JPH07305080A - Carbon fine powder for electroviscous fluid and its production - Google Patents

Carbon fine powder for electroviscous fluid and its production

Info

Publication number
JPH07305080A
JPH07305080A JP6123002A JP12300294A JPH07305080A JP H07305080 A JPH07305080 A JP H07305080A JP 6123002 A JP6123002 A JP 6123002A JP 12300294 A JP12300294 A JP 12300294A JP H07305080 A JPH07305080 A JP H07305080A
Authority
JP
Japan
Prior art keywords
carbon
fine powder
carbon fine
oxygen
electrorheological fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6123002A
Other languages
Japanese (ja)
Inventor
Masataka Kono
正孝 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP6123002A priority Critical patent/JPH07305080A/en
Publication of JPH07305080A publication Critical patent/JPH07305080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To obtain carbon fine powder for electroviscous fluid having high resistance and fine particle appearance and capable of providing excellent viscosity responsiveness to applied voltage and long-term stability by lowering initial viscosity in dispersing to a dispersing phase and to provide effective method for producing the fine powder. CONSTITUTION:This carbon fine powder for electroviscous fluid consists of amorphous shoot-like carbon fine powder containing carbon cluster and has 10-10<8>OMEGAcm electric specific resistance and 1-5wt.% of oxygen content. In the carbon fine powder, specific surface area of nitrogen absorption is preferably >=50m<2>/g. This method for producing the carbon fine powder comprises heating and vaporizing a carbon material in a system retained under 20-500Torr pressure by an inert atmosphere containing 1-20vol% oxygen and rapidly cooling and re-solidifying the vaporized carbon vapor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気粘性流体の分散相
を形成する固体微粒子に用いられる炭素微粉およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fine powder used for solid fine particles forming a dispersed phase of an electrorheological fluid and a method for producing the same.

【0002】[0002]

【従来の技術】電気粘性流体は、誘電体微粒子を電気絶
縁性に優れる流体中に分散してなる特殊性状の流体で、
電場の印加により流体の見掛け粘度が増大する電気粘性
効果を示す。このため、例えばダンパー、ショックアブ
ソーバー、エンジンマウント等のエネルギー吸収材や防
振材として有用性が期待されている。
2. Description of the Related Art An electrorheological fluid is a fluid having a special property in which fine dielectric particles are dispersed in a fluid having excellent electrical insulation properties.
An electrorheological effect is shown in which the apparent viscosity of a fluid increases with the application of an electric field. Therefore, it is expected to be useful as an energy absorbing material or a vibration isolating material for dampers, shock absorbers, engine mounts, etc.

【0003】従来、電気粘性流体の分散相を構成する固
体微粒子としては、セルロース、デンプン、シリカゲ
ル、イオン交換樹脂などが用いられており、これらを使
用した電気粘性流体は特開昭57−47234号公報、
特開昭61−259752号公報、特開平1−2073
95号公報等に開示されている。また、特開昭63−9
7694号公報には、前記のような固体微粒子の表面を
高分子物質で被覆する方法が記載されている。ところ
が、これらの固体微粒子は親水性である関係で水分の吸
着により経時的に性能安定性が低下したり、温度により
特性変化を生じるなど実用面での問題が多い。
Conventionally, cellulose, starch, silica gel, ion exchange resins, etc. have been used as the solid fine particles constituting the dispersed phase of the electrorheological fluid, and the electrorheological fluid using these is disclosed in JP-A-57-47234. Bulletin,
JP-A-61-259752, JP-A-1-2073
No. 95, etc. Also, JP-A-63-9
Japanese Patent No. 7694 describes a method of coating the surface of the solid fine particles with a polymer substance. However, since these solid fine particles are hydrophilic, there are many problems in practical use such as deterioration of performance stability over time due to adsorption of water and characteristic changes due to temperature.

【0004】こうした観点から、水分を含まない非水性
の固体微粒子として炭素質粉末が注目されている。例え
ば特開平5−70116号公報には、タールや樹脂類の
ような原料を熱処理した特定のC/H比範囲の炭素粉を
低い酸素濃度ならびに水分濃度の雰囲気中で粉砕、分級
して得た炭素粉末が、特開平5−186786号公報に
は、炭素質物質を繊維化後粉砕等の方法により得られる
形状異方性を有するカーボン質物質が、また特開平3−
47896号公報には電気絶縁性物質を被覆して導電率
を調整した炭素粉末が、それぞれ開示されている。
From this point of view, carbonaceous powder has attracted attention as non-aqueous solid fine particles containing no water. For example, in Japanese Unexamined Patent Publication (Kokai) No. 5-70116, a carbon powder in a specific C / H ratio range obtained by heat-treating a raw material such as tar or resin is pulverized and classified in an atmosphere of low oxygen concentration and moisture concentration. The carbon powder is disclosed in JP-A-5-186786, and a carbonaceous material having a shape anisotropy obtained by a method of pulverizing a carbonaceous material and then pulverizing it.
Japanese Patent Publication No. 47896 discloses carbon powders each having an electric conductivity adjusted by coating an electrically insulating substance.

