JPH07302606A - Starting method for hydrogen storage tank built-in fuel cell system - Google Patents

Starting method for hydrogen storage tank built-in fuel cell system

Info

Publication number
JPH07302606A
JPH07302606A JP6093558A JP9355894A JPH07302606A JP H07302606 A JPH07302606 A JP H07302606A JP 6093558 A JP6093558 A JP 6093558A JP 9355894 A JP9355894 A JP 9355894A JP H07302606 A JPH07302606 A JP H07302606A
Authority
JP
Japan
Prior art keywords
gas pressure
hydrogen
hydrogen gas
storage tank
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6093558A
Other languages
Japanese (ja)
Other versions
JP3071092B2 (en
Inventor
Nobuyoshi Nishizawa
信好 西沢
Koji Shindo
浩二 進藤
Hiroshi Mukai
広志 向井
Masashi Fujita
昌士 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6093558A priority Critical patent/JP3071092B2/en
Publication of JPH07302606A publication Critical patent/JPH07302606A/en
Application granted granted Critical
Publication of JP3071092B2 publication Critical patent/JP3071092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent an operation impossible phenomenon caused by the shortage of power for an internal load by controlling supply power when detected hydrogen gas pressure is lower than reference gas-pressure and is higher than set pressure. CONSTITUTION:When a fuel cell 1 starts load temperature rising, a controller 9 reads out a gas pressure value in a hydrogen storage tank 2 through a hydrogen gas pressure sensor 3 and refers it to a hydrogen gas pressure upper limit value PH which is previously set in an operation control program. When the hydrogen gas pressure is equal to the upper limit value or higher, the controller 9 sets an internal set value in LH and increases internal load current. When the hydrogen pressure is less than the upper limit PH, the controller 9 reads out a hydrogen gas pressure value in the hydrogen storage tank through the sensor 3, and refers it to a hydrogen gas pressure lower limit value PL. When the hydrogen gas pressure is less than the lower limit value PL, the controller decrease the internal load current, keeps this state for a specified time, and waits rising of the temperature in the hydrogen storage tank, then after a specified time elapsed, measures the gas pressure again, and conducts the same operation as the above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を用いた
水素貯蔵用タンクを水素供給源とする燃料電池システム
の起動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a fuel cell system using a hydrogen storage tank using a hydrogen storage alloy as a hydrogen supply source.

【0002】[0002]

【従来の技術】従来、燃料電池を使用した電源として
は、据置型と可搬型とが知られている。据置型電源の場
合は、外部電源からの電力供給により負荷昇温用ヒータ
を加熱して電池を昇温することができるが、移動用電源
等の比較的出力規模の小さい可搬型電源の場合には、前
記据置型電源のように外部電源からの電力供給は望めな
いので、燃料電池の発電電力の一部を利用してヒータを
加熱して電池を昇温している。このようなヒータ加熱方
式の燃料電池システムとして、図6に示すような、燃料
電池51と,制御装置54と,内部負荷(ヒータ1〜
3)53と,DC/DCコンバータ56とから構成され
たシステムが知られており、このシステムは、電池電圧
と電池電流を監視しながら、ヒータの作動を制御して除
々に燃料電池を昇温するものである。
2. Description of the Related Art Conventionally, as a power source using a fuel cell, a stationary type and a portable type are known. In the case of a stationary power supply, the load heating heater can be heated to heat the battery by supplying power from an external power supply, but in the case of a portable power supply with a relatively small output such as a mobile power supply, Since it is not possible to expect power supply from an external power source unlike the stationary power source, the heater is heated to raise the temperature of the battery by utilizing a part of the power generated by the fuel cell. As such a heater heating type fuel cell system, as shown in FIG. 6, a fuel cell 51, a control device 54, an internal load (heater 1 to heater 1
3) A system including 53 and a DC / DC converter 56 is known. This system controls the operation of the heater and gradually raises the temperature of the fuel cell while monitoring the cell voltage and the cell current. To do.

【0003】ところで、最近、水素吸蔵合金に水素を吸
蔵させた水素吸蔵タンクを可搬型燃料電池システムの燃
料給源として使用されるようになって来ている。このよ
うな水素吸蔵タンクを用いた可搬型燃料電池システム
は、水素吸蔵タンクが圧縮加圧型の水素貯蔵タンクにく
らべ単位容量当たりの水素貯蔵効率が高いことから、圧
縮加圧型タンクを用いる場合に比べて、システムのコン
パクト化が可能となるので極めて有用である。
By the way, recently, a hydrogen storage tank in which hydrogen is stored in a hydrogen storage alloy has come to be used as a fuel supply source of a portable fuel cell system. A portable fuel cell system using such a hydrogen storage tank has a higher hydrogen storage efficiency per unit capacity than a compression-pressurized hydrogen storage tank, so compared to the case of using a compression-pressurized tank. Therefore, the system can be made compact, which is extremely useful.

【0004】[0004]

【発明が解決しようとする課題】しかし、水素吸蔵合金
からの水素の放出は、吸熱反応であるため、水素の放出
に伴う吸熱量に相当する熱量が外部から十分に供給され
ない場合には、次第に水素吸蔵タンクの温度が低下し水
素供給能力が低下するという問題がある。したがって、
水素吸蔵タンクを組み込んだ燃料電池システムにあって
は、外気温度が低い場合には燃料電池本体を好適な作動
温度にまで加温するとともに、水素吸蔵タンクをも加温
して水素吸蔵タンクから電池反応に必要な水素が十分に
供給できるような状態にしてやらねばならない。ところ
が、電池起動時は燃料電池本体の温度が低いため、発電
能力が小さいとともに、水素吸蔵タンクの温度も低いた
め水素吸蔵タンクから水素が十分に供給されない。した
がって、電池本体や水素吸蔵タンクを加温するために、
システムの内部ヒータを作動させると、その負荷を賄う
だけの発電がなされず、加温と発電能力との間で悪循環
に陥って電池が作動不能となり、いつまで経っても電池
を定常運転状態に移行できないという問題があった。
However, since the release of hydrogen from the hydrogen storage alloy is an endothermic reaction, when the amount of heat corresponding to the endothermic amount of the release of hydrogen is not sufficiently supplied from the outside, it is gradually increased. There is a problem that the temperature of the hydrogen storage tank decreases and the hydrogen supply capacity decreases. Therefore,
In a fuel cell system incorporating a hydrogen storage tank, when the outside air temperature is low, the fuel cell main body is heated to a suitable operating temperature, and the hydrogen storage tank is also heated so that the hydrogen storage tank can It must be in a state where hydrogen necessary for the reaction can be sufficiently supplied. However, since the temperature of the fuel cell main body is low at the time of starting the cell, the power generation capacity is small and the temperature of the hydrogen storage tank is also low, so that hydrogen is not sufficiently supplied from the hydrogen storage tank. Therefore, in order to heat the battery body and hydrogen storage tank,
When the internal heater of the system is activated, power is not generated to cover the load, and a vicious cycle between heating and power generation occurs, rendering the battery inoperable and shifting the battery to a steady operating state forever. There was a problem that I could not.

【0005】本発明は上記問題点を解決するために、水
素吸蔵タンクからの水素の供給能力に応じて最適な負荷
を与えながら電池を起動することのできる、水素吸蔵タ
ンクを組み込んだ燃料電池システムの起動方法を提供す
ることを目的とする。
In order to solve the above problems, the present invention is a fuel cell system incorporating a hydrogen storage tank capable of starting a cell while applying an optimum load according to the hydrogen supply capacity of the hydrogen storage tank. The purpose is to provide a method of starting.

【0006】[0006]

【課題を解決するための手段】本発明の燃料電池システ
ムの起動方法は、水素吸蔵合金を用いた水素貯蔵用の水
素吸蔵タンクから水素の供給を得て発電を行い、その発
電電力を利用して内部負荷である昇温ヒータを加熱し、
このヒータの熱によって燃料電池本体及び水素吸蔵タン
クを加温する燃料電池システムにおいて、前記水素吸蔵
タンクから供給される水素ガスの圧力を、一定時間毎に
検出する水素ガス圧検出ステップと、前記水素ガス圧検
出ステップの検出した水素ガス圧が、所定の基準ガス圧
を下回るか、所定の基準ガス圧以上かを判定する水素ガ
ス圧判定ステップと、前記水素ガス圧検出ステップで検
出した水素ガス圧が、所定の基準ガス圧を下回る場合に
は、昇温ヒータへ所定の電流より小さい電流を供給し、
前記水素ガス圧が所定の圧力以上である場合には、昇温
ヒータへ前記所定の電流より大きい電流を供給する電力
供給制御ステップと、を繰り返して燃料電池本体を定常
運転状態に移行させることを特徴とする。
A method for starting a fuel cell system according to the present invention uses a generated power obtained by supplying hydrogen from a hydrogen storage tank for storing hydrogen which uses a hydrogen storage alloy. To heat up the temperature raising heater, which is an internal load,
In the fuel cell system that heats the fuel cell main body and the hydrogen storage tank by the heat of the heater, a hydrogen gas pressure detection step of detecting the pressure of the hydrogen gas supplied from the hydrogen storage tank at regular intervals; Hydrogen gas pressure determination step of determining whether the hydrogen gas pressure detected in the gas pressure detection step is lower than a predetermined reference gas pressure or higher than a predetermined reference gas pressure, and the hydrogen gas pressure detected in the hydrogen gas pressure detection step. However, when it is lower than a predetermined reference gas pressure, a current smaller than a predetermined current is supplied to the temperature raising heater,
When the hydrogen gas pressure is equal to or higher than a predetermined pressure, the power supply control step of supplying a current larger than the predetermined current to the temperature raising heater is repeated to shift the fuel cell main body to a steady operation state. Characterize.

【0007】[0007]

【作用】上記構成によれば、水素ガス圧検出ステップで
は、水素吸蔵タンクから供給される水素ガスの圧力を一
定時間毎に検出する。水素ガス圧判定ステップでは、前
記水素ガス圧検出ステップの検出した水素ガス圧が、所
定の基準ガス圧を下回るか、所定の基準ガス圧以上かを
判定する。そして、電力供給制御ステップでは、前記水
素ガス圧検出ステップで検出した水素ガス圧が、所定の
基準ガス圧を上回る場合には、昇温ヒータへ所定の電流
より小さい電流を供給し、一方前記水素ガス圧が所定の
圧力以上である場合には、昇温ヒータへ前記所定の電流
より大きい電流を供給するようにする。このような一連
のステップを繰り返しつつ、次第に燃料電池本体の温度
を高め、定常運転に移行させる。
According to the above construction, in the hydrogen gas pressure detecting step, the pressure of the hydrogen gas supplied from the hydrogen storage tank is detected at regular intervals. In the hydrogen gas pressure determination step, it is determined whether the hydrogen gas pressure detected in the hydrogen gas pressure detection step is lower than a predetermined reference gas pressure or higher than a predetermined reference gas pressure. Then, in the power supply control step, when the hydrogen gas pressure detected in the hydrogen gas pressure detection step exceeds a predetermined reference gas pressure, a current smaller than a predetermined current is supplied to the temperature raising heater, while the hydrogen gas When the gas pressure is equal to or higher than the predetermined pressure, a current larger than the predetermined current is supplied to the temperature raising heater. While repeating such a series of steps, the temperature of the fuel cell main body is gradually raised to shift to the steady operation.

【0008】このような構成であると、外気温度が低い
ときに、従来の内部負荷制御システムにおいて発生した
現象、即ち水素吸蔵タンクから供給される水素ガスの圧
力が、起動初期に必要とする水素ガス圧を下回るため
に、水素ガス不足により燃料電池の発電量が著しく小さ
くなり、内部負荷の電力を賄えないことから作動不能に
陥るといった現象、を防止できる。
With such a structure, when the outside air temperature is low, the phenomenon that occurs in the conventional internal load control system, that is, the pressure of the hydrogen gas supplied from the hydrogen storage tank is the hydrogen required at the initial stage of startup. It is possible to prevent a phenomenon in which the amount of power generated by the fuel cell is significantly reduced due to a shortage of hydrogen gas because the gas pressure is lower than the gas pressure, and the power cannot be supplied to the internal load, resulting in inoperability.

【0009】[0009]

【実施例】図1は本発明の起動方法を実現するために使
用する可搬型燃料電池システムの概略構成図である。図
1において、1は水素ガスと酸素ガス(空気)とで発電
を行う燃料電池本体である。2は前記燃料電池1に燃料
ガスを供給する水素吸蔵タンクであり、3は水素吸蔵タ
ンクから供給される水素ガスの圧力を測定する水素ガス
圧センサ、4は燃料電池本体の温度を測定する電池温度
センサである。また5、6、7は前記燃料電池1を昇温
するための内部負荷(ヒータ)、8は前記内部負荷(ヒ
ータ)の熱を燃料電池本体に送風する送風機である。更
に9は前記水素ガス圧センサ3からのガス圧情報に基づ
いて、前記内部負荷5、6、7を制御するとともに、前
記温度センサ4からの温度情報に基づいて、燃料電池の
温度が所定温度に達した場合に負荷昇温を停止し、外部
負荷に対する電力供給を開始するよう制御する制御部で
ある。
FIG. 1 is a schematic configuration diagram of a portable fuel cell system used for realizing the starting method of the present invention. In FIG. 1, reference numeral 1 is a fuel cell main body that generates electricity using hydrogen gas and oxygen gas (air). 2 is a hydrogen storage tank for supplying fuel gas to the fuel cell 1, 3 is a hydrogen gas pressure sensor for measuring the pressure of hydrogen gas supplied from the hydrogen storage tank, and 4 is a battery for measuring the temperature of the fuel cell body. It is a temperature sensor. Reference numerals 5, 6 and 7 are internal loads (heaters) for raising the temperature of the fuel cell 1, and 8 is a blower for blowing the heat of the internal loads (heater) to the fuel cell main body. Further, 9 controls the internal loads 5, 6, and 7 based on the gas pressure information from the hydrogen gas pressure sensor 3, and the temperature of the fuel cell is a predetermined temperature based on the temperature information from the temperature sensor 4. The control unit controls to stop the temperature rise of the load and to start the power supply to the external load when the temperature reaches.

【0010】このような部材で構成される燃料電池シス
テムの前記水素吸蔵タンク2は、前記内部負荷(ヒー
タ)及び燃料電池本体により加温された空気により加温
できるように前記送風機8の風下に位置させてある。し
たがって、電池が起動されると、前記内部負荷の発する
熱や燃料電池が発する熱により除々に加温されて次第に
水素供給能力が高まることになる。なお、前記内部負荷
5、6、7及び前記制御部9で構成される負荷制御回路
は、サイリスタ等を用いたスイッチング回路として、そ
のスイッチオン時間を長短制御することにより内部負荷
を調製することもできる。
The hydrogen storage tank 2 of the fuel cell system constituted by such members is located at the lee side of the blower 8 so that it can be heated by the air heated by the internal load (heater) and the fuel cell body. It is located. Therefore, when the battery is started up, the heat generated by the internal load and the heat generated by the fuel cell are gradually heated to gradually increase the hydrogen supply capacity. The load control circuit composed of the internal loads 5, 6, and 7 and the control unit 9 may be a switching circuit using a thyristor or the like to adjust the switch-on time to adjust the internal load. it can.

【0011】次に、上記の如く構成された可搬型燃料電
池システムの起動動作について、図2〜図4を用いて、
具体的に説明する。ここで、図2は起動メインシーケン
スを示すシーケンス図であり、図3は図2における負荷
昇温開始ステップのサブシーケンスを示すシーケンス図
である。図2を参照しながら、起動メインシーケンスに
ついて説明する。先ず、水素吸蔵タンク2の水素供給バ
ルブ(不図示)を開弁して燃料電池本体1に水素ガスを
供給し(S100)、燃料電池の負荷昇温を開始する
(S200)。次に、燃料電池の温度がTC よりも大き
くなれば(S300)、外部負荷への出力を可能とする
(S400)。本実施例ではTC を80℃に設定した。
Next, the start-up operation of the portable fuel cell system configured as described above will be described with reference to FIGS.
This will be specifically described. Here, FIG. 2 is a sequence diagram showing a startup main sequence, and FIG. 3 is a sequence diagram showing a sub-sequence of the load temperature increase start step in FIG. The startup main sequence will be described with reference to FIG. First, the hydrogen supply valve (not shown) of the hydrogen storage tank 2 is opened to supply hydrogen gas to the fuel cell body 1 (S100), and the load temperature rise of the fuel cell is started (S200). Next, if the temperature of the fuel cell becomes higher than T C (S300), output to an external load is enabled (S400). In this example, T C was set to 80 ° C.

【0012】続いて、図3を参照しながら、図2におけ
る負荷昇温開始ステップについて説明する。ステップS
201で燃料電池1の負荷昇温が開始されると、制御部
9は水素ガス圧センサ3を介して水素吸蔵タンクの水素
ガス圧値を読取り、予め運転制御プログラムに定められ
ている水素ガス圧上限値PH と参照する(ステップS2
02)。水素ガス圧が水素ガス圧上限値PH 以上である
場合には、内部負荷設定値をLH として内部負荷電流を
上昇させる(ステップS203)。他方、水素ガス圧が
水素ガス圧上限値PH 未満である場合には、先と同様に
水素ガス圧センサ3を介して水素吸蔵タンクの水素ガス
圧値を読取り、予め運転制御プログラムに定められてい
る水素ガス圧下限値PL と参照する。そして水素ガス圧
が水素ガス圧下限値PL 未満である場合には、内部負荷
設定をLL として内部負荷電流を下げ(ステップS20
5)、この状態を一定時間維持して(ステップS20
6)、水素吸蔵タンクの温度が上昇するのを待つ。一定
時間経過した後にステップはステップS202にリター
ンし、再び水素ガス圧の測定を行い上記を同様に動作す
る。
Next, the load temperature increase start step in FIG. 2 will be described with reference to FIG. Step S
When the load temperature rise of the fuel cell 1 is started in 201, the control unit 9 reads the hydrogen gas pressure value of the hydrogen storage tank via the hydrogen gas pressure sensor 3, and the hydrogen gas pressure determined in advance in the operation control program is read. Refer to the upper limit value P H (step S2)
02). When the hydrogen gas pressure is equal to or higher than the hydrogen gas pressure upper limit value P H , the internal load set value is set to L H to increase the internal load current (step S203). On the other hand, when the hydrogen gas pressure is less than the hydrogen gas pressure upper limit value P H, the hydrogen gas pressure value in the hydrogen storage tank is read via the hydrogen gas pressure sensor 3 as in the previous case, and is preset in the operation control program. The hydrogen gas pressure lower limit value P L is referred to. If the hydrogen gas pressure is less than the hydrogen gas pressure lower limit value P L , the internal load setting is set to L L to reduce the internal load current (step S20).
5) This state is maintained for a certain period of time (step S20
6) Wait for the temperature of the hydrogen storage tank to rise. After the elapse of a certain time, the step returns to step S202, the hydrogen gas pressure is measured again, and the above operation is performed.

【0013】このようなステップを繰り返すうちに、次
第に水素吸蔵タンク(電池も同様)の温度が高まり水素
吸蔵タンクの水素ガス圧が下限値PL を超えるようにな
る(ステップS204でNO)が、水素ガス圧が下限値
L を超えると水素ガスの供給が燃料電池の発電量を制
限する要因ではなくなるので、水素ガス圧の監視は必要
なくなる。よって動作はステップS207に進む。ステ
ップS207で制御部9は、電池温度が定常運転を可能
にする温度TC 以上か否かを判定し、TC 以上である場
合には起動動作を終了する。他方、電池温度がTC 未満
である場合には、動作はステップS202にリターン
し、再び水素ガス圧が下限値PL を超えるようになるま
で内部負荷を制御しつつ、燃料電池本体及び水素吸蔵タ
ンクを加温し、水素ガス圧が下限値PL を超えるのを待
つことになる。
While the above steps are repeated, the temperature of the hydrogen storage tank (also for the battery) gradually rises and the hydrogen gas pressure in the hydrogen storage tank exceeds the lower limit value P L (NO in step S204). When the hydrogen gas pressure exceeds the lower limit value P L , the supply of hydrogen gas is no longer a factor limiting the amount of power generation of the fuel cell, so monitoring of the hydrogen gas pressure is unnecessary. Therefore, the operation proceeds to step S207. In step S207, the control unit 9 determines whether or not the battery temperature is equal to or higher than the temperature T C that enables steady operation, and if it is equal to or higher than T C , the start operation is ended. On the other hand, if the cell temperature is lower than T C , the operation returns to step S202, and while controlling the internal load until the hydrogen gas pressure exceeds the lower limit value P L again, the fuel cell main body and the hydrogen storage The tank is heated and waits until the hydrogen gas pressure exceeds the lower limit value P L.

【0014】なお、ステップS202で水素ガス圧が上
限値PH 未満である場合には(ステップS202、N
O)、直ちに水素ガス圧が下限値PL か否かを判定する
動作に移る(ステップS204)。またステップS20
2でYESであって、ステップS203で内部負荷電流
が高められた場合、その負荷電流を賄うために燃料電池
本体はより多くの水素ガスを必要とする。しかし、ここ
で未だ水素吸蔵タンクの温度が所定温度に満たないとき
には、水素吸蔵タンクからの水素ガスの供給が追いつか
ない。よって、再び水素ガス圧が低下するので、ステッ
プS204のYESの方向に動作が進むことになる。
When the hydrogen gas pressure is less than the upper limit value P H in step S202 (step S202, N
O), immediately shifts to the operation of determining whether or not the hydrogen gas pressure is the lower limit value P L (step S204). Step S20
If YES in 2 and the internal load current is increased in step S203, the fuel cell main body needs more hydrogen gas to cover the load current. However, when the temperature of the hydrogen storage tank is still below the predetermined temperature, the supply of hydrogen gas from the hydrogen storage tank cannot keep up. Therefore, the hydrogen gas pressure decreases again, and the operation proceeds in the YES direction of step S204.

【0015】ここで、前記水素ガス圧上限値PH 、水素
ガス圧下限値PL 、及び電池温度T C について説明す
る。水素ガス圧上限値PH は、水素吸蔵タンクから水素
ガスが安定して放出され得る場合における水素吸蔵タン
クのガス圧を意味する。また水素ガス圧下限値PL は、
内部負荷設定値をLH とした場合、その消費電力及び燃
料電池自体の内部負荷を賄うに足りる電力を発電するた
めに、燃料電池本体が必要とする水素ガスを供給し得る
水素吸蔵タンクのガス圧を意味する。このPH 、P
L は、固定的な値ではなく、水素吸蔵タンクに使用され
た水素吸蔵合金の種類や充填密度等により変化する値で
ある。よって、本システムでは、オペレータが制御部9
に対し予めPH 、PL を設定することができるようにし
てある。なお、PH 、PL を同一の値とすることもで
き、この場合、燃料電池を定常運転する際に必要な水素
ガス量を、供給できる水素吸蔵タンクのガス圧値、また
は前記ガス圧の関数をPとするのがよい。
Here, the hydrogen gas pressure upper limit value PH,hydrogen
Gas pressure lower limit PL, And battery temperature T CExplain about
It Hydrogen gas pressure upper limit PHThe hydrogen from the hydrogen storage tank
Hydrogen storage tank when gas can be released stably
It means the gas pressure of ku. Also, the hydrogen gas pressure lower limit value PLIs
Internal load setting value is LHIf the power consumption and the combustion
To generate enough power to cover the internal load of the battery itself
To supply the hydrogen gas required by the fuel cell body
It means the gas pressure in the hydrogen storage tank. This PH, P
LIs not a fixed value but used for hydrogen storage tanks
A value that varies depending on the type of hydrogen storage alloy, packing density, etc.
is there. Therefore, in this system, the operator controls the control unit 9
Against P in advanceH, PLTo be able to set
There is. Note that PH, PLCan have the same value
In this case, the hydrogen required for steady operation of the fuel cell
The gas pressure value of the hydrogen storage tank that can supply the gas amount,
Is preferably a function of the gas pressure.

【0016】また、電池温度TC は、燃料電池システム
がその発電能力を十分に発揮し外部負荷に電力を供給で
きるに至ったときの電池温度(通常80℃〜120℃)
であり、このTC も燃料電池の種類によりある程度変化
する。よって、本システムではこのTC も制御部9に対
しオペレータが予め設定するようにしてある。図4に、
外気温度が低い場合における水素吸蔵タンクのガス圧と
燃料電池本体の負荷電流の関係を模式的に図示する。即
ち、電池起動当初においては、水素吸蔵タンクのガス圧
は下限値PL を上回っているが、外気から補給される熱
量が水素放出の際に失われる熱量に比べ不十分である
と、水素の放出により水素吸蔵タンクの温度が下がり、
それに伴い水素ガス放出量が低下するため水素ガス圧が
低下する。この場合、図3フローチャートで説明したよ
うに内部ヒータへの電力供給が抑制せられ、水素ガスの
消費量を水素吸蔵タンクが供給可能な程度に抑えらるの
ので、電池作動状態は維持される。つまり、起動当初に
おいては内部ヒータの負荷を最小に抑えた状態で燃料電
池システムを運転して、主に燃料電池の自己発熱による
加温を待つことになる。このようにして低水準の起動運
転を行っていると燃料電池本体の温度が次第に上昇する
とともにその風下にある水素吸蔵タンクの温度も次第に
上昇する。したがって、水素吸蔵タンクからの水素供給
能力が上昇し、またこれに平行して燃料電池本体の発電
能力も上昇するので、加速度的に内部ヒータへの電力の
供給を増加することが可能になる。このように本発明方
法によれば、順次燃料電池システムの発電能力を高める
ことができる結果、無理なく燃料電池システムを定常運
転状態に移行させることができることになる。 〔その他の事項〕上記実施例では、図3ステップS20
7がYESの場合には起動終了としたが、ステップS2
07の代わりに、例えば図5に示すような公知の電池起
動フローチャートの#710に連結させることもでき
る。このようにすると、更に合理的かつ速やかに電池を
起動させることが可能となる。
The cell temperature T C is the cell temperature (normally 80 ° C. to 120 ° C.) at which the fuel cell system can fully exhibit its power generation capacity and supply electric power to an external load.
This T C also changes to some extent depending on the type of fuel cell. Therefore, in this system, this T C is also preset by the operator in the control unit 9. In Figure 4,
The relationship between the gas pressure of the hydrogen storage tank and the load current of the fuel cell main body when the outside air temperature is low is schematically illustrated. That is, at the beginning of battery activation, the gas pressure in the hydrogen storage tank is above the lower limit value P L , but if the amount of heat supplied from the outside air is insufficient as compared with the amount of heat lost during hydrogen release, The release lowers the temperature of the hydrogen storage tank,
Along with this, the amount of hydrogen gas released decreases, so the hydrogen gas pressure decreases. In this case, as described with reference to the flowchart of FIG. 3, the power supply to the internal heater is suppressed, and the consumption amount of hydrogen gas is suppressed to such an extent that the hydrogen storage tank can supply, so that the battery operating state is maintained. . In other words, at the beginning of startup, the fuel cell system is operated with the load on the internal heater being minimized, and the heating of the fuel cell is awaited mainly due to self-heating. When the low-level start-up operation is performed in this manner, the temperature of the fuel cell main body gradually rises, and the temperature of the hydrogen storage tank below it gradually rises. Therefore, the hydrogen supply capacity from the hydrogen storage tank increases, and in parallel with this, the power generation capacity of the fuel cell main body also increases, so that it is possible to accelerate the supply of electric power to the internal heater. As described above, according to the method of the present invention, the power generation capacity of the fuel cell system can be sequentially increased, and as a result, the fuel cell system can be transitioned to the steady operation state without difficulty. [Other Matters] In the above embodiment, step S20 in FIG.
If 7 is YES, it means that the startup has ended, but step S2
Instead of 07, it may be connected to # 710 in the known battery start-up flowchart as shown in FIG. 5, for example. This makes it possible to start the battery more reasonably and quickly.

【0017】[0017]

【発明の効果】本発明の燃料電池システムの起動方法に
よれば、外気温度が低いために水素吸蔵タンクから十分
に水素ガスが供給されない状況にあっても、燃料電池シ
ステムが起動不能に陥ることがない。したがって、水素
吸蔵合金を用いた水素吸蔵タンクが、可搬型燃料電池の
燃料供給源として利用可能となるので、可搬型燃料電池
システムの一層の小形化を実現できる。
According to the method of starting the fuel cell system of the present invention, the fuel cell system cannot be started even in a situation where hydrogen gas is not sufficiently supplied from the hydrogen storage tank because the outside air temperature is low. There is no. Therefore, the hydrogen storage tank using the hydrogen storage alloy can be used as the fuel supply source of the portable fuel cell, so that the portable fuel cell system can be further downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の起動方法を実現するために使用する可
搬型燃料電池電源の概略構成図である。
FIG. 1 is a schematic configuration diagram of a portable fuel cell power source used for realizing a starting method of the present invention.

【図2】起動メインシーケンスを示すシーケンス図であ
る。
FIG. 2 is a sequence diagram showing a startup main sequence.

【図3】図2における負荷昇温開始ステップのサブシー
ケンスを示すシーケンス図である。
FIG. 3 is a sequence diagram showing a sub-sequence of a load temperature rising start step in FIG.

【図4】外気温度が低い場合における水素吸蔵タンクの
ガス圧と燃料電池本体の負荷電流の関係を示す模式図で
ある。
FIG. 4 is a schematic diagram showing the relationship between the gas pressure of the hydrogen storage tank and the load current of the fuel cell main body when the outside air temperature is low.

【図5】公知の可搬型燃料電池電源の起動動作を示すシ
ーケンス図である。
FIG. 5 is a sequence diagram showing a startup operation of a known portable fuel cell power source.

【図6】従来の可搬型燃料電池電源の概略構成図であ
る。
FIG. 6 is a schematic configuration diagram of a conventional portable fuel cell power source.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 昌士 守口市京阪本通2丁目5番5号 三洋電機 株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masashi Fujita 2-5-5 Keihan Hondori, Moriguchi-shi Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を用いた水素貯蔵用の水
素吸蔵タンクから水素の供給を得て発電を行い、その発
電電力を利用して内部負荷である昇温ヒータを加熱し、
このヒータの熱によって燃料電池本体及び水素吸蔵タン
クを加温する燃料電池システムにおいて、 前記水素吸蔵タンクから供給される水素ガスの圧力を、
一定時間毎に検出する水素ガス圧検出ステップと、 前記水素ガス圧検出ステップの検出した水素ガス圧が、
所定の基準ガス圧を下回るか、所定の基準ガス圧以上か
を判定する水素ガス圧判定ステップと、 前記水素ガス圧検出ステップで検出した水素ガス圧が、
所定の基準ガス圧を下回る場合には、昇温ヒータへ所定
の電流より小さい電流を供給し、前記水素ガス圧が所定
の圧力以上である場合には、昇温ヒータへ前記所定の電
流より大きい電流を供給する電力供給制御ステップと、 を繰り返して燃料電池本体を定常運転状態に移行させる
ことを特徴とする水素吸蔵タンクを組み込んだ燃料電池
システムの起動方法。
1. A hydrogen storage tank using a hydrogen storage alloy for hydrogen storage is supplied with hydrogen to generate electric power, and the generated electric power is used to heat a heating heater which is an internal load.
In the fuel cell system for heating the fuel cell main body and the hydrogen storage tank by the heat of the heater, the pressure of the hydrogen gas supplied from the hydrogen storage tank is
Hydrogen gas pressure detection step to detect at regular intervals, the hydrogen gas pressure detected in the hydrogen gas pressure detection step,
Below a predetermined reference gas pressure, a hydrogen gas pressure determination step of determining whether the predetermined reference gas pressure or more, the hydrogen gas pressure detected in the hydrogen gas pressure detection step,
When the hydrogen gas pressure is lower than a predetermined reference gas pressure, a current smaller than a predetermined current is supplied to the temperature raising heater, and when the hydrogen gas pressure is equal to or higher than a predetermined pressure, the temperature rising heater is higher than the predetermined current. A method for starting a fuel cell system incorporating a hydrogen storage tank, characterized in that the step of controlling the power supply for supplying an electric current is repeated to shift the fuel cell main body to a steady operation state.
JP6093558A 1994-05-02 1994-05-02 Starting method of fuel cell system incorporating hydrogen storage tank Expired - Lifetime JP3071092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6093558A JP3071092B2 (en) 1994-05-02 1994-05-02 Starting method of fuel cell system incorporating hydrogen storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6093558A JP3071092B2 (en) 1994-05-02 1994-05-02 Starting method of fuel cell system incorporating hydrogen storage tank

Publications (2)

Publication Number Publication Date
JPH07302606A true JPH07302606A (en) 1995-11-14
JP3071092B2 JP3071092B2 (en) 2000-07-31

Family

ID=14085584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6093558A Expired - Lifetime JP3071092B2 (en) 1994-05-02 1994-05-02 Starting method of fuel cell system incorporating hydrogen storage tank

Country Status (1)

Country Link
JP (1) JP3071092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513534A (en) * 2003-01-15 2006-04-20 バラード パワー システムズ インコーポレイティド Fuel cell stack with passive end cell heater
CN113085662A (en) * 2021-03-29 2021-07-09 永安行科技股份有限公司 Power supply method and system of hydrogen fuel cell stack based on fuel pressure and hydrogen fuel electric vehicle
CN114665128A (en) * 2022-04-07 2022-06-24 上海捷氢科技股份有限公司 Solid hydrogen storage and supply device and hydrogen supply method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513534A (en) * 2003-01-15 2006-04-20 バラード パワー システムズ インコーポレイティド Fuel cell stack with passive end cell heater
JP4724423B2 (en) * 2003-01-15 2011-07-13 ビーディーエフ アイピー ホールディングス リミテッド Fuel cell stack with passive end cell heater
CN113085662A (en) * 2021-03-29 2021-07-09 永安行科技股份有限公司 Power supply method and system of hydrogen fuel cell stack based on fuel pressure and hydrogen fuel electric vehicle
CN114665128A (en) * 2022-04-07 2022-06-24 上海捷氢科技股份有限公司 Solid hydrogen storage and supply device and hydrogen supply method
CN114665128B (en) * 2022-04-07 2023-12-19 上海捷氢科技股份有限公司 Solid-state hydrogen storage and supply device and hydrogen supply method

Also Published As

Publication number Publication date
JP3071092B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US7147946B2 (en) Fuel cell system
JP5194425B2 (en) Fuel cell system
CA2291864C (en) Fuel cell system with improved startability
JP5074669B2 (en) Fuel cell system
JP3882761B2 (en) Fuel cell system
US20050255353A1 (en) Fuel-cell power system
JP2877666B2 (en) How to start portable fuel cell power supply
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JPH07302606A (en) Starting method for hydrogen storage tank built-in fuel cell system
JP6500997B2 (en) Fuel cell system and control method thereof
JP2002008686A (en) Controlling method of fuel cell system and its equipment
JP2004014185A (en) Warming-up system of fuel cell
JP6607803B2 (en) Fuel cell system
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP4892779B2 (en) Start-up control device for fuel cell system
JP4325306B2 (en) Operation control device for fuel cell system
JP4638132B2 (en) Fuel cell system
JP2019079689A (en) Fuel cell system and control method of fuel cell system
CN113169363B (en) Combustion system and control method of combustion system
JPH11317233A (en) Fuel cell power generation system
CN111200142B (en) Fuel cell starting process control system
JP2004311337A (en) Fuel cell system and its starting method
JP2006120442A (en) Operation control unit of fuel cell, and fuel cell system
KR20240067689A (en) Fuel cell system and fuel cell system control method
JP2003168465A (en) Fuel cell system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term