrode 4 usually has a diameter 3350 mm in the thickness portion 3b, a diameter 514 mm in the minimum thickness portion (joint portion) of the constricted portion 3a, and a sectional area ratio of about 0.145. Further, the taper portion 1a had a length of 320 mm and an inclination angle α of about 53 degrees, and the taper portion 2a had a length of 400 mm and an inclination angle β of about 46 degrees. In addition, for comparison, Cr-Mo-
A conventional comparative ESR electrode was prepared by welding the V steel ingot and the Ni-Cr-Mo-V steel ingot as they were. Unlike the ESR electrode of the present invention, this electrode welding work has a long circumference,
It took a long time to work.

【0015】[0015]

【表1】 [Table 1]

【0016】上記電極を用いて、通常太さ部分の溶解速
度を1600kg/hr、くびれ部の最小太さ部分を同
速度または1000kg/hr(通常深さ部分の62.
5%)に制御して、エレクトロスラグ再溶解を行い、両
鋼塊の境界部(接合部)に対応したESR鋼塊の溶融プ
ール深さを観察することによって遷移領域の大きさを評
価した。本発明の電極を用いて溶解速度を変化させた場
合の溶解線図は図2に示すとおりであり、溶解速度の急
激な変化を避けるため、通常太さ部分から徐々に溶解速
度を変化させた。
Using the above electrode, the dissolution rate of the normal thickness portion is 1600 kg / hr, the minimum thickness portion of the necked portion is the same speed or 1000 kg / hr (62.
5%), electroslag remelting was performed, and the size of the transition region was evaluated by observing the molten pool depth of the ESR steel ingot corresponding to the boundary portion (joint portion) of both steel ingots. The dissolution diagram when the dissolution rate was changed using the electrode of the present invention is as shown in FIG. 2. In order to avoid a rapid change in the dissolution rate, the dissolution rate was usually gradually changed from the thick portion. .

【0017】上記によって得られたESR鋼塊は、表2
に示すように、比較電極を用いた場合、溶融プールが深
く、大きな遷移領域が形成されていることが分かる。こ
れに対し、本発明のESR電極を用いた場合には、溶融
プール深さが浅く、特にくびれ部の溶解速度を小さく制
御した場合は、図3に示すように溶融プール深さは顕著
に浅くなっており、遷移領域の減少は明らかである。
The ESR steel ingots obtained as described above are shown in Table 2.
As shown in FIG. 6, it is understood that when the reference electrode is used, the molten pool is deep and a large transition region is formed. On the other hand, when the ESR electrode of the present invention is used, the melting pool depth is shallow, and particularly when the melting rate of the necked portion is controlled to be small, the melting pool depth is remarkably shallow as shown in FIG. And the reduction of the transition region is clear.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
異成分が混じり合った遷移領域を狭くすることができ、
広い範囲で所望の特性を有する大型複合ESR鋼塊の製
造が可能になる。したがって、このESR鋼塊を使用す
ることにより信頼性の高い、高低圧一体型タービンロー
タ等の製品を製造することができる。また、ESR電極
を用意する際に、異成分鋼塊を容易に接合することがで
き、作業能率が向上する効果もある。
As described above, according to the present invention,
It is possible to narrow the transition region where different components are mixed,
It enables the production of large-scale composite ESR steel ingots having a wide range of desired properties. Therefore, by using this ESR steel ingot, it is possible to manufacture a highly reliable product such as a high-low pressure integrated turbine rotor. Further, when preparing the ESR electrode, it is possible to easily join the different composition steel ingots, which also has the effect of improving the work efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明のESR電極を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an ESR electrode of the present invention.

【図2】図2は、ESRの際の溶解線図である。FIG. 2 is a dissolution diagram during ESR.

【図3】図3は、本発明の電極を用いて得られたESR
鋼塊のプール深さを示す模式図である。
FIG. 3 is an ESR obtained using the electrode of the present invention.
It is a schematic diagram which shows the pool depth of a steel ingot.

