JPH07303328A - Ground-fault detecting device - Google Patents

Ground-fault detecting device

Info

Publication number
JPH07303328A
JPH07303328A JP11447294A JP11447294A JPH07303328A JP H07303328 A JPH07303328 A JP H07303328A JP 11447294 A JP11447294 A JP 11447294A JP 11447294 A JP11447294 A JP 11447294A JP H07303328 A JPH07303328 A JP H07303328A
Authority
JP
Japan
Prior art keywords
phase
amplifier
signal
residual
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11447294A
Other languages
Japanese (ja)
Inventor
Taku Furuta
卓 古田
Masao Otsuka
正雄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP11447294A priority Critical patent/JPH07303328A/en
Publication of JPH07303328A publication Critical patent/JPH07303328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the influence of a residual current by providing a digital potentiometer which is connected to a photoelectric conversion section and actuated by a signal from a controller and a variable amplifier which is connected to the potentiometer and composed of an amplifier. CONSTITUTION:A controller calculates the effective value of a residual signal and changes the amplification factor of an R-phase variable amplifier 20 by adjusting the digital potentiometer of the amplifier 20 by transmitting a signal to the potentiometer so that the value of the residual signal can become the minimum. After changing the amplification factor of the amplifier 20, the controller again finds the residual current and calculates the effective value of the zero-phase current. The controller sets the potentiometer so that the residual current can become the minimum by repeating the above-mentioned operation several times. Then the controller minimizes the influence of the residual current by adjusting a variable antplifier 20 connected to an S-phase photocurrent sensor and another variable amplifier connected to a T-phase photocurrent sensor. By repeating this adjustment several times in the order of phase, the residual current is minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、残留分の影響の少ない
零相電圧、零相電流を検出し、地絡事故を検出するよう
にした配電線路の地絡事故検出装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault accident detection device for a distribution line, which detects a zero-phase voltage and a zero-phase current having little influence of residuals and detects a ground fault.

【0002】[0002]

【従来の技術】従来の地絡事故検出装置は、図3に示す
ように配電線路の各相R、SおよびTには電流を検出す
る光電流センサ1、2、3および電圧を検出する光電圧
センサ4、5、6が設けてある。7は電気信号を光信号
に変換する電気ー光変換部で、光ファイバを介して各セ
ンサに接続してある。8は光信号を電気信号に変換する
光ー電気変換部で、光ファイバを介して各センサに接続
してある。9、10は光ー電気変換部の信号を増幅する
増幅器で、この増幅器の出力を後記加算器11、12に
出力するようにしてある。加算器11は配電線路の各相
に設けた光電流センサで検出した信号を加算して零相電
流を演算し、増幅器13に出力するようにしてある。加
算器12は配電線路の各相に設けた光電圧センサで検出
した信号を加算して零相電圧を演算し、増幅器14に出
力するようにしてある。増幅器13、14は加算器1
1、12からの零相電流あるいは零相電圧に相当する信
号を増幅し、その出力の基本波成分を抽出するフィルタ
16、17を介してA/D変換器17、18で基本波成
分のアナログ信号をディジタル信号に変換して制御装置
19に出力するようにしてある。制御装置19は入力し
た零相電流信号および零相電圧信号の実効値演算を行な
い、あるいは回路の制御および外部との通信を行うよう
にしてある。この従来の地絡事故検出装置は、各相の線
路電圧、線路電流を増幅器9、10の増幅率を調節して
校正し、次に零相電流、零相電圧を増幅器13、14を
調節して校正する。この校正された地絡事故検出装置は
実際の配電線路に設置して使用される。
2. Description of the Related Art As shown in FIG. 3, a conventional ground-fault accident detecting apparatus includes photocurrent sensors 1, 2, 3 for detecting a current and light detecting a voltage for each phase R, S and T of a distribution line. Voltage sensors 4, 5, 6 are provided. Reference numeral 7 denotes an electro-optical conversion unit for converting an electric signal into an optical signal, which is connected to each sensor via an optical fiber. Reference numeral 8 denotes an opto-electric conversion unit for converting an optical signal into an electric signal, which is connected to each sensor via an optical fiber. Reference numerals 9 and 10 denote amplifiers for amplifying the signal of the opto-electric converter, and the outputs of the amplifiers are output to the adders 11 and 12 described later. The adder 11 adds the signals detected by the photocurrent sensors provided in each phase of the distribution line to calculate the zero-phase current, and outputs the zero-phase current to the amplifier 13. The adder 12 adds signals detected by optical voltage sensors provided in each phase of the distribution line to calculate a zero-phase voltage, and outputs it to the amplifier 14. The amplifiers 13 and 14 are adders 1
A / D converters 17, 18 amplify the signals corresponding to the zero-phase current or zero-phase voltage from 1 and 12, and extract the fundamental wave component of the output, and the analog of the fundamental wave component The signal is converted into a digital signal and output to the control device 19. The control device 19 calculates the effective value of the input zero-phase current signal and zero-phase voltage signal, or controls the circuit and communicates with the outside. In this conventional ground fault detector, the line voltage and line current of each phase are calibrated by adjusting the amplification factors of the amplifiers 9 and 10, and then the zero-phase current and zero-phase voltage are adjusted to the amplifiers 13 and 14. To calibrate. This calibrated ground fault detection device is installed and used on the actual distribution line.

