JPH07302729A - Metalized film capacitor - Google Patents

Metalized film capacitor

Info

Publication number
JPH07302729A
JPH07302729A JP9486794A JP9486794A JPH07302729A JP H07302729 A JPH07302729 A JP H07302729A JP 9486794 A JP9486794 A JP 9486794A JP 9486794 A JP9486794 A JP 9486794A JP H07302729 A JPH07302729 A JP H07302729A
Authority
JP
Japan
Prior art keywords
capacitor
resin
film capacitor
metallized film
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9486794A
Other languages
Japanese (ja)
Inventor
Shigeo Okuno
茂男 奥野
Ichiro Kuniya
一郎 国谷
Toshiyuki Nishimori
敏幸 西森
Mitsumasa Oku
光正 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9486794A priority Critical patent/JPH07302729A/en
Publication of JPH07302729A publication Critical patent/JPH07302729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To restrain generation of cracks at the time of heat cycle in a capacitor, especially a metalized film capacitor which is used for high heat resistance. CONSTITUTION:A metalized film capacitor element 1 is accommodated in a case 2, which is filled with resin 3 whose glass transition temperature is higher than or equal to 90 deg.C. An elastic member 7 as a stress absorbing means is laid around the metalized film capacitor element 1. Thereby, when a plastic film as dielectric is expanded or contracted at the time of heat cycle, stress applied to the resin can be reduced since the elastic member 7 absorbs the stress, and generation of cracks of filling resin can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は力率改善用の電力用コン
デンサ、電気機器用のコンデンサ、各種電源回路用のコ
ンデンサ、及び通信機器等に使用される乾式金属化フィ
ルムコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power capacitor for improving power factor, a capacitor for electric equipment, a capacitor for various power supply circuits, and a dry metallized film capacitor used for communication equipment and the like.

【0002】[0002]

【従来の技術】従来より耐熱性が要求される金属化フィ
ルムコンデンサにおいては、誘電体として高耐熱フィル
ムが使用されている。
2. Description of the Related Art In metallized film capacitors which are conventionally required to have heat resistance, a high heat resistance film has been used as a dielectric.

【0003】図7は、従来のコンデンサ構造を示す図で
ある。図7において、1はコンデンサ素子であり、金属
を蒸着したプラスチックフィルムを巻回して構成されて
いる。2はケースであり、内部にコンデンサ素子1を格
納し、さらに樹脂3が充填されている。4は引き出し端
子であり、端子板6に設けられており、コンデンサ素子
1とはリード線5にて接続されている。
FIG. 7 is a diagram showing a conventional capacitor structure. In FIG. 7, reference numeral 1 is a capacitor element, which is formed by winding a plastic film on which metal is vapor-deposited. Reference numeral 2 denotes a case, which houses the capacitor element 1 therein and is further filled with resin 3. Reference numeral 4 denotes a lead terminal, which is provided on the terminal plate 6 and is connected to the capacitor element 1 by a lead wire 5.

【0004】このようなコンデンサにおいてはヒートサ
イクル時にコンデンサ素子1とケース2との間に充填さ
れた樹脂3部分にクラックが生じることがあった。この
対策として周囲温度が樹脂のガラス転移温度(Temp
erature glass、以下Tgという)以上に
上昇した場合、樹脂の分子間結合力の低下により樹脂が
軟化し強度や剛性が低下するガラス転移の特性を活かし
て、充填樹脂3のTgがコンデンサ使用温度よりかなり
低いものを使用することで、ヒートサイクル時の素子の
収縮による充填樹脂3への応力を吸収する手段があっ
た。
In such a capacitor, cracks sometimes occur in the resin 3 portion filled between the capacitor element 1 and the case 2 during the heat cycle. As a countermeasure, the ambient temperature is the glass transition temperature (Temp) of the resin.
When the temperature rises above the normal glass (Tg), the Tg of the filling resin 3 is higher than the temperature at which the capacitor is used by taking advantage of the glass transition property in which the resin softens and the strength and rigidity decrease due to the decrease in the intermolecular bonding force of the resin. There is a means to absorb the stress to the filling resin 3 due to the shrinkage of the element during the heat cycle by using a considerably low material.