【0005】しかしながら、タールや樹脂の焼成炭化や
炭素質物質の繊維化は組織変動の機構が非常に複雑で、
処理過程で電気比抵抗の調整をおこなうには厳密な制御
を必要とするばかりでなく、粘性流体に安定に分散させ
るための均一な微粒子を得るための工程負担が少なくな
い。そのうえ、炭素材料は本質的に活性の低い物質であ
るため、これを二次的に処理して高活性にしたり、表面
に官能基を付加するには煩雑な工程が必要となる。
However, the mechanism of structure change is very complicated in the firing carbonization of tar and resin and the fibrization of carbonaceous material,
Not only strict control is required to adjust the electric resistivity in the treatment process, but also the process load for obtaining uniform fine particles for stable dispersion in the viscous fluid is not small. Moreover, since the carbon material is essentially a substance having low activity, a complicated process is required to secondarily treat the carbon material to make it highly active or to add a functional group to the surface.

【0006】本発明者らは、このような問題点の解決を
含む新規な電気粘性流体用炭素質微粉として、電気比抵
抗が10〜108 Ωcmで、炭素含有率が99重量%以上
の性状を備えるカーボンクラスターを含むアモルファス
質のスート状微粉末、およびその製造技術として、炭素
材料を不活性雰囲気により20〜500Torrの圧力に保
持された系内で加熱気化させ、気化した炭素蒸気を急速
に冷却再凝固する方法を先に提案した(特願平5−3428
56号) 。
The inventors of the present invention have proposed a novel carbonaceous fine powder for electrorheological fluid including a solution to the above problems, having an electric resistivity of 10 to 10 8 Ωcm and a carbon content of 99% by weight or more. As an amorphous soot-like fine powder containing carbon clusters, and a manufacturing technique therefor, a carbon material is heated and vaporized in a system maintained at a pressure of 20 to 500 Torr by an inert atmosphere to rapidly vaporize vaporized carbon vapor. A method for cooling and resolidifying was previously proposed (Japanese Patent Application No. 5-3428).
No. 56).

【0007】[0007]

【発明が解決しようとする課題】前記の先願技術によれ
ば、印加電圧に対して優れた粘性応答性と長期間の安定
性能が付与される高抵抗、高純度かつ微細性状の電気粘
性流体用炭素微粉とその効率的な製造方法を提供するこ
とが可能となるが、炭素成分として特異性状のカーボン
クラスターを含有するため分散相への均一分散性が不足
して、初期粘度が高くなるという改善すべき課題が残さ
れていた。
According to the above-mentioned prior art, an electrorheological fluid of high resistance, high purity and fine properties, which is provided with excellent viscous response to an applied voltage and long-term stability. It is possible to provide a carbon fine powder for use and an efficient production method thereof, but since carbon clusters having a specific property are contained as a carbon component, uniform dispersibility in the dispersed phase is insufficient, and the initial viscosity becomes high. There were issues to be improved.

【0008】本発明者は、かかる課題を解決するために
鋭意研究を重ねた結果、先願技術(特願平5−342856
号) のスート状炭素質微粉末に特定量の酸素を含有させ
ると初期粘度が低くなり、粘性応答性を一層向上させる
ことができることを確認した。
The present inventor has conducted earnest research to solve the above problems, and as a result, the prior art (Japanese Patent Application No. 5-342856).
No.) soot-like carbonaceous fine powder containing a specific amount of oxygen has a low initial viscosity, and the viscous response can be further improved.

【0009】本発明はこの知見に基づいて開発されたも
ので、その目的は、分散相への分散性に優れ、印加電圧
に対して優れた粘性応答性と長期間の安定性能を付与す
ることができる高抵抗で微細性状の電気粘性流体用炭素
微粉とその効率的な製造方法を提供することにある。
The present invention was developed based on this finding, and its purpose is to provide excellent dispersibility in a dispersed phase, excellent viscous response to an applied voltage, and long-term stability. It is an object of the present invention to provide a high resistance, fine carbon fine powder for electrorheological fluid and an efficient manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による電気粘性流体用炭素微粉は、カーボン
クラスターを含むアモルファス質のスート状炭素微粉末
からなり、電気比抵抗が10〜108 Ωcmで、かつ酸素
含有率が1〜5重量%の性状組成を備えることを構成上
の特徴とする。
The carbon fine powder for electrorheological fluid according to the present invention for achieving the above object is made of amorphous soot-like carbon fine powder containing carbon clusters and has an electric resistivity of 10 to 10. The structural feature is that it has a property composition of 8 Ωcm and an oxygen content of 1 to 5% by weight.

