JPH07303992A - Production of granular body filled tube - Google Patents

Production of granular body filled tube

Info

Publication number
JPH07303992A
JPH07303992A JP9715194A JP9715194A JPH07303992A JP H07303992 A JPH07303992 A JP H07303992A JP 9715194 A JP9715194 A JP 9715194A JP 9715194 A JP9715194 A JP 9715194A JP H07303992 A JPH07303992 A JP H07303992A
Authority
JP
Japan
Prior art keywords
flux
powder
filled tube
manufacturing
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9715194A
Other languages
Japanese (ja)
Other versions
JP3241530B2 (en
Inventor
Atsuo Onoda
敦夫 小埜田
Takeji Kagami
武二 各務
Shunichi Kikuta
俊一 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP09715194A priority Critical patent/JP3241530B2/en
Publication of JPH07303992A publication Critical patent/JPH07303992A/en
Application granted granted Critical
Publication of JP3241530B2 publication Critical patent/JP3241530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve productivity and product yield by measuring annealing temp. of a granular body filled tube in running production line and adjusting a supplying quantity of granular body based on the measured annealing temp. CONSTITUTION:The metal strip supplied from a metal strip supply device 11 is formed to a flux filled tube P by a forming device 13, its edge part is welded/ joined by a high frequency induction welding equipment 17. The flux filled tube P is primarily contracted by a primary rolling mill 19, successively, annealed by an annealing device 21, after slowly cooled, it is cooled to normal temp. by water cooling. A radiation thermometer measures a temp. of the annealed flux filled tube, the measured temp. is outputted to a flux supplying quantity controller 15. The flux supplying quantity controller 15 transmits operating signal to a flux supplying device 14, controlling a flux supplying quantity. The annealed flux filled tube P is reduced by a secondary rolling mill 38 to be coiled to a coiler 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は炭素鋼、ステンレス
鋼、銅合金、アルミニウム合金その他の金属管に粉粒体
を充填した粉粒体充填管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder / granule-filled tube in which carbon steel, stainless steel, copper alloy, aluminum alloy or other metal tube is filled with the powder / granular material.

【0002】ここで、粉粒体とは溶接用フラックス、酸
化物超電導材、溶鋼用添加剤等の粉粒体をいう。
Here, the powder or granules mean powder or granules such as welding flux, oxide superconducting material, and additive for molten steel.

【0003】[0003]

【従来の技術】粉粒体充填管の一つとして溶接用フラッ
クス入りシームレスワイヤがあり、以下この溶接用フラ
ックス入りシームレスワイヤを例として説明する。
2. Description of the Related Art There is a flux-cored seamless wire for welding as one of the powder and granular material filling pipes, and the flux-cored seamless wire for welding will be described below as an example.

【0004】フラックス入りシームレスワイヤ(以下、
フラックス入りワイヤという)の製造では、帯鋼を所要
の幅でスリッティングし、スリット後の帯鋼を成形ロー
ルによりU字形からO字形に漸次成形する。この成形途
中でU字形帯鋼の長手方向に沿った開口からフィーダに
よりフラックスを帯鋼谷部に供給する。ついで、O字形
に成形すると同時に、開口の相対するエッジ面を溶接に
より接合し、引き続いて縮径する。さらに必要に応じて
焼鈍したのちフラックスが充填された管を所望の径に伸
線し、巻き取って製品とする。上記溶接法として高周波
誘導溶接法、高周波抵抗溶接法等の高周波溶接が広く用
いられている。これらの溶接法は、いずれもほぼO字形
に成形したところで、高周波電流により発生するジュー
ル熱で開口のエッジ面を溶融温度まで加熱し、相対する
エッジ面を一対のスクイズロールにより圧接する。この
ようなフラックス入りワイヤの製造方法として、たとえ
ば特開昭60−234795号公報、あるいは特公平4
−60758号公報で開示されたフラックス入りワイヤ
の製造方法がある。
A flux-cored seamless wire (hereinafter,
In the production of a flux-cored wire), a steel strip is slit by a required width, and the steel strip after slitting is gradually formed from a U-shape to an O-shape by a forming roll. During this forming, the flux is supplied from the opening along the longitudinal direction of the U-shaped strip steel to the strip steel valley portion by the feeder. Then, while forming into an O-shape, the opposite edge surfaces of the opening are joined by welding, and the diameter is subsequently reduced. Further, after annealing if necessary, the tube filled with the flux is drawn into a desired diameter and wound up to obtain a product. As the above-mentioned welding method, high-frequency induction welding, high-frequency resistance welding, and other high-frequency welding are widely used. In all of these welding methods, when formed into a substantially O-shape, the edge surface of the opening is heated to the melting temperature by Joule heat generated by a high frequency current, and the opposing edge surfaces are pressed against each other by a pair of squeeze rolls. As a method for manufacturing such a flux-cored wire, for example, Japanese Patent Laid-Open No. 234795/1985 or Japanese Patent Publication No.
There is a method of manufacturing a flux-cored wire disclosed in Japanese Patent Laid-Open No. -60758.

【0005】上記製造工程中、フラックスはあらかじめ
設定された基準量で管状体に供給される。フラックスが
基準量よりも多過ぎると、縮径時に溶接部に割れが発生
することがある。また、少な過ぎると、アークの安定、
スラグ生成、脱酸などのフラックス入り溶接用ワイヤと
しての機能が十分に発揮されない。したがって、高い精
度の充填率たとえば12±1.0%でフラックスを供給
する必要がある。
During the above manufacturing process, the flux is supplied to the tubular body in a preset reference amount. If the amount of flux is more than the standard amount, cracks may occur in the weld when the diameter is reduced. Also, if too little, arc stability,
The function as a flux-cored welding wire for slag generation, deoxidation, etc. is not fully exerted. Therefore, it is necessary to supply the flux at a highly accurate filling rate, for example, 12 ± 1.0%.

【0006】なお、フラックス充填率Rは次の式(1)
で与えられる。 R(%)=フラックス重量/(外皮重量+フラックス重
量)×100……(1)
The flux filling rate R is expressed by the following equation (1).
Given in. R (%) = flux weight / (outer skin weight + flux weight) × 100 (1)

【0007】製品の品質管理上フラックス充填率を知る
必要があり、従来では次のようにしてフラックス充填率
を調べていた。まず、ワイヤ製造ラインの成形工程を非
常停止してサンプルを切り出し、各サンプルの全重量を
それぞれ計量する。ついで、サンプル管内のフラックス
を除去して、空管の重量(外皮重量)を計量する。そし
て、上記式(1)でフラックス充填率を求める。フラッ
クス充填率が目標とする設定範囲内にあれば、次のロッ
トも同じフラックス供給条件でワイヤ製造ラインの運転
を続ける。また、設定範囲を外れるとそのロットは不合
格とする。
It is necessary to know the flux filling rate for quality control of the product, and conventionally, the flux filling rate was investigated as follows. First, the forming process of the wire manufacturing line is stopped emergency, the samples are cut out, and the total weight of each sample is weighed. Then, the flux in the sample tube is removed and the weight of the empty tube (outer skin weight) is measured. Then, the flux filling rate is obtained by the above equation (1). If the flux filling rate is within the target setting range, the operation of the wire manufacturing line is continued in the next lot under the same flux supply conditions. In addition, if it goes out of the set range, the lot is rejected.

【0008】[0008]

【発明が解決しようとする課題】上述のように、従来で
はフラックス充填率を調べるために成形工程を非常停止
してサンプルを切り出すので、製造工程が中断してい
た。その上に、所要のフラックス充填率を維持するため
に、フラックス充填率をしばしば測定せねばならなかっ
た。このために、生産性が著しく低下していた。また、
フラックス充填率が不合格となれば、巻き取った1ロッ
トすべてがスクラップとなり、歩留りの低下を招いてい
た。
As described above, in the past, the manufacturing process was interrupted because the sample was cut out by emergency stopping the molding process in order to check the flux filling rate. Moreover, in order to maintain the required flux fill factor, the flux fill factor often had to be measured. For this reason, the productivity was significantly reduced. Also,
If the flux filling rate was unacceptable, the entire wound one lot was scrap, resulting in a decrease in yield.

【0009】この発明は、生産性および製品歩留りの向
上を図ることができる粉粒体充填管の製造方法を提供し
ようとするものである。
The present invention is intended to provide a method of manufacturing a powder / particle filling tube which can improve productivity and product yield.

【0010】[0010]

【課題を解決するための手段】この発明の第1の粉粒体
充填管の製造方法は、金属帯板を管状体に成形する途中
で管状体に粉粒体を供給し、管状体の両エッジ面を高周
波溶接により接合し、粉粒体が充填された溶接管を縮径
し、焼鈍する粉粒体充填管の製造方法において、少なく
とも成形工程から焼鈍工程までの製造工程が連続してお
り、製造ラインを走行中の粉粒体充填管の焼鈍温度を測
定し、測定した焼鈍温度に基づいて粉粒体供給量を調整
する。
A first method for manufacturing a powder-filled tube according to the present invention is to supply powder particles to a tubular body while forming a metal strip into a tubular body, and In the method of manufacturing a powder-filled tube in which edge surfaces are joined by high-frequency welding, the welded tube filled with the powder is reduced in diameter and annealed, at least the manufacturing process from the molding process to the annealing process is continuous. The annealing temperature of the powder-and-granule-filled pipe running on the production line is measured, and the supply amount of the powder and granules is adjusted based on the measured annealing temperature.

【0011】焼鈍は、直接通電方式、誘導加熱方式、ガ
ス間接加熱方式などで行われる。焼鈍温度の測定器とし
ては、粉粒体充填管に非接触で測定でき、また応答性が
高いことから放射温度計などが適している。
Annealing is performed by a direct current system, an induction heating system, a gas indirect heating system or the like. As an annealing temperature measuring device, a radiation thermometer or the like is suitable because it can be measured in a non-contact manner with a powder-and-granule-filled tube and has high responsiveness.

【0012】この発明の第2の粉粒体充填管の製造方法
は、金属帯板を管状体に成形する途中で管状体に粉粒体
を供給し、管状体の両エッジ面を高周波溶接により接合
し、粉粒体が充填された溶接管を縮径し、焼鈍する粉粒
体充填管の製造方法において、少なくとも成形工程から
焼鈍工程までの製造工程が連続しており、粉粒体充填管
を通電加熱により焼鈍し、加熱電流を測定し、測定した
加熱電流に基づいて粉粒体供給量を調整する。
According to a second method for manufacturing a powder-filled tube of the present invention, the powder is supplied to the tubular body while the metal strip is being formed into the tubular body, and both edge surfaces of the tubular body are subjected to high-frequency welding. In the manufacturing method of the powder-filled tube, which is joined, the welded pipe filled with the powder is reduced in diameter, and annealed. In the manufacturing method of the powder-filled tube, at least the molding process to the annealing process are continuous, and the powder-filled pipe is Is annealed by electric heating, the heating current is measured, and the supply amount of powdery particles is adjusted based on the measured heating current.

【0013】上記第1および第2の発明において、焼鈍
温度または加熱電流は連続的にまたは間欠的に測定して
もよい。しかし、粉粒体充填率を製品全長にわたって均
一にし、製品品質の向上を図る点から、連続的に測定す
ることが望ましい。適正な粉粒体充填率を与える粉粒体
供給量と、焼鈍温度または加熱電流との関係は、実機の
運転実績あるいは実験からあらかじめ求めておく。粉粒
体供給量を調整するには、たとえば粉粒体を収納したホ
ッパの切出し口の開度を調整するか、ロータリディスク
方式の場合にはディスクの回転速度を調整する。粉粒体
供給量の調整は、焼鈍温度または加熱電流の測定値に基
づいて自動的にあるいは手動により行う。また、粉粒体
供給量を自動的に調整する場合、調節計あるいはコンピ
ュータを備えた制御装置を用いる。
In the first and second inventions, the annealing temperature or the heating current may be measured continuously or intermittently. However, it is desirable to measure continuously from the viewpoint of making the filling rate of the granules uniform over the entire length of the product and improving the product quality. The relationship between the annealing temperature or the heating current and the supply amount of the granular material that gives an appropriate filling rate of the granular material is obtained in advance from the actual operation results of the actual machine or the experiment. In order to adjust the supply amount of the granular material, for example, the opening of the cutout of the hopper accommodating the granular material is adjusted, or in the case of the rotary disk system, the rotation speed of the disk is adjusted. The supply of the powder or granular material is adjusted automatically or manually based on the measured value of the annealing temperature or the heating current. Further, when automatically adjusting the supply amount of powder or granules, a controller or a control device equipped with a computer is used.

【0014】なお、縮径工程が1次縮径工程と2次縮径
工程の2工程からなる場合、1次縮径工程と2次縮径工
程との間で焼鈍を行う。そして、その焼鈍時に測定した
焼鈍温度または加熱電流に基づいて粉粒体供給量を調整
する。また、縮径工程に続いて、めっきあるいは仕上げ
伸線を行ってもよい。2次縮径工程がある場合、2次縮
径工程に続いて2次焼鈍を行ってもよい。
When the diameter reducing step comprises two steps, a primary diameter reducing step and a secondary diameter reducing step, annealing is performed between the primary diameter reducing step and the secondary diameter reducing step. Then, the powder or granular material supply amount is adjusted based on the annealing temperature or the heating current measured during the annealing. Further, plating or finish wire drawing may be performed subsequent to the diameter reducing step. When there is a secondary diameter reduction step, secondary annealing may be performed subsequent to the secondary diameter reduction step.

【0015】[0015]

【作用】粉粒体供給量が変化すると、粉粒体充填率が変
化する。また、縮径工程で、圧延ロールの摩耗や粉粒体
充填管に加わる圧延スタンド間の張力の変化などによ
り、管肉厚が変化する。管肉厚が変化すると外皮重量が
変化し、前記式(1)から明らかなように粉粒体充填率
が変化する。
[Function] When the supply amount of the granular material changes, the filling rate of the granular material changes. Further, in the diameter reduction step, the wall thickness of the tube changes due to wear of the rolling rolls and changes in tension between the rolling stands applied to the powder / grain filling tube. When the pipe wall thickness changes, the outer skin weight changes, and as is clear from the above formula (1), the powder / granule packing rate changes.

【0016】第1の発明では、粉粒体供給量あるいは管
肉厚が変化すると、粉粒体充填管の熱容量が変化し、粉
粒体充填管の加熱温度が変化する。したがって、粉粒体
充填管の温度を測定することにより粉粒体充填率を知る
ことができ、さらには粉粒体供給量を調整し、粉粒体充
填率を所要の値に調整することができる。
In the first aspect of the invention, when the amount of powder or granular material supplied or the wall thickness of the powder or granular material changes, the heat capacity of the powder or granular material filling pipe changes, and the heating temperature of the powder or granular material filling pipe changes. Therefore, it is possible to know the powder / granule filling rate by measuring the temperature of the powder / granule filling tube, and further to adjust the powder / granular material supply rate to adjust the powder / granular filling rate to a required value. it can.

【0017】また、第2の発明では、粉粒体供給量ある
いは管肉厚が変化すると、粉粒体充填管の電気抵抗が変
化し、加熱電流が変化する。したがって、加熱電流を測
定することにより粉粒体充填率を知ることができ、第1
の発明と同様に粉粒体充填率を所要の値に調整すること
ができる。
In the second aspect of the invention, when the supply amount of powder or granules or the wall thickness of the powder changes, the electrical resistance of the powder-filled tube changes and the heating current also changes. Therefore, it is possible to know the filling rate of the granular material by measuring the heating current.
Similar to the invention described in (1), the packing rate of the powder and granules can be adjusted to a required value.

【0018】[0018]

【実施例】図1は第1の発明の方法を実施する設備の一
例を示すもので、溶接用フラックス入りシームレスワイ
ヤ製造設備を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of equipment for carrying out the method of the first invention, showing equipment for manufacturing flux-cored seamless wire for welding.

【0019】フラックス入りワイヤ製造設備は主とし
て、帯板供給装置11、成形装置13、フラックス供給
装置14、高周波誘導溶接装置17、1次圧延機19、
焼鈍装置21、2次圧延機38、および巻取装置40と
からなっている。
The flux-cored wire manufacturing equipment mainly comprises a strip feeding device 11, a forming device 13, a flux feeding device 14, a high frequency induction welding device 17, a primary rolling mill 19,
It comprises an annealing device 21, a secondary rolling mill 38, and a winding device 40.

【0020】成形装置13は、製造ラインに沿って配列
された予成形ロール、成形ロール群、サイドロール群、
フィンパスロール群、シームガイドロール(いずれも図
示しない)を備えている。また、サイドロール群の途中
にフラックス供給装置14が配置されている。フラック
ス供給装置14は、成形途中の管状体内に開口部からフ
ラックスを供給する。フラックス供給量は、フラックス
供給量制御装置15によって調整する。フラックス供給
装置14に続いて高周波誘導溶接装置17が配置されて
いる。高周波誘導溶接装置17はフラックスが充填され
た管状体のエッジ部を高周波誘導加熱し、スクイズロー
ル(図示しない)で圧下してエッジ部を接合する。溶接
制御装置(図示しない)で、溶接入熱量を調整する。
The forming device 13 includes a preforming roll, a forming roll group, a side roll group, which are arranged along the manufacturing line.
A fin pass roll group and a seam guide roll (neither shown) are provided. Further, the flux supply device 14 is arranged in the middle of the side roll group. The flux supply device 14 supplies flux from the opening into the tubular body that is being molded. The flux supply amount is adjusted by the flux supply amount control device 15. A high frequency induction welding device 17 is arranged following the flux supply device 14. The high frequency induction welding device 17 high frequency induction heats the edge portion of the tubular body filled with the flux and presses it down with a squeeze roll (not shown) to join the edge portions. The welding heat input is adjusted by a welding control device (not shown).

【0021】1次圧延機19は、3ロール式圧延機であ
る。1次圧延機19は、フラックスが充填された溶接管
(以下、フラックス充填管Pという)を1次縮径する。
The primary rolling mill 19 is a three-roll rolling mill. The primary rolling mill 19 reduces the primary diameter of the flux-filled welded pipe (hereinafter referred to as the flux-filled pipe P).

【0022】焼鈍装置21は直結直接通電式であって、
リングトランス22により、入側電極輪23と出側電極
輪24との間のフラックス充填管Pに加熱電流を供給す
る。図3に示すように、リングトランス22は温度制御
装置25により出力が制御される。温度制御装置25
は、電圧・電流調整装置26を備えており、電圧・電流
調整装置26は電流設定器27により目標電流が、また
電圧設定器28により目標電圧がそれぞれ設定される。
電圧・電流調整装置28は、リングトランス22の印加
電圧を上記目標電圧に維持し、またパルス信号によりS
CR29をオン・オフして加熱電流を制御する。電流計
31で加熱電流を、また電圧計32で印加電圧をそれぞ
れ測定し、加熱電流および印加電圧をフィードバック制
御する。
The annealing device 21 is a direct connection type and a direct current type,
The ring transformer 22 supplies a heating current to the flux filling pipe P between the entrance-side electrode wheel 23 and the exit-side electrode wheel 24. As shown in FIG. 3, the output of the ring transformer 22 is controlled by the temperature control device 25. Temperature control device 25
Includes a voltage / current adjusting device 26. In the voltage / current adjusting device 26, a target current is set by a current setting device 27 and a target voltage is set by a voltage setting device 28.
The voltage / current adjusting device 28 maintains the applied voltage of the ring transformer 22 at the above target voltage, and uses the pulse signal to reduce the S voltage.
CR29 is turned on / off to control the heating current. The heating current is measured by the ammeter 31 and the applied voltage is measured by the voltmeter 32, and the heating current and the applied voltage are feedback-controlled.

【0023】焼鈍装置21の出側寄りに、放射温度計3
4が配置されている。放射温度計34は、焼鈍されたフ
ラックス充填管Pの温度を測定する。
A radiation thermometer 3 is provided near the exit side of the annealing device 21.
4 are arranged. The radiation thermometer 34 measures the temperature of the annealed flux filling pipe P.

【0024】巻取り機40は、所要の直径に縮径された
フラックス充填管Pを巻き取る。
The winder 40 winds up the flux-filled pipe P having a reduced diameter.

【0025】上記のように構成された設備で、フラック
ス入りワイヤを製造する方法について説明する。
A method of manufacturing the flux-cored wire with the equipment constructed as described above will be described.

【0026】金属帯板供給装置11から供給された金属
帯板(SPCCまたはSPHC、60〜65w ×2.0
〜2.4t mm )は成形装置13で一例として直径22
mmのフラックス充填管Pに成形され、高周波誘導溶接
装置17でエッジ部が溶接接合される。フラックス充填
管Pは、1次圧延機19で直径11 mm まで1次縮径さ
れる。1次圧延機19の出側での管速度は60 m/minで
ある。ついで、フラックス充填管Pは焼鈍装置21にお
いて700〜740℃の温度で焼鈍され、徐冷された後
に水冷によりで常温まで冷却される。
A metal strip (SPCC or SPHC, 60 to 65 w × 2.0) supplied from the metal strip supply device 11.
.About.2.4 t mm) is a molding device 13 having a diameter of 22 mm as an example.
It is formed into a flux filling pipe P of mm, and the high frequency induction welding device 17 welds and joins the edge portion. The flux-filled tube P is first reduced in diameter by the primary rolling mill 19 to a diameter of 11 mm. The tube speed at the exit side of the primary rolling mill 19 is 60 m / min. Next, the flux filling pipe P is annealed in the annealing device 21 at a temperature of 700 to 740 ° C., gradually cooled, and then cooled to normal temperature by water cooling.

【0027】フラックス充填管Pの測定温度は、フラッ
クス供給量制御装置15に出力される。フラックス供給
量制御装置15はフラックス供給装置14に操作信号
(フラックスホッパの切出し口の開閉信号)を出力し、
基準フラックス充填率となるようにフラックス供給量を
制御する。
The measured temperature of the flux filling pipe P is output to the flux supply amount control device 15. The flux supply amount control device 15 outputs an operation signal (opening / closing signal of the cutout of the flux hopper) to the flux supply device 14,
The flux supply rate is controlled so that the standard flux filling rate is achieved.

【0028】焼鈍されたフラックス充填管Pは、2次圧
延機38で3〜4 mm まで縮径され、巻取機40に巻き
取られる。成形工程から巻取り工程までの製造工程が連
続しているので、金属帯板Sから巻き取られたフラック
ス充填管Pまで一続きとなって連続している。
The annealed flux-filled pipe P is reduced in diameter to 3 to 4 mm by the secondary rolling mill 38 and wound up by the winding machine 40. Since the manufacturing process from the forming process to the winding process is continuous, the sequence from the metal strip S to the wound flux-filled pipe P is continuous.

【0029】上記設備で製造したフラックス入りワイヤ
からサンプルを切り出し、フラックス充填率を実測した
結果、フラックス充填率は12±0.5%であった。ま
た、フラックス充填率が12%となるように製造開始時
に設定し、設定したフラックス供給量を一定に維持して
フラックス入りワイヤを製造した。その結果、フラック
ス充填率は12±0.4%であった。
A sample was cut out from the flux-cored wire manufactured by the above equipment, and the flux packing ratio was measured. As a result, the flux packing ratio was 12 ± 0.5%. In addition, a flux-cored wire was manufactured by setting the flux filling rate to 12% at the start of manufacturing and maintaining the set flux supply amount constant. As a result, the flux filling rate was 12 ± 0.4%.

【0030】図2は、第2の発明の方法を実施する設備
の一例を示すもので、フラックス入り溶接用シームレス
ワイヤ製造設備を示している。図1に示す装置と同様の
装置には同一の参照符号を付け、その説明は省略する。
FIG. 2 shows an example of equipment for carrying out the method of the second invention, and shows equipment for producing flux-cored welding seamless wire. The same devices as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0031】第1の発明では、焼鈍装置21でフラック
ス充填管Pの温度を測定し、その結果に基づいてフラッ
クス供給量を調整していた。これに対して、第2の発明
では焼鈍装置Pにおいて加熱電流を測定してフラックス
供給量を調整する。
In the first invention, the temperature of the flux filling pipe P is measured by the annealing device 21, and the flux supply amount is adjusted based on the result. On the other hand, in the second invention, the heating current is measured in the annealing apparatus P to adjust the flux supply amount.