【0003】[0003]

【発明が解決しようとする課題】地絡事故検出装置を校
正した後配電線路に設置すると、光電流センサあるいは
光電圧センサの取り付け状態や取り付け箇所(建物、樹
木の近く等)によってセンサ部の各相間で電流検出感度
および浮遊容量の変化によって電圧検出感度が変化する
ため残留分が発生し、地絡事故検出装置が動作しなかっ
たり検出精度が悪くなるという問題があった。 本発明
は、地絡事故検出装置を配電線路に設置した後、各相の
センサ出力の増幅率を調整し、残留分の影響を小さくす
るようにした地絡事故検出装置を提供することを目的と
する。
When the ground fault detection device is calibrated and then installed on the power distribution line, each sensor unit is selected depending on the mounting condition of the photocurrent sensor or the photovoltage sensor or the mounting location (near a building, a tree, etc.). Since the voltage detection sensitivity changes due to changes in the current detection sensitivity and the stray capacitance between the phases, a residual component is generated, and there is a problem that the ground fault accident detection device does not operate or the detection accuracy deteriorates. It is an object of the present invention to provide a ground fault accident detection device in which after the ground fault accident detection device is installed on a power distribution line, the amplification factor of the sensor output of each phase is adjusted to reduce the influence of the residual component. And

【0004】[0004]

【課題を解決するための手段】上記目的を解決するため
に、本発明の地絡事故検出装置は、配電線路に設けられ
た光電流センサおよび光電圧センサの信号を光ー電気変
換部で電気信号に変換し、配電線路の各相の電気信号を
加算して制御装置により地絡事故を検出する地絡事故検
出装置において、光ー電気変換部に接続し制御装置から
の信号により作動するディジタルポテンショメータと、
このディジタルポテンショメータに接続したアンプより
なる可変増幅器を設けるようにしている。
In order to solve the above-mentioned problems, a ground fault detection device according to the present invention uses a photoelectric conversion unit to convert the signals of a photocurrent sensor and a photovoltage sensor provided on a distribution line into electricity. In a ground fault accident detection device that converts into a signal and adds the electrical signals of each phase of the distribution line to detect a ground fault accident by the control device, a digital signal that is connected to the opto-electric converter and operates by the signal from the control device. Potentiometer,
A variable amplifier including an amplifier connected to the digital potentiometer is provided.

【0005】[0005]

【作用】上記手段により、配電線路に設置する前に校正
し、実際に配電線路に設置して地絡事故検出装置の電源
が投入されると、三相分合成して得られた残留電流およ
び残留電圧をA/D変換し、制御装置で残留電流および
残留電圧の実効値を演算してその値が最小になるように
各相の可変増幅器の増幅率を順番に調整していくので、
残留分の影響を最小限に抑えることができる。
When the ground fault detection device is calibrated by the above means before being installed on the power distribution line and actually installed on the power distribution line and the ground fault detector is powered on, the residual current and Since the residual voltage is A / D converted, the control device calculates the effective values of the residual current and the residual voltage, and the amplification factor of the variable amplifier of each phase is adjusted in order to minimize the values.
The influence of the residue can be minimized.

【0006】[0006]