【0011】カーボンクラスターは、炭素原子が数十個
集合した性状のC60、C70、C76、C78などからなる炭
素分子で構成され、電気比抵抗が109 Ωcm以上の実質
的に絶縁性の物質である。本発明に係る電気粘性流体用
炭素微粉は、このカーボンクラスターを含むアモルファ
ス質のスート状炭素微粉末であって、電気比抵抗が10
〜108 Ωcmの高抵抗範囲にあるアモルファスの結晶性
状を備え、かつ酸素含有率が1〜5重量%の組成を保持
することに特徴づけられる。また、粒子性状として、窒
素吸着比表面積が50m2/g以上の高い表面積を有する微
細粒子である場合に一層優れた効果が発揮される。
The carbon clusters are composed of carbon molecules composed of C 60 , C 70 , C 76 , C 78, etc. having a property in which several tens of carbon atoms are aggregated, and have a substantially specific electric resistance of 10 9 Ωcm or more. It is a sexual substance. The carbon fine powder for electrorheological fluid according to the present invention is an amorphous soot-like carbon fine powder containing this carbon cluster, and has an electric resistivity of 10 or less.
It is characterized by having an amorphous crystalline property in the high resistance range of -10 8 Ωcm and maintaining a composition with an oxygen content of 1-5% by weight. Further, when the particle properties are fine particles having a high surface area of 50 m 2 / g or more, the nitrogen adsorption specific surface area is more effective.

【0012】本発明において、電気比抵抗が10〜10
8 Ωcmの範囲は実用上十分な電気粘性効果を得るための
要件となるもので、10Ωcm未満の電気比抵抗では電気
粘性効果を得るために大電流が必要となってエネルギー
効率の低下を招き、108 Ωcmを越えると好適な電気粘
性効果が得られなくなる。また、カーボンクラスターを
含むスート状炭素微粉末に含有する酸素は初期粘度を低
めて分散性を向上させる機能要素となるもので、酸素含
有率が1重量%未満では前記の機能が不十分となり、5
重量%を上廻ると電気比抵抗が低下傾向を示すうえ、初
期粘度も高くなる。これらの要件に加えて、窒素吸着比
表面積が50m2/g 以上であることが分散性の面から好
ましく、これが50m2/g を下廻ると粒子の沈降速度が
早くなって分散媒中で凝集沈降現象が生じ易くなり、長
期の分散安定性が損なわれる。
In the present invention, the electrical resistivity is 10 to 10
The range of 8 Ωcm is a requirement for obtaining a practically sufficient electrorheological effect, and with an electrical resistivity of less than 10 Ωcm, a large current is required to obtain the electrorheological effect, leading to a decrease in energy efficiency. If it exceeds 10 8 Ωcm, a suitable electrorheological effect cannot be obtained. Further, oxygen contained in soot-like carbon fine powder containing carbon clusters is a functional element that lowers the initial viscosity and improves dispersibility, and if the oxygen content is less than 1% by weight, the above function becomes insufficient, 5
When the content is more than weight%, the electric resistivity tends to decrease and the initial viscosity also increases. In addition to these requirements, it is preferable that the nitrogen adsorption specific surface area is 50 m 2 / g or more from the viewpoint of dispersibility, and if it is less than 50 m 2 / g, the sedimentation rate of the particles becomes faster and the particles aggregate in the dispersion medium. Sedimentation is likely to occur, and long-term dispersion stability is impaired.

【0013】上記の電気粘性流体用炭素微粉を得るため
の本発明による製造方法は、炭素材料をヘリウム等の不
活性ガス中に1〜20容量%の酸素を含む不活性雰囲気
で20〜500Torrの圧力に保持された系内で加熱気化
させ、気化した炭素蒸気を急速に冷却再凝固することを
構成的特徴とする。
The production method according to the present invention for obtaining the above-mentioned carbon fine powder for an electrorheological fluid comprises a carbon material of 20 to 500 Torr in an inert atmosphere containing 1 to 20% by volume of oxygen in an inert gas such as helium. A constitutional feature is that the vaporized carbon vapor is rapidly cooled and re-solidified by being vaporized by heating in a system maintained at a pressure.

【0014】炭素材料の気化は、抵抗加熱法、レーザー
加熱法、アーク放電法、高周波プラズマ法、プラズマジ
ェット法などの加熱手段を用い、4000℃以上の温度
域でおこなわれるが、本発明の目的には単位消費電力当
たりの炭素蒸発量が多いアーク放電法を適用することが
好ましい。原料となる炭素材料は高純度のものであれば
組織性状に限定はない。しかし、アーク放電法を用いる
場合には人造黒鉛棒を電極として使用することが望まし
い。
The carbon material is vaporized in a temperature range of 4000 ° C. or higher using a heating means such as a resistance heating method, a laser heating method, an arc discharge method, a high frequency plasma method, and a plasma jet method. For this, it is preferable to apply an arc discharge method in which the carbon evaporation amount per unit power consumption is large. The carbon material used as a raw material is not limited in its tissue properties as long as it has high purity. However, when using the arc discharge method, it is desirable to use artificial graphite rods as electrodes.

【0015】不活性雰囲気ガスとしては、ヘリウム、ア
ルゴン、ネオン、クリプトンなどが使用可能であるが、
このうち炭素の蒸発速度が大きいヘリウムを用いること
が好適である。この不活性雰囲気ガスには酸素を1〜2
0容量%、好ましくは5〜10容量%の範囲で含有させ
る。この範囲の酸素量を含む不活性雰囲気系内で炭素材
料を加熱気化させることにより、酸素を1〜5重量%含
有する組成のカーボンクラスターを含むアモルファス質
スート状炭素微粉末を得ることが可能となる。
Helium, argon, neon, krypton, etc. can be used as the inert atmosphere gas.
Among these, it is preferable to use helium, which has a high carbon evaporation rate. 1 to 2 oxygen is added to this inert atmosphere gas.
The content is 0% by volume, preferably 5 to 10% by volume. By heating and vaporizing the carbon material in an inert atmosphere system containing an oxygen amount in this range, it is possible to obtain an amorphous soot-like carbon fine powder containing carbon clusters having a composition containing 1 to 5% by weight of oxygen. Become.

【0016】加熱気化させる系内の圧力は、20〜50
0Torrの範囲に減圧調整する必要があり、この条件設定
により得られるスート状炭素微粉末の電気比抵抗を10
〜108 Ωcmの間で制御することができる。しかし、こ
の減圧度合が20Torr未満であると電気比抵抗が一般の
カーボンブラックと同程度まで低下し、500Torrを越
えると炭素の蒸発量が減退してスート状微粉末の生成効
率が著しく低下する。
The pressure in the system for heating and vaporizing is 20 to 50.
It is necessary to adjust the pressure reduction to the range of 0 Torr, and the electrical resistivity of the soot-like carbon fine powder obtained by setting these conditions is 10
It can be controlled between 10 8 Ωcm. However, when the degree of pressure reduction is less than 20 Torr, the electrical resistivity is reduced to the same level as that of general carbon black, and when it exceeds 500 Torr, the evaporation amount of carbon is reduced and the production efficiency of soot-like fine powder is significantly reduced.

【0017】図1は、本発明による製造方法を実施する
ために好適な装置を示したものである。この装置は、ヘ
リウムボンベ2および酸素ボンベ3からそれぞれバルブ
4、流量計5を介して接続するガス供給ライン6と、上
部に圧力調整バルブ7を介して真空ポンプ8を備えるバ
ッグフィルター構造の冷却回収装置9に連通する導出管
10とを備えた減圧容器1の内部に、電源11に接続す
る水冷式の黒鉛電極棒12、13が端面間にギャップを
設けてセットされている。操作は、減圧容器1に酸素量
が1〜20容量%になるように混合したヘリウムガスを
流入して系内減圧度を20〜500Torrの範囲に保持し
たのち、黒鉛電極棒12、13の間にアーク放電させて
電極を加熱し、気化した炭素蒸気を冷却回収装置9に導
いてスート状炭素微粉末を急冷再凝固しながら捕集する
方法で行われる。
FIG. 1 shows an apparatus suitable for carrying out the manufacturing method according to the present invention. This apparatus is equipped with a gas supply line 6 connected from a helium cylinder 2 and an oxygen cylinder 3 via a valve 4 and a flow meter 5, respectively, and a vacuum pump 8 via a pressure adjusting valve 7 at the upper part for cooling and recovery of a bag filter structure. Water-cooled graphite electrode rods 12 and 13 connected to a power source 11 are set inside a decompression container 1 provided with a lead-out pipe 10 communicating with the device 9 with a gap between the end faces. The operation was performed by injecting helium gas mixed so that the oxygen amount became 1 to 20% by volume into the decompression container 1 to maintain the system decompression degree within the range of 20 to 500 Torr, and then between the graphite electrode rods 12 and 13. Arc discharge to heat the electrode, and the vaporized carbon vapor is guided to the cooling and recovery device 9 to rapidly cool and resolidify the soot-like carbon fine powder and collect the soot-like carbon fine powder.

【0018】このようにして得られる炭素微粉は、カー
ボンクラスターを1〜30重量%の範囲で含むアモルフ
ァス質のスート状微粉末で、その性状組成は酸素含有率
1〜5重量%、炭素含有率90〜95重量%、窒素吸着
比表面積50m2/g以上、電気比抵抗10〜108 Ωcmの
ものである。
The carbon fine powder thus obtained is an amorphous soot-like fine powder containing carbon clusters in the range of 1 to 30% by weight, and its composition is such that the oxygen content is 1 to 5% by weight and the carbon content is 90 to 95% by weight, nitrogen adsorption specific surface area of 50 m 2 / g or more, and electric resistivity of 10 to 10 8 Ωcm.

【0019】[0019]

【作用】本発明の電気粘性流体用炭素微粉は、電気比抵
抗が10〜108 Ωcmと高く、かつ酸素が1〜5重量%
の範囲で含有されており、窒素比表面積が50m2/g 以
上の微細粒子性状を保有するカーボンクラスターを含む
アモルファス質のスート状炭素微粉末から構成されてい
る。とくに酸素含有率が1〜5重量%の組成は、分散相
に分散させた際の初期粘度を低めて優れた分散性と粘性
応答性を付与するために有効に作用する。この機構につ
いては解明されていないが、カーボンクラスターを含む
アモルファス質からなる特殊なスート状炭素に一定量の
酸素が結合すると一層親油性が高まり、シリコーン油の
ような電気絶縁性油状流体に対する分散性が改善される
ものと推測される。
The fine carbon powder for electrorheological fluid of the present invention has a high electric resistivity of 10 to 10 8 Ωcm and 1 to 5% by weight of oxygen.
And a nitrogen specific surface area of 50 m 2 / g or more and is composed of amorphous soot-like carbon fine powder containing carbon clusters having fine particle properties. In particular, a composition having an oxygen content of 1 to 5% by weight works effectively for lowering the initial viscosity when dispersed in the disperse phase and imparting excellent dispersibility and viscous response. Although this mechanism has not been clarified, when a certain amount of oxygen is bound to a special soot-like carbon made of amorphous material containing carbon clusters, the lipophilicity is further enhanced, and the dispersibility in electrically insulating oily fluid such as silicone oil is increased. Is supposed to be improved.

【0020】この酸素含有による初期粘度の低減作用
と、高位の電気比抵抗ならびに窒素比表面積による機能
が相俟って、電気絶縁性油状媒体に分散させた際に印加
電圧に対する粘性応答性が極めて良好で、長期間に亘る
安定した分散性と優れた電気粘性効果が発揮される。
By virtue of the effect of reducing the initial viscosity due to the oxygen content and the function of the high electric resistivity and the nitrogen specific surface area, the viscous response to the applied voltage when dispersed in the electrically insulating oily medium is extremely high. Good, stable dispersibility over a long period of time and excellent electrorheological effect are exhibited.

【0021】また、本発明の製造方法によれば、炭素材
料を加熱気化させる系内雰囲気を酸素1〜20容量%を
含む不活性雰囲気とし、圧力を20〜500Torrの範囲
に制御することにより、上記性状の電気粘性流体用炭素
微粉を単純なプロセスで再現性よく得ることが可能とな
る。
Further, according to the manufacturing method of the present invention, the atmosphere in the system for heating and vaporizing the carbon material is an inert atmosphere containing 1 to 20% by volume of oxygen, and the pressure is controlled in the range of 20 to 500 Torr. It becomes possible to reproducibly obtain the carbon fine powder for electrorheological fluid having the above properties by a simple process.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と対比して詳
細に説明する。
EXAMPLES Examples of the present invention will be described in detail below in comparison with comparative examples.

【0023】実施例1〜4 図1に示した装置を用い、真空ポンプ8を作動させて減
圧容器1の系内を一旦0.01Torr以下に減圧したの
ち、ヘリウムボンベ2および酸素ボンベ3から所定量の
HeガスとO2 ガスをガス供給ラインを介して導入し、
ついで圧力調整バルブ7を制御して減圧容器1内を所定
の減圧度に保持した。引き続き、電源11から2kwの電
力を黒鉛電極棒(炭素含有率99.99 重量%、外径8mm)
12、13に供給し、電極間にアーク放電を発生した。
この状態で黒鉛電極棒は白熱して加熱気化し、炭素蒸気
となって導出管10により吸引され、冷却回収装置9に
至って急冷再凝固してカーボンクラスターを含むアモル
ファス質のスート状炭素微粉末として回収された。
Examples 1 to 4 Using the apparatus shown in FIG. 1, the vacuum pump 8 was actuated to temporarily reduce the pressure in the system of the decompression container 1 to 0.01 Torr or less, and then the helium cylinder 2 and the oxygen cylinder 3 were removed. Introducing a fixed amount of He gas and O 2 gas through a gas supply line,
Then, the pressure adjusting valve 7 was controlled to maintain the inside of the decompression container 1 at a predetermined degree of decompression. Continuously, power of 2 kw from the power source 11 was applied to the graphite electrode rod (carbon content 99.99% by weight, outer diameter 8 mm)
Then, arc discharge was generated between the electrodes.
In this state, the graphite electrode rod is incandescently heated and vaporized to become carbon vapor, which is sucked by the outlet pipe 10 and reaches the cooling and recovery device 9 to be rapidly cooled and re-solidified to be an amorphous soot-like carbon fine powder containing carbon clusters. Recovered.

【0024】このようにして得られたスート状炭素微粉
末の生成結果と性状を、ヘリウムガス中の酸素含有率お
よび系内減圧度と対比させて表1に示した。なお、酸素
含有率の測定は、CHN元素分析装置〔(株)パーキン
エルマージャパン製、2400型〕により炭素、水素、
窒素の含有率を求め、残部を酸素の含有率とした。ま
た、電気比抵抗値はJIS K1469「アセチレンブ
ラックの電気抵抗率測定法」に準拠し、測定圧力を10
2.2kg/cm2に設定して測定した。
The results and properties of the soot-like carbon fine powder thus obtained are shown in Table 1 in comparison with the oxygen content in helium gas and the degree of reduced pressure in the system. The oxygen content was measured by a CHN elemental analyzer [manufactured by Perkin Elmer Japan Co., Ltd., Model 2400], carbon, hydrogen,
The content rate of nitrogen was determined, and the balance was defined as the content rate of oxygen. In addition, the electrical resistivity value is in accordance with JIS K1469 "Method for measuring electrical resistivity of acetylene black", and the measurement pressure is 10
The measurement was performed by setting it to 2.2 kg / cm 2 .

【0025】ついで、得られた各スート状微粉末を電気
絶縁性油状媒体のシリコーン油(室温粘度:0.02ポイ
ズ) に20重量%の量比で均一に分散させて電気粘性流
体を形成した。この電気粘性流体に室温で2kV/mm の電
圧をかけ、流体の粘性変化と流体中を流れる電流値を測
定した。更に、50日経過後の分散状態を観察した。な
お、粘度の測定にはB型回転粘度計を使用し、電極間に
直流電流を印加したときの粘度を計測した。得られた評
価結果を、表1に併載した。
Then, each soot-like fine powder thus obtained was uniformly dispersed in a silicone oil (room temperature viscosity: 0.02 poise) as an electrically insulating oily medium in an amount ratio of 20% by weight to form an electrorheological fluid. A voltage of 2 kV / mm was applied to this electrorheological fluid at room temperature, and the viscosity change of the fluid and the current value flowing in the fluid were measured. Furthermore, the dispersed state after 50 days was observed. A B-type rotational viscometer was used to measure the viscosity, and the viscosity was measured when a direct current was applied between the electrodes. The obtained evaluation results are also shown in Table 1.

【0026】表1の結果から、本発明の製造方法で得ら
れた発明要件を満たす炭素微粉を分散させた電気粘性流
体は、初期粘度が低いため電圧印加前後の粘性変化が大
きく、流体中に安定した低電流が流通し、かつ長期に亘
って安定した分散状態を呈して粉体の沈降現象はほとん
ど認められなかった。
From the results shown in Table 1, the electrorheological fluid obtained by the production method of the present invention, in which the fine carbon powder satisfying the requirements of the invention is dispersed, has a low initial viscosity, and therefore has a large viscosity change before and after the application of a voltage. A stable low current circulated and a stable dispersed state was exhibited for a long period of time, and the sedimentation phenomenon of the powder was hardly observed.

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1 減圧容器内をヘリウムガスに酸素ガス混合しない雰囲気
系(酸素含有率:0容量%)により98Torrの減圧度に
設定し、その他は実施例と同一条件によりスート状微粉
末を製造した。得られたスート状微粉末を実施例と同様
にシリコーン油に分散させて電気粘性流体を形成した。
この場合の結果を表2に示した。
COMPARATIVE EXAMPLE 1 A soot-like fine powder was prepared under the same conditions as in Example 1 except that the decompression container was set to a decompression degree of 98 Torr by an atmosphere system (oxygen content: 0% by volume) in which helium gas was not mixed with oxygen gas. Manufactured. The obtained soot-like fine powder was dispersed in silicone oil in the same manner as in the example to form an electrorheological fluid.
The results in this case are shown in Table 2.

【0029】比較例2 減圧容器内をヘリウムガスに酸素ガスを混合して酸素含
有率が38容量%になる雰囲気系により131Torrの減
圧度に設定し、その他は実施例と同一条件によりスート
状微粉末を製造した。得られたスート状微粉末を実施例
と同様にシリコーン油に分散させて電気粘性流体を形成
した。この場合の結果を同様にして表2に併載した。
Comparative Example 2 A pressure reduction degree of 131 Torr was set by an atmosphere system in which oxygen gas was mixed with helium gas and oxygen content rate was 38% by volume in a decompression container. A powder was produced. The obtained soot-like fine powder was dispersed in silicone oil in the same manner as in the example to form an electrorheological fluid. The results in this case are also shown in Table 2 in the same manner.