【0005】[0005]

【発明が解決しようとする課題】ところが耐熱用コンデ
ンサにおいて前述した手段を用いた場合、Tgと実使用
温度との温度差が通常での使用時と同じであっても実使
用状態での樹脂3の軟化度合が大きくなり、樹脂3を通
じてコンデンサに外気(空気)が入りこみ、空気層が原
因でコロナ放電あるいはSH(自己回復作用)の多発に
より容量減少しやすくなるといった問題点があった。
However, when the above-mentioned means is used in the heat-resistant capacitor, even if the temperature difference between Tg and the actual use temperature is the same as in the normal use, the resin 3 in the actual use state is not used. However, there is a problem in that the degree of softening increases, the outside air (air) enters the capacitor through the resin 3, and corona discharge or SH (self-healing action) frequently occurs due to the air layer, so that the capacity tends to decrease.

【0006】そこで、この容量減少を防止するためにT
gがコンデンサ最高周囲温度以上のものを使用する、あ
るいはできる限りコンデンサ最高周囲温度に近いTgを
有する樹脂を使用する手段がとられているが、逆に実使
用温度よりTgが高かったり、Tgと実使用温度との温
度差が小さいと樹脂の分子間力が低下しにくいために樹
脂3は軟化せず強度や剛性が強く保たれたままなのでヒ
ートサイクル時のコンデンサフィルムの収縮による樹脂
3への応力を吸収できずに樹脂3の強度を越えたときク
ラックが発生するといった問題点があった。
Therefore, in order to prevent this capacity decrease, T
Measures are used in which g is higher than the maximum ambient temperature of the capacitor, or a resin having Tg as close as possible to the maximum ambient temperature of the capacitor is used, but conversely, Tg is higher than the actual operating temperature, or Tg If the temperature difference from the actual use temperature is small, the intermolecular force of the resin is less likely to decrease, so the resin 3 does not soften and the strength and rigidity remain strong. There is a problem that cracks occur when the strength of the resin 3 is exceeded without being able to absorb the stress.

【0007】これらの問題点を解決するには、Tgがコ
ンデンサ最高周囲温度以下で樹脂の軟化度合が大きすぎ
ず、なおかつコンデンサフィルムの収縮による応力を吸
収できる温度ポイントと一致すれば両方の問題を解決で
きるのであるが、その場合、種々の条件を加味しなけれ
ばならず最適なTgの値を見つけることは非常に困難で
あった。
In order to solve these problems, if Tg is equal to or lower than the maximum ambient temperature of the capacitor, the degree of softening of the resin is not too large, and if it coincides with the temperature point at which the stress due to the contraction of the capacitor film can be absorbed, both problems will be solved. Although it can be solved, in that case, it was very difficult to find the optimum value of Tg because various conditions had to be taken into consideration.

【0008】本発明は上記問題点を解決するものであ
り、コンデンサにおいて、特に高温で使用される耐熱用
コンデンサにおいてはTgの高い充填樹脂を使用した場
合でも、ヒートサイクル時のクラック発生を防止した金
属化フィルムコンデンサを提供することを目的とする。
The present invention solves the above-mentioned problems, and in a capacitor, particularly in a heat-resistant capacitor used at high temperature, even when a filling resin having a high Tg is used, generation of cracks during heat cycle is prevented. An object is to provide a metallized film capacitor.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の金属化フィルムコンデンサは、金属化フィ
ルムコンデンサ素子をケースに格納し、このケース内に
樹脂を充填するとともに、前記金属化フィルムコンデン
サ素子の周囲に応力吸収手段を備えている。
In order to achieve the above object, the metallized film capacitor of the present invention has a metallized film capacitor element housed in a case, and the case is filled with resin and the metallized film capacitor A stress absorbing means is provided around the film capacitor element.