【0032】図3に示す加熱電流計36で測定した加熱
電流は、フラックス供給量制御装置15に出力される。
フラックス供給量制御装置15はフラックス供給装置に
操作信号を出力し、基準フラック充填率となるようにフ
ラックス供給量を制御する。上記設備で製造したフラッ
クス入りワイヤの実測フラックス充填率は、12±0.
5%であった。
The heating current measured by the heating ammeter 36 shown in FIG. 3 is output to the flux supply amount control device 15.
The flux supply amount control device 15 outputs an operation signal to the flux supply device and controls the flux supply amount so that the reference flack filling rate is achieved. The measured flux filling rate of the flux-cored wire manufactured by the above equipment is 12 ± 0.
It was 5%.

【0033】[0033]

【発明の効果】この発明によれば、粉粒体充填管の製造
工程で粉粒体充填率の連続的測定が可能となり、ほぼリ
アルタイムで粉粒体充填率を検知できる。この結果、 a.粉粒体充填率測定用サンプル採取のために製造設備
の運転を停止する必要がないので、生産性が向上する。
たとえば、従来法に比べて、生産性が30〜40%上昇
し、作業者を6人から4人に削減できた。 b.粉粒体充填率のバラツキを許容範囲に維持できるの
で、歩留りが向上する。たとえば、従来法に比べて15
〜20%向上した。 c.生産性および歩留りの向上により、たとえば従来法
に比べて製造コストが20%低下した。
According to the present invention, it becomes possible to continuously measure the powdery or granular material filling rate in the manufacturing process of the powdery or granular material filling pipe, and it is possible to detect the powdery or granular material filling rate almost in real time. As a result, a. Since it is not necessary to stop the operation of the manufacturing equipment for collecting the sample for measuring the packing ratio of the granular material, the productivity is improved.
For example, as compared with the conventional method, the productivity is increased by 30 to 40%, and the number of workers can be reduced from 6 to 4. b. Since the variation in the filling rate of the powder or granules can be maintained within the allowable range, the yield is improved. For example, compared to the conventional method, 15
~ 20% improved. c. Due to the improvement in productivity and yield, for example, the manufacturing cost is reduced by 20% as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の粉粒体充填管の製造方法を実施す
る製造設備の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a manufacturing facility for carrying out a method for manufacturing a powder-and-granule-filled tube according to the first invention.

【図2】第2の発明の粉粒体充填管の製造方法を実施す
る製造設備の一例を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a manufacturing facility for carrying out the method of manufacturing a powder / particle filling tube according to the second invention.

【図3】上記設備に設けられた焼鈍装置の温度制御装置
の構成図である。
FIG. 3 is a configuration diagram of a temperature control device of an annealing device provided in the equipment.

【符号の説明】[Explanation of symbols]