【0030】比較例3 減圧容器内をヘリウムガスに酸素ガスを混合して酸素含
有率が17容量%になる雰囲気系により10Torrの減圧
度に設定し、その他は実施例と同一条件によりスート状
微粉末を製造した。得られたスート状微粉末を実施例と
同様にシリコーン油に分散させて電気粘性流体を形成し
た。この場合の結果を同様にして表2に併載した。
Comparative Example 3 A pressure reduction degree of 10 Torr was set by an atmosphere system in which oxygen gas was mixed with helium gas and oxygen content rate was 17% by volume in a decompression container. A powder was produced. The obtained soot-like fine powder was dispersed in silicone oil in the same manner as in the example to form an electrorheological fluid. The results in this case are also shown in Table 2 in the same manner.

【0031】比較例4 減圧容器内をヘリウムガスに酸素ガスを混合して酸素含
有率が20容量%になる雰囲気系により650Torrの減
圧度に設定し、その他は実施例と同一条件によりスート
状微粉末を製造した。得られたスート状微粉末を実施例
と同様にシリコーン油に分散させて電気粘性流体を形成
した。この場合の結果を同様にして表2に併載した。
Comparative Example 4 A pressure reduction degree of 650 Torr was set with an atmosphere system in which oxygen gas was mixed with helium gas and oxygen content was 20% by volume in the pressure reduction container. A powder was produced. The obtained soot-like fine powder was dispersed in silicone oil in the same manner as in the example to form an electrorheological fluid. The results in this case are also shown in Table 2 in the same manner.

【0032】[0032]

【表2】 〔表注〕測定不能は、電流値が3mAを越えたため。[Table 2] [Table Note] Measurement is impossible because the current value exceeds 3mA.

【0033】表2の結果から、比較例1ではスート状炭
素微粉に酸素が含有されていないため初期粘度が高くな
り、分散の長期安定性も減退する。比較例2では逆に酸
素含有率が高過ぎて電気比抵抗が低くなり、実用性がな
くなる。比較例3では減圧容器系内の減圧度が低いため
に電気比抵抗が極端に低下し、また比較例4では系内圧
力が高過ぎるため十分な電気粘性効果が得られない。
From the results shown in Table 2, in Comparative Example 1, since the soot-like carbon fine powder does not contain oxygen, the initial viscosity is high and the long-term stability of dispersion is also reduced. On the contrary, in Comparative Example 2, the oxygen content is too high and the electrical resistivity becomes low, so that it is not practical. In Comparative Example 3, the electrical resistivity is extremely reduced due to the low degree of decompression in the decompression container system, and in Comparative Example 4, the system internal pressure is too high, so that a sufficient electrorheological effect cannot be obtained.

【0034】[0034]

【発明の効果】以上のとおり、本発明によれば従来の炭
素粉に比べて高い電気抵抗を有し、比表面積が大きく、
初期粘度の低い優れた分散性を発揮する非水系の電気粘
性流体用炭素微粉を提供することができる。したがっ
て、該炭素微粉を分散させた電気粘性流体は、粘性応答
性と長期間に亘り常に安定した分散状態を発現させるこ
とが可能となるから、例えばダンパー、ショックアブソ
ーバー、エンジンマウント等のエネルギー吸収材や防振
材として有用である。
As described above, according to the present invention, the electric resistance is higher than that of the conventional carbon powder, the specific surface area is large,
It is possible to provide a non-aqueous carbon fine powder for electrorheological fluid that exhibits excellent dispersibility with a low initial viscosity. Therefore, the electrorheological fluid in which the carbon fine powder is dispersed can exhibit a viscous response and a stable dispersed state over a long period of time. Therefore, for example, an energy absorbing material such as a damper, a shock absorber, or an engine mount. It is also useful as an anti-vibration material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気粘性流体用炭素微粉を製造するた
めの装置を例示した略断面図である。
FIG. 1 is a schematic cross-sectional view illustrating an apparatus for producing carbon fine powder for electrorheological fluid of the present invention.

【符号の説明】[Explanation of symbols]

1 減圧容器 2 ヘリウムボンベ 3 酸素ボンベ 4 バルブ 5 流量計 6 ガス供給ライン 7 圧力調整用バルブ 8 真空ポンプ 9 冷却回収装置 10 導出管 11 電源 12 黒鉛電極棒 13 黒鉛電極棒 1 Decompression Container 2 Helium Cylinder 3 Oxygen Cylinder 4 Valve 5 Flow Meter 6 Gas Supply Line 7 Pressure Adjustment Valve 8 Vacuum Pump 9 Cooling / Recovery Device 10 Outlet Pipe 11 Power Supply 12 Graphite Electrode Rod 13 Graphite Electrode Rod

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10N 70:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C10N 70:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カーボンクラスターを含むアモルファス
質のスート状炭素微粉末からなり、電気比抵抗が10〜
108 Ωcmで、かつ酸素含有率が1〜5重量%の性状組
成を備えることを特徴とする電気粘性流体用炭素微粉。
1. An amorphous soot-like carbon fine powder containing carbon clusters, having an electric resistivity of 10 to 10.
A carbon fine powder for an electrorheological fluid, which has a property composition of 10 8 Ωcm and an oxygen content of 1 to 5% by weight.
【請求項2】 窒素吸着比表面積が50m2/g以上である
請求項1記載の電気粘性流体用炭素微粉。
2. The carbon fine powder for electrorheological fluid according to claim 1, which has a nitrogen adsorption specific surface area of 50 m 2 / g or more.
【請求項3】 炭素材料を酸素1〜20容量%を含む不
活性雰囲気により20〜500Torrの圧力に保持された
系内で加熱気化させ、気化した炭素蒸気を急速に冷却再
凝固することを特徴とする電気粘性流体用炭素微粉の製
造方法。
3. A carbon material is heated and vaporized in a system maintained at a pressure of 20 to 500 Torr by an inert atmosphere containing 1 to 20% by volume of oxygen, and the vaporized carbon vapor is rapidly cooled and resolidified. And a method for producing carbon fine powder for electrorheological fluid.
JP6123002A 1994-05-12 1994-05-12 Carbon fine powder for electroviscous fluid and its production Pending JPH07305080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6123002A JPH07305080A (en) 1994-05-12 1994-05-12 Carbon fine powder for electroviscous fluid and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6123002A JPH07305080A (en) 1994-05-12 1994-05-12 Carbon fine powder for electroviscous fluid and its production

Publications (1)

Publication Number Publication Date
JPH07305080A true JPH07305080A (en) 1995-11-21

Family

ID=14849835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6123002A Pending JPH07305080A (en) 1994-05-12 1994-05-12 Carbon fine powder for electroviscous fluid and its production

Country Status (1)

Country Link
JP (1) JPH07305080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639790B1 (en) * 2005-01-07 2006-10-31 요업기술원 Manufacturing method of the carbon material generating low temperature of which specific resistance is regulated

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639790B1 (en) * 2005-01-07 2006-10-31 요업기술원 Manufacturing method of the carbon material generating low temperature of which specific resistance is regulated

Similar Documents

Publication Publication Date Title
RU2213050C2 (en) Method for preparing carbon
KR102113719B1 (en) Activated carbon and its manufacturing method
CN110459409A (en) A kind of electrode material, preparation method and applications
CN111276684A (en) Preparation method and application of carbon-coated composite material
CN107481864A (en) It is a kind of to prepare high surface, the method for nitrogen oxygen codope carbon material and the application in ultracapacitor by raw material of organic matter
EP0705899B1 (en) Powder and electrorheological fluid
US5332517A (en) Method for producing carbonaceous powder for electrorheological fluid
JPH07305080A (en) Carbon fine powder for electroviscous fluid and its production
JP3020559B2 (en) Carbonaceous powder for electrorheological fluid and method for producing the same
KR20200055698A (en) Activated carbon and its manufacturing method
CN113233443A (en) Preparation method of fluorinated spiral carbon nanotube and application of fluorinated spiral carbon nanotube in lithium primary battery
JPH07166183A (en) Carbon fine powder for electroviscous fluid and production method therefor
MXPA06012710A (en) Production of carbon nanotubes.
CN109336083B (en) Method for controllably preparing foam carbon/carbon nanotube composite material by high internal phase emulsion template method
CN109935793B (en) Preparation method of lithium ion battery composite graphene negative electrode material
JPH10158672A (en) Fine carbon powder for electroviscous fluid and its production
Chang et al. TiO2 nanoparticle suspension preparation using ultrasonic vibration-assisted arc-submerged nanoparticle synthesis system (ASNSS)
JPH08209166A (en) Fine carbon powder for electroviscous fluid and its production
JPH08291295A (en) Carbon fine powder for electroviscous fluid and its production
CN112809012B (en) Preparation method of nanoscale aluminum powder
JP2003212529A (en) Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material
KR20190073710A (en) Method for manufacturing activated carbon for electrode material
CN113381024A (en) Silica negative electrode material, preparation method thereof and lithium ion battery
CN108335800B (en) Copper-silicon integrated electrode and preparation method thereof
KR101948020B1 (en) Method for manufacturing activated carbon for electrode material