【0010】[0010]

【作用】本発明は前記の手段によって、高温、低温のサ
イクル時に誘電体であるプラスチックフィルムが伸縮し
た際、充填樹脂でその応力を吸収できなくても応力吸収
手段がその応力を吸収するため樹脂に加わる応力を低減
でき、充填樹脂のクラック発生を防止できる。
According to the present invention, when the plastic film, which is a dielectric, expands and contracts during high temperature and low temperature cycles by the above means, the stress absorbing means absorbs the stress even if the filling resin cannot absorb the stress. The stress applied to the resin can be reduced, and the occurrence of cracks in the filling resin can be prevented.

【0011】[0011]

【実施例】以下本発明を実施例に基づき説明する。EXAMPLES The present invention will be described below based on examples.

【0012】実施例に使用したコンデンサは、ポリプロ
ピレンフィルムを誘電体とした厚み7μmのアルミ蒸着
フィルムからなる保安機構付のコンデンサで容量は12
μF、充填樹脂3のTgは90〜100℃である。ま
た、本実施例の比較用に以下に示すような従来品も同時
に作製した。
The capacitor used in the examples is a capacitor with a safety mechanism made of a 7 μm thick aluminum vapor-deposited film using a polypropylene film as a dielectric and has a capacity of 12
μF and Tg of the filling resin 3 are 90 to 100 ° C. For comparison with this example, the following conventional product was also manufactured at the same time.

【0013】これらのコンデンサを用いた試験結果を
(表1)に示す。
The test results using these capacitors are shown in (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】(表1)の「試作形態」におけるそれぞれ
の形態は図1〜3に示すとおりである。
Each form in the "prototype form" of Table 1 is as shown in FIGS.

【0016】すなわち、図1は本発明の一実施例におけ
る第1のコンデンサ構造を示す図である。図において従
来のコンデンサと同様の点については、同一の符号を付
し、説明を省略する(以下同じ)が、従来のコンデンサ
と異なる点は、素子1全体に応力吸収手段である弾性体
7を設けた点である。
That is, FIG. 1 is a diagram showing a first capacitor structure in one embodiment of the present invention. In the figure, the same parts as those of the conventional capacitor are designated by the same reference numerals and the description thereof will be omitted (the same applies hereinafter), but the difference from the conventional capacitor is that the elastic body 7 as the stress absorbing means is provided over the entire element 1. That is the point.

【0017】また、図2は本発明の一実施例における第
2のコンデンサ構造を示す図である。このコンデンサに
ついては素子1全体に弾性体7を設けるのではなく、素
子1の上部引き出し端子4側端面に応力吸収手段である
弾性体7を設けている。
FIG. 2 is a diagram showing a second capacitor structure in one embodiment of the present invention. In this capacitor, the elastic body 7 is not provided on the entire element 1, but the elastic body 7 as the stress absorbing means is provided on the end surface of the element 1 on the upper lead terminal 4 side.

【0018】さらに、図3は本発明の一実施例における
第3のコンデンサ構造を示す図である。このコンデンサ
については素子1全体に弾性体7を設けるのではなく、
素子1のすべての端面に応力吸収手段である弾性体7を
設けている。
Further, FIG. 3 is a diagram showing a third capacitor structure in one embodiment of the present invention. For this capacitor, instead of providing the elastic body 7 on the entire element 1,
Elastic elements 7 serving as stress absorbing means are provided on all end faces of the element 1.

【0019】また、それぞれの試作品には応力吸収手段
として(表1)の「材質」欄に示したような弾性体7を
用いた。
In each prototype, an elastic body 7 as shown in the "Material" column of (Table 1) was used as a stress absorbing means.

【0020】なお、本実施例では、1例として100℃
以上で使用されるコンデンサにて試験を行っているが、
本発明は必ずしも100℃以上での使用に限られるもの
ではない。
In this embodiment, as an example, 100 ° C.
We have tested with the capacitors used above,
The present invention is not necessarily limited to use at 100 ° C or higher.

【0021】(表1)に示すようにNo.1〜6の試作
品を各試料3個ずつ同時に試験条件−25℃、6時間印
加電圧OFF、115℃、6時間印加電圧1.3EON
でヒートサイクル試験を実施したところ、従来例の試料
が3台中2台が樹脂3面にクラックが入ったのに対し、
本実施例の試料は合計15台中0台と明確な差があらわ
れた。また8μmでの試料も製作して同様にヒートサイ
クル試験を行ったが8μmではクラックは入らず差はあ
らわれなかった。このことより誘電体フィルムの厚みが
薄いほどフィルムの熱収縮が大きく、充填樹脂3に加わ
る応力が大きくなり樹脂3にクラックが入りやすいこと
がわかる。また、クラックの入りやすさは誘電体フィル
ムの厚みだけで決まるのではなく、充填樹脂3のTg、
コンデンサ素子巾、巻外径にも大きく影響される。(表
2)は素子巾と巻外径別のヒートサイクル試験結果であ
る。
As shown in (Table 1), No. Simultaneous test conditions for 3 samples of each of 1-6 prototypes-25 ° C, 6 hours applied voltage OFF, 115 ° C, 6 hours applied voltage 1.3EON
When a heat cycle test was carried out with, the conventional example had cracks on the resin 3 surface in 2 out of 3
The sample of this example showed a clear difference of 0 out of 15 units. Further, a sample having a thickness of 8 μm was also manufactured and subjected to a heat cycle test in the same manner, but at a thickness of 8 μm, no crack was generated and no difference appeared. From this, it is understood that the thinner the dielectric film is, the larger the heat shrinkage of the film is, the larger the stress applied to the filling resin 3 is, and the cracking easily occurs in the resin 3. Further, the easiness of cracking is not determined only by the thickness of the dielectric film, but the Tg of the filling resin 3,
It is also greatly affected by the width of the capacitor element and the outer diameter of the winding. Table 2 shows the heat cycle test results for each element width and winding outer diameter.

【0022】[0022]

【表2】 [Table 2]

【0023】この試験では、図2および図7に示すよう
なタイプのコンデンサを用いているが(表2)において
素子巾とは、円筒状のコンデンサ素子1の筒の長さを、
巻外径とはコンデンサ素子1の底面の直径を意味してい
る。
In this test, capacitors of the types shown in FIGS. 2 and 7 are used, but in Table 2 the element width is the length of the cylindrical capacitor element 1.
The outer diameter of winding means the diameter of the bottom surface of the capacitor element 1.

【0024】一般的にコンデンサに用いられるプラスチ
ックフィルムの収縮率はフィルムの長手方向(TD方
向)より巾方向(MD方向)が大きいことが知られてい
るが(表2)の結果より素子巾が狭く、巻外径が小さい
ほどクラックが入りにくく、逆に素子巾が広く巻外形が
大きいほどクラックが入りやすいことがわかるがいずれ
にせよ応力吸収手段として弾性体7を入れた本実施例の
試料はクラックが発生しない結果となった。このことよ
り誘電体であるプラスチックフィルムが伸縮しても弾性
体7がその応力を吸収するため樹脂3に加わる応力を低
減させていることがわかる。また素子1の非端面側(側
面側)にのみ弾性体7を入れたもの(図示せず)でも同
様の試験を行ったがこの場合は弾性体7なしの場合と差
はなく、素子巾方向への収縮に対して弾性体7を入れる
ことが効果的であることがわかる。
It is known that the shrinkage ratio of a plastic film used for a capacitor is generally larger in the width direction (MD direction) than in the film longitudinal direction (TD direction). It can be seen that the narrower the winding outer diameter, the harder the cracks are, and conversely, the wider the element width is and the larger the winding outer shape is, the more the cracks are easily generated. Resulted in no cracking. From this, it is understood that the elastic body 7 absorbs the stress even when the dielectric plastic film expands and contracts, so that the stress applied to the resin 3 is reduced. A similar test was also performed on the element 1 in which the elastic body 7 is inserted only on the non-end surface side (side surface side) (not shown), but in this case, there is no difference from the case without the elastic body 7, and the element width direction It can be seen that it is effective to insert the elastic body 7 against the contraction to the.

【0025】さらに比較のためにTgが90℃以下の低
い樹脂3で充填を行ったコンデンサも同時作製し、同様
の試験を行ったところTgが低い試料は容量減少が大き
な結果となった。この結果を図6に示す。この原因はや
はりTgが低いことで充填樹脂3の分子間力が極端に低
下し樹脂3の軟化度合が大きくなり、樹脂3を通じてコ
ンデンサに外気(空気)が入りこみ、空気層が原因でコ
ロナ放電あるいはSHの多発により容量減少が大きくな
ったと考えられる(なお、これは高温使用時での話であ
り、通常使用時にTgが90℃以下の樹脂3を用いた際
に本発明が成り立たないことを意味するものではな
い)。ところでTgが90℃以上の樹脂充填を行ったコ
ンデンサに弾性体7を入れたことによる弊害は全くな
く、他の特性面でも従来例と何等差はなかった。
Further, for comparison, a capacitor filled with resin 3 having a low Tg of 90 ° C. or lower was also prepared at the same time, and the same test was performed. As a result, the sample having a low Tg showed a large decrease in capacity. The result is shown in FIG. This is because the Tg is low and the intermolecular force of the filling resin 3 is extremely reduced, the softening degree of the resin 3 becomes large, and the outside air (air) enters the capacitor through the resin 3, and the air layer causes corona discharge or It is considered that the decrease in capacity became large due to the frequent occurrence of SH (this is a story at the time of high temperature use, and it means that the present invention does not hold when using resin 3 having a Tg of 90 ° C. or less during normal use. Not what you do). By the way, there was no problem caused by putting the elastic body 7 in the resin-filled capacitor having Tg of 90 ° C. or higher, and there was no difference in other characteristics from the conventional example.

【0026】また弾性体7の材質については本発明の耐
熱用コンデンサについては−25℃〜115℃の間で性
質がなるべく変化せず耐電圧性に優れ、絶縁抵抗の大き
なものが望ましい。
With respect to the material of the elastic body 7, it is desirable that the heat-resistant capacitor of the present invention has a property that does not change as much as possible between -25 ° C. and 115 ° C., is excellent in withstand voltage, and has a large insulation resistance.

【0027】さらに、弾性体7の厚さは0.5mm以上
が望ましい。すなわち、本実施例の図1または図2でコ
ンデンサ素子1の外部電極引き出し側(上側)の端面と
ケース2の電極引き出し端子4との間の距離が短いと、
絶縁が保てず短絡する可能性がある。そのために弾性体
7の厚みと弾性体7自体の耐電圧を考慮する必要がある
が耐電圧値については、最低限、定格電圧(230V)
の2.15倍(495V)以上の水準を必要とし、それ
には弾性体7の耐電圧がA.C.1kV/mmとする
と、厚みは最低0.5mmとなるからである。
Further, the thickness of the elastic body 7 is preferably 0.5 mm or more. That is, when the distance between the end surface of the capacitor element 1 on the external electrode lead-out side (upper side) and the electrode lead-out terminal 4 of the case 2 in FIG.
Insulation cannot be maintained and short circuit may occur. Therefore, it is necessary to consider the thickness of the elastic body 7 and the withstand voltage of the elastic body 7 itself, but the minimum withstand voltage value is the rated voltage (230 V).
2.15 times (495 V) or higher is required, and the withstand voltage of the elastic body 7 is A.V. C. This is because at 1 kV / mm, the minimum thickness is 0.5 mm.

【0028】なお、本実施例では巻回型のコンデンサに
て説明を行ったが、図4、図5に示すような積層型のコ
ンデンサにおいても同様の効果があることは言うまでも
ない。
Although the winding type capacitor is described in this embodiment, it is needless to say that the same effect can be obtained in a laminated type capacitor as shown in FIGS. 4 and 5.

【0029】図4は、本発明の一実施例の第4のコンデ
ンサ構造を示す図であり、図5は本発明の一実施例の第
5のコンデンサ構造を示す図である。図4においてコン
デンサ素子1は積層型であり、弾性体7が素子1全体を
覆っている。図5では弾性体7がすべての端面を覆って
いる。その他については、他の実施例と同様である。
FIG. 4 is a diagram showing a fourth capacitor structure according to one embodiment of the present invention, and FIG. 5 is a diagram showing a fifth capacitor structure according to one embodiment of the present invention. In FIG. 4, the capacitor element 1 is a laminated type, and the elastic body 7 covers the entire element 1. In FIG. 5, the elastic body 7 covers all the end faces. Others are the same as the other embodiments.

【0030】さらに、本実施例では、耐熱用コンデンサ
についての発明として説明を行ってきているが、通常使
用時のクラック対策としても有用であることもまた言う
までもないことである。
Furthermore, in this embodiment, the heat-resistant capacitor has been described as an invention, but it goes without saying that it is also useful as a countermeasure against cracks during normal use.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、金属化
フィルムコンデンサ素子をケースに格納し、このケース
内に樹脂を充填するとともに、前記金属化フィルムコン
デンサ素子の周囲に応力吸収手段を備えたことによって
高温と低温の差が大きなヒートサイクル試験において、
誘電体であるプラスチックフィルムが伸縮しても応力吸
収手段がその応力を吸収するため樹脂に加わる応力を低
減でき、充填樹脂のクラック発生を防げる効果がある。
As is apparent from the above description, the metallized film capacitor element is housed in the case, the case is filled with resin, and the stress absorbing means is provided around the metallized film capacitor element. Therefore, in the heat cycle test where the difference between high temperature and low temperature is large,
Even if the plastic film, which is the dielectric, expands and contracts, the stress absorbing means absorbs the stress, so that the stress applied to the resin can be reduced, and the cracking of the filling resin can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の第1のコンデンサ構造を示
す図
FIG. 1 is a diagram showing a first capacitor structure according to an embodiment of the present invention.

【図2】本発明の一実施例の第2のコンデンサ構造を示
す図
FIG. 2 is a diagram showing a second capacitor structure according to an embodiment of the present invention.

【図3】本発明の一実施例の第3のコンデンサ構造を示
す図
FIG. 3 is a diagram showing a third capacitor structure according to an embodiment of the present invention.

【図4】本発明の一実施例の第4のコンデンサ構造を示
す図
FIG. 4 is a diagram showing a fourth capacitor structure according to an embodiment of the present invention.

【図5】本発明の一実施例の第5のコンデンサ構造を示
す図
FIG. 5 is a diagram showing a fifth capacitor structure of one embodiment of the present invention.

【図6】充填樹脂のTgの差によるヒートサイクル試験
結果を示す図
FIG. 6 is a view showing a heat cycle test result based on a difference in Tg of filled resins.

【図7】従来例のコンデンサ構造を示す図FIG. 7 is a diagram showing a conventional capacitor structure.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 ケース 3 充填樹脂 4 引き出し端子 5 リード線 6 端子板 7 弾性体 1 Capacitor element 2 Case 3 Filling resin 4 Lead-out terminal 5 Lead wire 6 Terminal board 7 Elastic body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥 光正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mitsumasa Oku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属化フィルムコンデンサ素子をケース
に格納し、このケース内に樹脂を充填するとともに、前
記金属化フィルムコンデンサ素子の周囲に応力吸収手段
を備えた金属化フィルムコンデンサ。
1. A metallized film capacitor in which a metallized film capacitor element is housed in a case, resin is filled in the case, and stress absorbing means is provided around the metallized film capacitor element.
【請求項2】 金属化フィルムコンデンサ素子をケース
に格納し、このケース内に樹脂を充填するとともに、前
記金属化フィルムコンデンサ素子のすべての端面、もし
くは、少なくとも上部引き出し端子側に位置する前記端
面に応力吸収手段を備えた金属化フィルムコンデンサ。
2. A metallized film capacitor element is housed in a case, resin is filled in the case, and all the end surfaces of the metallized film capacitor element, or at least the end surface located on the upper lead terminal side, A metallized film capacitor provided with a stress absorbing means.
【請求項3】 樹脂のガラス転移温度が90℃以上であ
る請求項1または2記載の金属化フィルムコンデンサ。
3. The metallized film capacitor according to claim 1, wherein the glass transition temperature of the resin is 90 ° C. or higher.
【請求項4】 応力吸収手段が弾性体である請求項1ま
たは2記載の金属化フィルムコンデンサ。
4. The metallized film capacitor according to claim 1, wherein the stress absorbing means is an elastic body.
【請求項5】 弾性体が厚さ0.5mm以上の弾力性の
あるゴムである請求項4記載の金属化フィルムコンデン
サ。
5. The metallized film capacitor according to claim 4, wherein the elastic body is a rubber having a thickness of 0.5 mm or more and having elasticity.
JP9486794A 1994-05-09 1994-05-09 Metalized film capacitor Pending JPH07302729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9486794A JPH07302729A (en) 1994-05-09 1994-05-09 Metalized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9486794A JPH07302729A (en) 1994-05-09 1994-05-09 Metalized film capacitor

Publications (1)

Publication Number Publication Date
JPH07302729A true JPH07302729A (en) 1995-11-14

Family

ID=14122002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9486794A Pending JPH07302729A (en) 1994-05-09 1994-05-09 Metalized film capacitor

Country Status (1)

Country Link
JP (1) JPH07302729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245170A (en) * 2005-03-02 2006-09-14 Shizuki Electric Co Inc Capacitor
JP2010016160A (en) * 2008-07-03 2010-01-21 Hitachi Chemical Electronics Co Ltd Metalized film capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245170A (en) * 2005-03-02 2006-09-14 Shizuki Electric Co Inc Capacitor
JP4702597B2 (en) * 2005-03-02 2011-06-15 株式会社指月電機製作所 Capacitor
JP2010016160A (en) * 2008-07-03 2010-01-21 Hitachi Chemical Electronics Co Ltd Metalized film capacitor

Similar Documents

Publication Publication Date Title
JP5320391B2 (en) Electrochemical device and its mounting structure
WO2006109732A1 (en) Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
JP5239989B2 (en) Case mold type capacitor
US3585468A (en) Thermoplastic jacketed thermoplastic capacitor
US3967168A (en) Electrical capacitor having alternating metallized nonheat-shrinkable dielectric layers and heat-shrinkable dielectric layers
JPH07302729A (en) Metalized film capacitor
US3436610A (en) Encapsulated capacitor
JP3791457B2 (en) Capacitor and its manufacturing method
CN205723163U (en) A kind of thin film capacitor
JPH0537467Y2 (en)
US2436857A (en) Container and terminal for electrical devices
KR940006079Y1 (en) Film condenser
JPH02194614A (en) Chip capacitor and manufacture thereof
JP2004153217A (en) Solid-state electrolytic capacitor and its manufacturing method
JPS5856314A (en) Dry condenser
UA80997C2 (en) Capacitor with film-type dielectric for boring devices
JPH0534097Y2 (en)
JP3102776U (en) Surge absorbing element
CN113228210A (en) Capacitor with a capacitor element
JPS5972714A (en) Moisture type condenser
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPS5932117Y2 (en) plastic film capacitor
JP2001284190A (en) Solid electrolytic capacitor
JPH0528749Y2 (en)
JPS58171812A (en) Electrolytic condenser