12 帯板供給装置 13 成形装置 14 フラックス供給装置 15 フラックス供給量制御装置 17 高周波誘導溶接装置 19 1次圧延機 21 焼鈍装置 22 リングトランス 25 温度制御装置 34 放射温度計 36 加熱電流計 38 2次圧延機 40 巻取り機 S 金属帯板 P フラックス充填管 12 strip plate supply device 13 forming device 14 flux supply device 15 flux supply amount control device 17 high frequency induction welding device 19 primary rolling mill 21 annealing device 22 ring transformer 25 temperature control device 34 radiation thermometer 36 heating ammeter 38 secondary rolling Machine 40 Winder S Metal strip P P Flux filling tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属帯板を管状体に成形する途中で管状
体に粉粒体を供給し、管状体の両エッジ面を高周波溶接
により接合し、粉粒体が充填された溶接管を縮径し、焼
鈍する粉粒体充填管の製造方法において、少なくとも成
形工程から焼鈍工程までの製造工程が連続しており、製
造ラインを走行中の粉粒体充填管の焼鈍温度を測定し、
測定した焼鈍温度に基づいて粉粒体供給量を調整するこ
とを特徴とする粉粒体充填管の製造方法。
1. A powdery or granular material is supplied to the tubular body in the course of forming a metal strip into a tubular body, both edge surfaces of the tubular body are joined by high frequency welding, and a welded tube filled with the granular material is compressed. Diameter, in the manufacturing method of the granular material filling pipe to be annealed, at least the manufacturing process from the molding process to the annealing process is continuous, measuring the annealing temperature of the granular material filling pipe running the manufacturing line,
A method for manufacturing a powder-particles-filled tube, which comprises adjusting the powder-particles supply amount based on the measured annealing temperature.
【請求項2】 金属帯板を管状体に成形する途中で管状
体に粉粒体を供給し、管状体の両エッジ面を高周波溶接
により接合し、粉粒体が充填された溶接管を縮径し、焼
鈍する粉粒体充填管の製造方法において、少なくとも成
形工程から焼鈍工程までの製造工程が連続しており、粉
粒体充填管を通電加熱により焼鈍し、加熱電流を測定
し、測定した加熱電流に基づいて粉粒体供給量を調整す
ることを特徴とする粉粒体充填管の製造方法。
2. A powdery or granular material is supplied to the tubular body during the forming of the metal strip into a tubular body, both edge surfaces of the tubular body are joined by high frequency welding, and a welded tube filled with the granular material is compressed. Diameter, in the manufacturing method of the powder-filled tube to be annealed, at least the manufacturing process from the molding step to the annealing step is continuous, the powder-filled tube is annealed by electric heating, the heating current is measured, and measured. A method for manufacturing a powder-particles-filled tube, characterized in that the supply amount of powders is adjusted based on the heating current.
JP09715194A 1994-05-11 1994-05-11 Manufacturing method of powder filled tube Expired - Fee Related JP3241530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09715194A JP3241530B2 (en) 1994-05-11 1994-05-11 Manufacturing method of powder filled tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09715194A JP3241530B2 (en) 1994-05-11 1994-05-11 Manufacturing method of powder filled tube

Publications (2)

Publication Number Publication Date
JPH07303992A true JPH07303992A (en) 1995-11-21
JP3241530B2 JP3241530B2 (en) 2001-12-25

Family

ID=14184577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09715194A Expired - Fee Related JP3241530B2 (en) 1994-05-11 1994-05-11 Manufacturing method of powder filled tube

Country Status (1)

Country Link
JP (1) JP3241530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542444A (en) * 2006-07-07 2009-12-03 レヴワイヤーズ・エルエルシー Method and apparatus for making cored wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542444A (en) * 2006-07-07 2009-12-03 レヴワイヤーズ・エルエルシー Method and apparatus for making cored wire
US8656587B2 (en) 2006-07-07 2014-02-25 Revwires Llc Method and apparatus for making cored wire

Also Published As

Publication number Publication date
JP3241530B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US7648596B2 (en) Continuous method of rolling a powder metallurgical metallic workpiece
US4584169A (en) Process, apparatus and installation for the continuous production of a filler wire
US4269639A (en) Manufacture of mineral insulated cables
US8656587B2 (en) Method and apparatus for making cored wire
CN108588328A (en) A kind of alloying pellet welding core-spun yarn production technology
US4397169A (en) Rolling mill
JP3241530B2 (en) Manufacturing method of powder filled tube
US4376242A (en) Flash welding apparatus and method
US4101753A (en) Flash welding apparatus and method
US6875948B2 (en) Method and device for controlling the welding by flash welding of two metallic parts
JPH08290296A (en) Manufacture of flux cored seamless wire for welding
CN114603275A (en) Production process and production line equipment for flux-cored wires
US10077493B2 (en) Methods for applying aluminum coating layer to a core of copper wire
US4379216A (en) Method and apparatus for solder bonding multilayer tubing
US11020813B2 (en) Systems, methods, and apparatus to reduce cast in a welding wire
JP3604720B2 (en) Manufacturing method of powder filled tube
JPH0584595A (en) Manufacture of granular particle packed pipe
JPH05161915A (en) Manufacture of spirally welded pipe
JP2871404B2 (en) Composite heat source welding pipe making method
JP4552244B2 (en) Steel pipe manufacturing method
JP3511446B2 (en) Feeding method of welded parts in flash welding
JPH0433776A (en) Method for joining band steels for resistance welded tube
JPH0460758B2 (en)
JPH07303993A (en) Production of granular body filled tube and device therefor
JPH1177148A (en) Manufacturing equipment line for steel tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131019

LAPS Cancellation because of no payment of annual fees