【符号の説明】[Explanation of symbols]

1 CrMoV鋼塊 2 NiCrMoV
鋼塊 3a くびれ部 3b 通常太さ部分 4 ESR電極
1 CrMoV steel ingot 2 NiCrMoV
Steel ingot 3a Constriction part 3b Normal thickness part 4 ESR electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軸方向において化学成分が異なる2以上
の異成分領域からなり、これら異成分領域の境界部分に
くびれ部が形成されていることを特徴とするエレクトロ
スラグ再溶解用電極
1. An electrode for remelting electroslag, which comprises two or more different component regions having different chemical components in the axial direction, and a constriction portion is formed at a boundary portion between these different component regions.
【請求項2】 くびれ部の最小太さ部分は、断面積比で
通常太さ部分の0.04〜0.64倍であることを特徴
とする請求項1記載のエレクトロスラグ再溶解用電極
2. The electrode for remelting electroslag according to claim 1, wherein the minimum thickness portion of the constricted portion has a cross-sectional area ratio of 0.04 to 0.64 times the normal thickness portion.
【請求項3】 エレクトロスラグ再溶解に際して、請求
項1または2記載のエレクトロスラグ再溶解用電極を使
用するとともに、この電極のくびれ部の溶解速度を通常
太さ部分の溶解速度よりも小さくすることを特徴とする
エレクトロスラグ再溶解鋼塊の製造方法
3. When remelting electroslag, the electroslag remelting electrode according to claim 1 or 2 is used, and the dissolution rate of the constricted part of the electrode is usually made smaller than the dissolution rate of the thick part. For producing electroslag remelted steel ingot characterized by:
【請求項4】 電極のくびれ部の溶解速度は、通常太さ
部分の溶解速度の20〜80%であることを特徴とする
請求項3記載のエレクトロスラグ再溶解鋼塊の製造方法
4. The method for producing an electroslag-remelted steel ingot according to claim 3, wherein the melting rate of the constricted part of the electrode is usually 20 to 80% of the melting rate of the thick part.
JP11609194A 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot Expired - Fee Related JP3302506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11609194A JP3302506B2 (en) 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11609194A JP3302506B2 (en) 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Publications (2)

Publication Number Publication Date
JPH07305121A true JPH07305121A (en) 1995-11-21
JP3302506B2 JP3302506B2 (en) 2002-07-15

Family

ID=14678494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11609194A Expired - Fee Related JP3302506B2 (en) 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Country Status (1)

Country Link
JP (1) JP3302506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229339A1 (en) * 2008-11-04 2011-09-22 Kabushiki Kaisha Toshiba Method of manufacturing steam turbine rotor and steam turbine rotor
CN104985161A (en) * 2015-07-24 2015-10-21 东北大学 Device and method for manufacturing dual-alloy steam turbine rotor steel ingots through vacuum electroslag remelting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229339A1 (en) * 2008-11-04 2011-09-22 Kabushiki Kaisha Toshiba Method of manufacturing steam turbine rotor and steam turbine rotor
US9856735B2 (en) 2008-11-04 2018-01-02 Kabushiki Kaisha Toshiba Method of manufacturing steam turbine rotor and steam turbine rotor
CN104985161A (en) * 2015-07-24 2015-10-21 东北大学 Device and method for manufacturing dual-alloy steam turbine rotor steel ingots through vacuum electroslag remelting

Also Published As

Publication number Publication date
JP3302506B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JP4721659B2 (en) Apparatus and method for friction stir welding high strength materials and articles produced therefrom
CN101376189A (en) Method and apparatus related to joining dissimilar metal
CN111519049A (en) Low-cost niobium-titanium alloy electrode preparation method and niobium-titanium alloy electrode
EP2625401B1 (en) Improvements of a combustion-chamber bowl rim and of a combustion-chamber bowl base of a piston of an internal combustion engine
JP3302506B2 (en) Electroslag remelting electrode and method for producing electroslag remelted steel ingot
CN111575510A (en) Method for preparing TC25 titanium alloy ingot and ingot prepared by method
JP3132602B2 (en) Manufacturing method of friction welding valve
JP2006193765A (en) Method for producing member made of aluminum alloy
KR20080104896A (en) End mill and manufacturing method thereof
JPH0377740A (en) Forging punch
JP2007162071A (en) Method for manufacturing titanium ingot
JP3037611B2 (en) Method for producing remelted ingot of electroslag and method for producing turbine rotor shaft by remelting electroslag
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
JPH06650A (en) Contact chip and its production
CN111331327B (en) Technology for hot melting and tooth embedding of hard alloy cutter ring
KR100350072B1 (en) Method of manufacturing high conductivity dispersion streng thened copper alloy
JP3581882B2 (en) Lead-free high-strength free-cutting steel
EP0521604A2 (en) Production of transition joints between ferritic steel components
JPH09248633A (en) Composite punch for fine perforation and its manufacture
SU1504024A1 (en) Method of preparing edges for welding
JP3350768B2 (en) Pipe manufacturing method
JPH0692602B2 (en) Additive powder for surface hardening of Ti and Ti alloy base materials
JP3083653B2 (en) Manufacturing method of retaining ring material
JPS63306839A (en) Manufacture of cutting tool
RU1767897C (en) Steel ingot electroslag melting method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees