JPH0730130B2 - Continuous polymerization method - Google Patents

Continuous polymerization method

Info

Publication number
JPH0730130B2
JPH0730130B2 JP19403584A JP19403584A JPH0730130B2 JP H0730130 B2 JPH0730130 B2 JP H0730130B2 JP 19403584 A JP19403584 A JP 19403584A JP 19403584 A JP19403584 A JP 19403584A JP H0730130 B2 JPH0730130 B2 JP H0730130B2
Authority
JP
Japan
Prior art keywords
slurry
valve
reaction
polymerization
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19403584A
Other languages
Japanese (ja)
Other versions
JPS6172007A (en
Inventor
浅沼  正
一郎 藤隠
貢 伊藤
進隆 内川
良幸 船越
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP19403584A priority Critical patent/JPH0730130B2/en
Publication of JPS6172007A publication Critical patent/JPS6172007A/en
Publication of JPH0730130B2 publication Critical patent/JPH0730130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα−オレフィン自身を媒体とする塊状重合法に
関する。詳しくは、スラリー循環ラインを設けた反応槽
を2槽以上連結した重合機を用いるα−オレフィンの連
続重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bulk polymerization method using α-olefin itself as a medium. Specifically, it relates to a continuous polymerization method of α-olefin using a polymerization machine in which two or more reaction tanks provided with a slurry circulation line are connected.

〔従来の技術〕[Conventional technology]

α−オレフィンを重合するに際し、α−オレフィン自身
を液状媒体とする塊状重合法で重合することは、古くか
ら知られている。。又多くの銘柄のポリマーを得るた
め、或は重合熱の除去が大型の反応機では困難であるこ
とから、2槽以上の重合槽を連結した反応機を用いて重
合反応を行うことも知られている。しかしながら塊状重
合法でα−オレフィンを重合する場合には反応槽の圧力
は温度で定まってしまう上に得られるポリプロピレンの
分子量を制御するために水素を導入し、しかもより後の
槽の重合槽での水素の量を増大させる場合には重合温度
を後段で下げないとスラリーを移液することが困難であ
る。従って例えば特公昭53-25585号ではより後の重合槽
で重合圧力を低下させることが示されている。又スラリ
ーポンプを用いてスラリーを移液する方法もよく知られ
ている。
It has long been known to polymerize α-olefins by bulk polymerization using α-olefin itself as a liquid medium. . It is also known to carry out the polymerization reaction using a reactor in which two or more polymerization tanks are connected, because it is difficult to remove the heat of polymerization with a large-scale reactor in order to obtain many brands of polymers. ing. However, when polymerizing an α-olefin by the bulk polymerization method, the pressure in the reaction tank is determined by the temperature, and hydrogen is introduced to control the molecular weight of the polypropylene obtained, and in the polymerization tank of a later tank. When the amount of hydrogen is increased, it is difficult to transfer the slurry unless the polymerization temperature is lowered in the latter stage. Therefore, for example, Japanese Patent Publication No. 53-25585 shows that the polymerization pressure is lowered in a later polymerization tank. Further, a method of transferring a slurry by using a slurry pump is also well known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら温度差で圧力差を作り移液する方法は後の
槽では重合温度が下がるため、触媒活性が低下しさらに
は除熱が困難になるという問題があり、重合温度につい
ての自由度もない。又後者に方法では重合温度を大きく
下げる必要はないものの大きな逆圧ではスラリーポンプ
の負荷が増大し場合によっては閉塞してしまう問題があ
る。さらに移液量が昇圧された圧力と次の反応槽の圧力
との差によるという点は変らないためスラリーの移液量
を制御するためスラリーの循環ラインを設け弁の開閉動
作によってスラリーを移液する方法が考えられが、弁、
特に高圧用のそれは長時間開閉動作を繰り返すと漏れを
生ずる場合が多く危険な上に取り替えに要する費用も大
である。
However, in the method of transferring a liquid by making a pressure difference by a temperature difference, the polymerization temperature is lowered in the subsequent tank, so that there is a problem that the catalyst activity is lowered and the heat removal becomes difficult, and there is no degree of freedom regarding the polymerization temperature. In the latter method, the polymerization temperature does not have to be greatly lowered, but there is a problem that a large back pressure increases the load on the slurry pump and in some cases blocks it. Furthermore, the point that the transfer amount depends on the difference between the pressure boosted and the pressure in the next reaction tank does not change, so a slurry circulation line is provided to control the transfer amount of the slurry, and the slurry is transferred by opening / closing the valve. I think there is a way to
In particular, the one for high pressure often causes a leak when the opening / closing operation is repeated for a long time, which is dangerous and the cost required for replacement is also large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題を解決する方法について鋭意検討
した結果、特定の方法で上記問題が解決できることを見
出し本発明を完成した。
As a result of earnest studies on a method for solving the above problems, the present inventors have found that the above problems can be solved by a specific method, and completed the present invention.

即ち、本発明の連続重合方法は、スラリーの循環ライン
を設けた反応槽を2槽以上連結した重合機を用いてα−
オレフィン自身を媒体とする塊状重合法でα−オレフィ
ンを連続的に重合する方法において、重合反応の開始時
あるいは各反応槽の触媒成分の濃度及び反応比率、モノ
マー濃度、重合温度、滞留時間、スラリー濃度を大幅に
変更する時のみ、各反応槽内の液面の高さを検知してス
ラリーの移液量の制御を弁の開閉操作で行い、各反応槽
の触媒成分の濃度及び反応比率、モノマー濃度、重合温
度、滞留時間、スラリー濃度が所望の条件になってから
後には各反応槽内の液面の高さを検知して弁の弁開度で
スラリーの移液量を制御することを特徴とする。
That is, the continuous polymerization method of the present invention uses a polymerization machine in which two or more reaction tanks provided with a slurry circulation line are connected to form α-
In a method of continuously polymerizing α-olefin by a bulk polymerization method using olefin itself as a medium, at the start of the polymerization reaction or the concentration and reaction ratio of catalyst components in each reaction tank, monomer concentration, polymerization temperature, residence time, slurry Only when the concentration is changed significantly, the height of the liquid surface in each reaction tank is detected to control the amount of slurry transfer by opening and closing the valve, and the concentration and reaction ratio of the catalyst component in each reaction tank, After the monomer concentration, polymerization temperature, residence time, and slurry concentration have reached the desired conditions, detect the liquid level in each reaction tank and control the amount of slurry transfer by the valve opening of the valve. Is characterized by.

本発明においてα−オレフィンとはプロピレン、ブテン
−1、ヘキセン−1及びそれらの混合物又はエチレンと
の混合物を示す。
In the present invention, the α-olefin means propylene, butene-1, hexene-1 and a mixture thereof or a mixture with ethylene.

本発明において上記α−オレフィンを重合するに際して
使用する触媒としては特に制限はなく公知のものが使用
でき、例えば遷移金属化合物と有機金属化合物からなる
触媒系が用いられ、具体的にはチタンのハロゲン化物或
はそれをハロゲン化マグネシウム、シリカ、アルミナな
どの担体に担持したものが遷移金属化合物として用いら
れ、有機アルミニウム、有機マグネシウムなどが有機金
属化合物物として好ましく用いられる。
In the present invention, the catalyst used for polymerizing the α-olefin is not particularly limited, and known catalysts can be used, for example, a catalyst system composed of a transition metal compound and an organometallic compound is used. Compounds or those obtained by supporting them on a carrier such as magnesium halide, silica or alumina are used as the transition metal compound, and organoaluminum, organomagnesium and the like are preferably used as the organometallic compound.

本発明の態様を図面を用いて詳述する。Embodiments of the present invention will be described in detail with reference to the drawings.

反応槽1,2,3を連結した3槽からなる重合機を用いてα
−オレフィンが塊状重合法で重合される。反応槽3から
のスラリーは弁3-4を経てスラリーの後処理工程に送ら
れる。各反応槽中のスラリー量は液面計1-1、2-1、3-1
によって液面高さとして検知され、その信号により制御
器1-5,2-5,3-5によって1-3,1-4,2-3,2-4,3-3,3-4の各弁
が操作され液面が一定となるように制御される。
Using a polymerization machine consisting of three tanks in which reaction tanks 1, 2, and 3 are connected,
-Olefins are polymerized in bulk polymerization. The slurry from the reaction tank 3 is sent to the post-treatment step of the slurry through the valve 3-4. The amount of slurry in each reaction tank is liquid level gauge 1-1, 2-1, 3-1
Is detected as the liquid level by the controller and the signal from the controller 1-5, 2-5, 3-5 causes 1-3, 1-4, 2-3, 2-4, 3-3, 3-4 Each valve is operated and controlled so that the liquid level is constant.

本発明において重要なことは、重合反応の開始時あるい
各反応槽の触媒成分の濃度及び反応比率、モノマー濃
度、重合温度、滞留時間、スラリー濃度を大幅に変更す
る時のみ、各反応槽内の液面の高さを検知してスラリー
の移液量の制御を弁の開閉操作で行い、各反応槽の触媒
成分の濃度及び反応比率、モノマー濃度、重合温度、滞
留時間、スラリー濃度が所望の条件になってから後には
各反応槽内の液面の高さを検知して弁の弁開度でスラリ
ーの移液量を制御することである。この目的のためには
弁の形状としてはVボルト弁などのスラリーを特定の弁
開度で定量的に移液することが可能なものが好ましいも
のとして挙げられ、又必要に応じ弁座にα−オレフィン
或いは不活性溶媒をフラッシングすること、或いは特定
の時間間隔で短時間液面の制御を各弁の開閉で行い、ス
ラリーのつまり防止を行うことも可能である。
What is important in the present invention is that in each reaction tank only when the polymerization reaction is started or when the concentration and reaction ratio of the catalyst component in each reaction tank, the monomer concentration, the polymerization temperature, the residence time, and the slurry concentration are significantly changed. The liquid transfer amount of the slurry is detected by controlling the liquid transfer amount by opening and closing the valve, and the catalyst component concentration and reaction ratio of each reaction tank, monomer concentration, polymerization temperature, residence time, and slurry concentration are desired. After the above condition is met, the liquid transfer amount of the slurry is controlled by detecting the height of the liquid level in each reaction tank and controlling the valve opening of the valve. For this purpose, the shape of the valve is preferably a V-bolt valve or the like that can quantitatively transfer the slurry at a specific valve opening degree. It is also possible to flush the olefin or the inert solvent, or to control the liquid level for a short time at specific time intervals by opening and closing each valve to prevent the clogging of the slurry.

各弁の開閉による液面の制御は次のようにして行われ
る。例として反応槽1について述べる。反応槽1から抜
き出されたスラリーはポンプ1-2で昇圧し、弁1-4が閉の
時は弁1-3が開となり反応槽1に循環してもどり、弁1-4
が開の時は弁1-3が閉となりスラリーは反応槽2に移液
される。弁1-3が開の時と弁1-4が開の時の時間比を定め
ることで反応槽1から反応槽2へのスラリーの概略の移
液量が定まる(詳細には反応槽1側と反応槽2側の圧損
差が加わる)。弁1-4が開の際は弁1-3は閉となっている
ため逆流のおそれはまったくなく、スラリーポンプ1-2
で昇圧したスラリーが反応槽2に移液されるため、少し
の逆圧が生じても移液可能である。弁の開閉を小きざみ
に行えば反応槽1に対して反応槽2の差圧が大きくても
多量のスラリーが一度に移液されることがなく、重合反
応の開始時あるいは各反応槽の触媒成分の濃度及び反応
比率、モノマー濃度、重合温度、滞留時間、スラリー濃
度を大幅に変更する時に各反応槽の圧力が変動しても良
好に液面を制御できる。各反応槽の触媒成分の濃度及び
反応比率、モノマー濃度、重合温度、滞留時間、スラリ
ー濃度が所望の条件になってから後には各反応槽内の液
面の高さを検知して弁の弁開度でスラリーの移液量が制
御される。この際それぞれの弁の弁開度に上限、下限を
設け、その下限値以下に弁開度変えないようにしておく
のが好ましい。なぜなら、スラリー中の固形粒子以下の
弁開度ではスラリーがろ過され閉塞してしまうからであ
る。従って弁開度を下限値を越えて変える必要の生じた
時には、自動的に弁の開閉による制御に切り換わるよう
に制御器1-5,2-5,3-5を設定しておくのが好ましい。な
お破線は制御系の連結状態を示す。
The liquid level is controlled by opening / closing each valve as follows. As an example, the reaction tank 1 will be described. The pressure of the slurry extracted from the reaction tank 1 is increased by the pump 1-2, and when the valve 1-4 is closed, the valve 1-3 is opened and circulated back to the reaction tank 1 to return to the valve 1-4.
When is open, the valves 1-3 are closed and the slurry is transferred to the reaction tank 2. By determining the time ratio when the valve 1-3 is opened and when the valve 1-4 is opened, the approximate amount of the slurry transferred from the reaction tank 1 to the reaction tank 2 is determined (specifically, the reaction tank 1 side). And the pressure loss difference on the reaction tank 2 side is added). When valve 1-4 is open, valve 1-3 is closed and there is no risk of backflow.
Since the slurry whose pressure has been increased in step 3 is transferred to the reaction tank 2, it is possible to transfer it even if a slight reverse pressure is generated. By opening and closing the valve in small steps, a large amount of slurry is not transferred at one time even if the pressure difference between the reaction tank 1 and the reaction tank 2 is large. The liquid level can be well controlled even when the pressure in each reaction tank fluctuates when the component concentration and reaction ratio, the monomer concentration, the polymerization temperature, the residence time, and the slurry concentration are significantly changed. After the catalyst component concentration and reaction ratio in each reaction tank, monomer concentration, polymerization temperature, residence time, and slurry concentration have reached the desired conditions, the valve level is detected by detecting the liquid level in each reaction tank. The amount of slurry transfer is controlled by the opening. At this time, it is preferable to set an upper limit and a lower limit to the valve opening of each valve so that the valve opening is not changed below the lower limit. This is because the slurry is filtered and clogged when the valve opening is equal to or less than the solid particles in the slurry. Therefore, when it is necessary to change the valve opening beyond the lower limit, set the controllers 1-5, 2-5, 3-5 so that the control automatically switches to the control by opening and closing the valve. preferable. The broken line shows the connected state of the control system.

弁の開度及び弁の弁開度の制御の一例を以下に述べる。An example of the control of the valve opening and the valve opening of the valve will be described below.

弁の開閉により制御する場合は液面計により液面を検知
し予め設定された液面と比較し、液面が設定値より高い
場合にはスラリーのモドリの弁1-3の開の時間を一定時
間短くする。1-3の弁が一定の回数開となった後にも液
面が前回の測定レベルより高い場合には弁1-4の開の時
間を一定時間長くする。次いで同様に一定の回数の後前
回の測定レベルと比較し、低くなっていればさらに設定
値と比較して、弁の開の時間を変更する方法が挙げられ
る。
When controlling by opening and closing the valve, the liquid level is detected by a liquid level gauge and compared with a preset liquid level.If the liquid level is higher than the set value, the opening time of the slurry modulo valve 1-3 is set. Shorten for a certain time. If the liquid level is higher than the previous measurement level even after the valves 1-3 have been opened a certain number of times, increase the opening time of the valves 1-4 by a certain amount of time. Next, similarly, after a certain number of times, a method of changing the valve opening time by comparing with the previous measurement level and further comparing with the set value if the level is low can be mentioned.

各槽の条件がほぼ安定た後の制御法としてはまず各弁の
弁開度に上限,下限を設定する(上限については必ずし
も必要ではない)。次いで各弁を各槽の圧力,ポンプの
吐出圧力,ポンプの吐出量によって予め設定された弁開
度にする。次いで各槽の液面を検知し、設定値と比較し
設定値より高い場合にはスラリーの移液側の弁の弁開度
を一定値だけ大きくする。一定時間後同様に液面の検知
された高さを設定値と比較し、より液面が高くなってい
ればスラリーの戻り側の弁の弁開度を一定値だけ小さく
する。同様に一定時間ごとに設定された液面と検知され
た液面を比較しその値により弁開度を操作することが行
われる。
As a control method after the conditions of each tank are almost stable, first, the upper and lower limits are set for the valve opening of each valve (the upper limit is not always necessary). Next, each valve is set to a valve opening preset according to the pressure of each tank, the discharge pressure of the pump, and the discharge amount of the pump. Next, the liquid level in each tank is detected and compared with a set value. If the liquid level is higher than the set value, the valve opening of the slurry transfer side valve is increased by a certain value. Similarly, after a certain period of time, the detected height of the liquid level is compared with the set value, and if the liquid level becomes higher, the valve opening of the slurry return side valve is reduced by a certain value. Similarly, the liquid level set at regular time intervals is compared with the detected liquid level, and the valve opening is manipulated based on that value.

〔作用〕[Action]

本発明の方法を実施することにより弁への過度の負荷を
さけることが可能となるため長時間の運転を安定に行う
ことが可能となる。
By carrying out the method of the present invention, it becomes possible to avoid an excessive load on the valve, so that it becomes possible to perform stable operation for a long time.

〔実施例〕〔Example〕

上記本発明の制御法をポリプロピレンの塊状重合法のプ
ラントに適用したところ、3000時間の運転を連続的に行
ってもまったく問題が生じなかった。この時各槽の条件
を大幅に変える操作(重合スタートも含む)を5回実施
したが、弁からの漏れはまったく見られなかった。一方
弁の開閉動作(各弁が2.5分/1回で開閉を繰り返してい
る)による移液を行なったところ約1100時間で一つの弁
で漏れを生じたので運転を中断した。
When the above-mentioned control method of the present invention was applied to a plant of a bulk polymerization method of polypropylene, no problems occurred at all even after continuous operation for 3000 hours. At this time, the operation of significantly changing the conditions of each tank (including the start of polymerization) was carried out 5 times, but no leak from the valve was observed. On the other hand, when liquid transfer was performed by opening and closing the valves (each valve repeatedly opened and closed once every 2.5 minutes), one valve leaked in about 1100 hours, so the operation was interrupted.

〔発明の効果〕〔The invention's effect〕

本発明の方法を実施することによって、極めて安定した
運転を弁の破損などのトラブルなく長時間行うことが可
能となり工業的に極めて価値がある。
By carrying out the method of the present invention, extremely stable operation can be performed for a long time without trouble such as valve damage, which is extremely valuable industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施するためのプラントのフロ
ーの1部を示すフロー図である。 1,2,3……重合槽、1-2,2-2,3-2……スラリーポンプ、1-
1,2-1,3-1……液面計、1-3,1-4,2-3,2-4,3-3,3-4……
弁、1-5,2-5,3-5……制御器。
FIG. 1 is a flow chart showing a part of a flow of a plant for carrying out the method of the present invention. 1,2,3 …… Polymerization tank, 1-2,2-2,3-2 …… Slurry pump, 1-
1,2-1,3-1 …… level gauge, 1-3,1-4,2-3,2-4,3-3,3-4 ……
Valves, 1-5,2-5,3-5 ... Controller.

フロントページの続き (56)参考文献 特公 昭53−25585(JP,B2) 特公 昭59−40841(JP,B2)Continuation of the front page (56) References Japanese Patent Publication Sho 53-25585 (JP, B2) Japanese Patent Publication Sho 59-40841 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スラリーの循環ラインを設けた反応槽を2
槽以上連結した重合機を用いてα−オレフィン自身を媒
体とする塊状重合法でα−オレフィンを連続的に重合す
る方法において、重合反応の開始時あるいは各反応槽の
触媒成分の濃度及び反応比率、モノマー濃度、重合温
度、滞留時間、スラリー濃度を大幅に変更する時のみ、
各反応槽内の液面の高さを検知してスラリーの移液量の
制御を弁の開閉操作で行い、各反応槽の触媒成分の濃度
及び反応比率、モノマー濃度、重合温度、滞留時間、ス
ラリー濃度が所望の条件になってから後には各反応槽内
の液面の高さを検知して弁の弁開度でスラリーの移液量
を制御することを特徴とする連続重合方法。
1. A reaction vessel provided with a slurry circulation line.
In a method of continuously polymerizing α-olefin by a bulk polymerization method using α-olefin itself as a medium by using a polymerization machine connected to more than one tank, the concentration and reaction ratio of the catalyst component at the start of the polymerization reaction or in each reaction tank Only when the monomer concentration, polymerization temperature, residence time, and slurry concentration are significantly changed,
The height of the liquid surface in each reaction tank is detected to control the amount of slurry transferred by opening and closing the valve, and the concentration and reaction ratio of the catalyst component in each reaction tank, the monomer concentration, the polymerization temperature, the residence time, A continuous polymerization method characterized in that after the slurry concentration reaches a desired condition, the liquid level in each reaction vessel is detected and the amount of slurry transferred is controlled by the valve opening of the valve.
JP19403584A 1984-09-18 1984-09-18 Continuous polymerization method Expired - Lifetime JPH0730130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19403584A JPH0730130B2 (en) 1984-09-18 1984-09-18 Continuous polymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19403584A JPH0730130B2 (en) 1984-09-18 1984-09-18 Continuous polymerization method

Publications (2)

Publication Number Publication Date
JPS6172007A JPS6172007A (en) 1986-04-14
JPH0730130B2 true JPH0730130B2 (en) 1995-04-05

Family

ID=16317851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19403584A Expired - Lifetime JPH0730130B2 (en) 1984-09-18 1984-09-18 Continuous polymerization method

Country Status (1)

Country Link
JP (1) JPH0730130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031718B1 (en) * 2006-06-19 2018-05-23 Mitsubishi Electric Corporation Gas insulated power apparatus

Also Published As

Publication number Publication date
JPS6172007A (en) 1986-04-14

Similar Documents

Publication Publication Date Title
AU694830B2 (en) Method for preventing fouling in polymerization reactors
AU706943B2 (en) Method for preventing fouling and sheeting in gas phase reactors
EP0187495B1 (en) Polymerization catalyst, production and use
US8067512B2 (en) Monomer/solvent separation and recycle process for propylene containing polymers
EP1660223B1 (en) Olefin polymerization process with optimized product discharge
RU2051923C1 (en) Method for production of polyolefins and device for its realization
EP0133383A1 (en) Supported polyolefin catalyst for the polymerization of ethylene under high temperatures
EP0886655A1 (en) A process and an apparatus for polymerization of olefin monomers
EP0585796B1 (en) Deactivator reagent for olefin polymerization catalysts
NO300141B1 (en) Slurry polymerization of ethylene at high temperature
EP0848021B1 (en) Ethylene polymerization Processes and products thereof
RU2572625C2 (en) Polymerisation method
JP3972078B2 (en) Gas phase polymerization method
EP2004323B1 (en) Flushing in a multiple loop reactor
CN1097599C (en) Process for polymerising olefin in gas phase
JPH0730130B2 (en) Continuous polymerization method
JP2002514248A (en) Temporary idling of polymerization reaction
CA1221197A (en) Linear low density polyethylene process
CN109641986A (en) Olefine polymerizing process
CN112154164B (en) Method for predicting fouling in a polyolefin production process
CA1119349A (en) Polymerization process
JPS62138505A (en) Multi-chamber continuous polymerization method
EP2331583B1 (en) Process for start-up of a polymerisation reaction in a fluidised bed
EP0230121B1 (en) Process of polymerizing propylene
EP0056831B1 (en) Polymerization of olefins with blends of independently supported catalysts

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term