【実施例】図1は本発明の一実施例を示す回路構成図、
図2は要部回路構成図で、図3と同一部分は同一符号で
示してその説明を省略する。20、21は可変増幅器
で、図2に示すようディジタルポテンショメータ22に
直列に可変抵抗器23が接続され、アンプ24に出力す
るようにしてある。アンプには並列に固定抵抗器25が
接続され、アンプの入力側の一方は接地してある。前記
デジタルポテンショメータは制御装置19からの信号を
入力できるように構成してある。このように構成した地
絡事故検出装置は、各相の線路電圧、線路電流を可変増
幅器20、21の可変抵抗器23を調節することにより
校正する。この場合ディジタルポテンショメータ22は
制御装置19によって所定の大きさに設定されている。
次に線路電圧あるいは線路電流を加算器11、12で加
算して得られた零相電流あるいは零相電圧を増幅器1
7、18の増幅率を調整して校正する。このようにして
校正された地絡事故検出装置の光電流センサあるいは光
電圧センサを実際の配電線路に設置し、配電線路の各相
に電源が投入され、地絡事故が発生していない場合、電
流センサあるいは電圧センサが線路電流あるいは線路電
圧を検出し、加算器で残留電流あるいは残留電圧を検出
し、増幅器で増幅し、A/D変換器で残留電流あるいは
残留電圧のアナログ信号をティジタル信号に変換して制
御装置19に出力する。制御装置が残留信号の実効値演
算を行い、残留信号の値が最小になるように制御装置か
らR相の可変増幅器20のディジタルポテンショメータ
22に信号を送信してディジタルポテンショメータを調
整して増幅率を変える。R相の可変増幅器の増幅率を変
更した後、再度残留電流を求め、この零相電流を制御装
置が実効値演算を行う。これを数回繰り返して残留分が
最小になるようにディジタルポテンショメータ22の設
定する。次にS相の光電流センサに接続した可変増幅器
20、T相の光電流センサに接続した可変増幅器20を
調整することによって、残留分の影響が最小になるよう
にする。上記の調整を各相順に数回繰り返し、残留分が
最小なるようにする。これと同じようにしてR、S、T
相の光電圧センサに接続した可変増幅器21を調整す
る。調整した後通常の計測を行って地絡事故を検出する
ようにしている。実施例では、可変増幅器20、21と
加算器11、12を別にしたがこれらを一つにして同じ
機能をさせることもでき、可変抵抗器23を可変増幅器
20、21の中に入れたが可変増幅器の前もしくは後に
接続してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention,
FIG. 2 is a circuit diagram of an essential part, and the same parts as those in FIG. Variable resistors 20, 21 are connected to a variable resistor 23 in series with the digital potentiometer 22 as shown in FIG. A fixed resistor 25 is connected in parallel to the amplifier, and one input side of the amplifier is grounded. The digital potentiometer is configured so that a signal from the control device 19 can be input. The ground fault detection device configured as described above calibrates the line voltage and line current of each phase by adjusting the variable resistor 23 of the variable amplifiers 20 and 21. In this case, the digital potentiometer 22 is set to a predetermined size by the control device 19.
Next, the amplifier 1 uses the zero-phase current or zero-phase voltage obtained by adding the line voltage or line current in the adders 11 and 12.
Calibrate by adjusting the amplification factors of 7 and 18. If the photocurrent sensor or photovoltage sensor of the ground fault accident detection device calibrated in this way is installed on the actual distribution line and power is applied to each phase of the distribution line, and a ground fault has not occurred, The current sensor or the voltage sensor detects the line current or the line voltage, the adder detects the residual current or the residual voltage, the amplifier amplifies, and the A / D converter converts the residual current or the residual voltage analog signal into a digital signal. It is converted and output to the control device 19. The control device calculates the effective value of the residual signal, and transmits a signal from the control device to the digital potentiometer 22 of the R-phase variable amplifier 20 so that the value of the residual signal becomes the minimum, and adjusts the digital potentiometer to adjust the amplification factor. Change. After changing the amplification factor of the R-phase variable amplifier, the residual current is obtained again, and the zero-phase current is calculated by the controller as the effective value. This is repeated several times and the digital potentiometer 22 is set so that the residual content is minimized. Next, by adjusting the variable amplifier 20 connected to the S-phase photocurrent sensor and the variable amplifier 20 connected to the T-phase photocurrent sensor, the influence of the residual component is minimized. The above adjustment is repeated several times for each phase to minimize the residual content. R, S, T in the same way
Adjust the variable amplifier 21 connected to the phase photovoltage sensor. After the adjustment, normal measurement is performed to detect the ground fault. In the embodiment, the variable amplifiers 20 and 21 and the adders 11 and 12 are separated, but they may be combined to perform the same function, and the variable resistor 23 is inserted in the variable amplifiers 20 and 21. It may be connected before or after the amplifier.

【0007】[0007]

【発明の効果】上記本発明によれば、地絡事故検出装置
の電源投入時に残留分の影響が最小になるように各相の
増幅率を自動的に微調整するので、取り付けや取り付け
箇所によって地絡事故検出装置が動作しなかったり、検
出精度が悪くなるということがなく、正確で高精度な地
絡事故の検出ができるという効果が得られる。
According to the present invention, the amplification factor of each phase is automatically fine-tuned so that the influence of the residual component is minimized when the power of the ground fault detector is turned on. The ground fault accident detection device does not operate and the detection accuracy does not deteriorate, and an effect of being able to detect a ground fault accident accurately and with high accuracy is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す地絡事故検出装置の回
路構成図
FIG. 1 is a circuit configuration diagram of a ground fault accident detection device showing an embodiment of the present invention.

【図2】図1の地絡事故検出装置を示す回路構成図FIG. 2 is a circuit configuration diagram showing the ground fault accident detection device of FIG.

【図3】従来の地絡事故検出装置の回路構成図FIG. 3 is a circuit configuration diagram of a conventional ground fault detection device.

【符号の説明】[Explanation of symbols]

1、2、3 光電流センサ 4、5、6 光電圧セン
サ 7 電気ー光変換部 8 光ー電気変換部 11、
12 加算器 13、14 増幅器 17、18 A/D変換器
19 制御装置 20、21 可変増幅器 22 ディジタルポテンシ
ョメータ 23 可変抵抗器 24 アンプ 25固定抵抗器
1, 2, 3 Photocurrent sensor 4, 5, 6 Photovoltage sensor 7 Electric-optical conversion unit 8 Optical-electric conversion unit 11,
12 adder 13 and 14 amplifier 17 and 18 A / D converter
19 Control device 20, 21 Variable amplifier 22 Digital potentiometer 23 Variable resistor 24 Amplifier 25 Fixed resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配電線路の各相に設けられた光電流セン
サおよび光電圧センサの信号を光ー電気変換部で電気信
号に変換し、配電線路の各相の電気信号を加算して制御
装置により地絡事故を検出する地絡事故検出装置におい
て、光ー電気変換部に接続し制御装置からの信号により
作動するディジタルポテンショメータと、このディジタ
ルポテンショメータに接続したアンプよりなる可変増幅
器を設けたことを特徴する地絡事故検出装置
1. A control device for converting signals of a photocurrent sensor and a photovoltage sensor provided in each phase of a distribution line into an electric signal by an opto-electric conversion unit and adding the electric signals of each phase of the distribution line. In a ground fault accident detection device that detects a ground fault accident by using a digital potentiometer that is connected to the opto-electric converter and is activated by a signal from the control device, and a variable amplifier that is composed of an amplifier connected to this digital potentiometer is provided. Characteristic ground fault accident detection device
JP11447294A 1994-04-28 1994-04-28 Ground-fault detecting device Pending JPH07303328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11447294A JPH07303328A (en) 1994-04-28 1994-04-28 Ground-fault detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11447294A JPH07303328A (en) 1994-04-28 1994-04-28 Ground-fault detecting device

Publications (1)

Publication Number Publication Date
JPH07303328A true JPH07303328A (en) 1995-11-14

Family

ID=14638595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11447294A Pending JPH07303328A (en) 1994-04-28 1994-04-28 Ground-fault detecting device

Country Status (1)

Country Link
JP (1) JPH07303328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830266A (en) * 2012-09-05 2012-12-19 德力西电气有限公司 Phase discriminating circuit of residual current phase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830266A (en) * 2012-09-05 2012-12-19 德力西电气有限公司 Phase discriminating circuit of residual current phase

Similar Documents

Publication Publication Date Title
EP1896859A1 (en) Apparatus for the detection of a current and method for operating such an apparatus
US20060232264A1 (en) Method and device for measuring voltage
CA2026327A1 (en) Spectrophotometric instrument with rapid scanning distortion correction
JP3211861B2 (en) Fourier spectrometer
JPH07303328A (en) Ground-fault detecting device
WO2013075397A1 (en) Photoelectric sensor
JP2560772B2 (en) Deterioration detection device for lightning arrester
KR101476610B1 (en) Multi-junction detector system
JP3283613B2 (en) Load cell noise measurement device
JPH078104B2 (en) Zero-phase measuring device
JP2928616B2 (en) Photodetector
KR0146125B1 (en) Selection ground relay
US20050271398A1 (en) Photo-detector arrangement and process for the calibration thereof
KR950008418Y1 (en) Circuit for detecting disorder of a sources of electricity of electronic type of distributing board
FR2503357A1 (en) CORONA DISCHARGE GAS INDICATOR
JP3009069B2 (en) Ground fault detection device
JP2553415Y2 (en) Dynamic characteristic data bidirectional multiplex transmission equipment for railway vehicles.
JPH0524032Y2 (en)
KR100672042B1 (en) Method for detecting the signal to judge ground fault of acb control unit and system for performing the same
KR940022530A (en) Tracking error offset automatic adjustment device
RU1770733C (en) Strain-gauge for measuring deformation of rotating objects
JPS5744865A (en) Sensing method for fault point in cable
JPH0634689A (en) Zero-phase voltage detector
JPH065965A (en) Light monitoring circuit
KR930008562B1 (en) Measurement device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040128

A521 Written amendment

Effective date: 20040324

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040419