JPH0730120Y2 - Dry air supply device - Google Patents

Dry air supply device

Info

Publication number
JPH0730120Y2
JPH0730120Y2 JP9280389U JP9280389U JPH0730120Y2 JP H0730120 Y2 JPH0730120 Y2 JP H0730120Y2 JP 9280389 U JP9280389 U JP 9280389U JP 9280389 U JP9280389 U JP 9280389U JP H0730120 Y2 JPH0730120 Y2 JP H0730120Y2
Authority
JP
Japan
Prior art keywords
air
valve
supply device
air supply
dry air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9280389U
Other languages
Japanese (ja)
Other versions
JPH0334826U (en
Inventor
寿美治 窪
正道 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9280389U priority Critical patent/JPH0730120Y2/en
Publication of JPH0334826U publication Critical patent/JPH0334826U/ja
Application granted granted Critical
Publication of JPH0730120Y2 publication Critical patent/JPH0730120Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Drying Of Gases (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は、通信ケーブルに対する乾燥剤非加熱再生方
式の乾燥空気供給装置に関するもので、特に冬期におけ
る凍結防止技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a desiccant non-heated regeneration type dry air supply device for a communication cable, and more particularly to a freeze prevention technique in winter.

[従来の技術] 乾燥剤非加熱再生方式の乾燥空気供給装置は、当業者に
とって周知のものであるが、簡単に説明すると次のとお
りである。
[Prior Art] A desiccant non-heated regeneration type dry air supply device is well known to those skilled in the art, but it will be briefly described as follows.

[1]構成 第3図において、 12は空気圧縮機で、14はモータ、 16は放熱器、 18はフィルタ、 20A,20Bは切換弁、 22A,22Bは収着槽で、内部に乾燥剤が入っている。[1] Structure In FIG. 3, 12 is an air compressor, 14 is a motor, 16 is a radiator, 18 is a filter, 20A and 20B are switching valves, 22A and 22B are sorption tanks, and a desiccant is inside. It is included.

24はオリフィス、 26はシャトル弁、 28は圧力制御弁、 30は空気だめ、 31は減圧弁、 32は通信ケーブルである。24 is an orifice, 26 is a shuttle valve, 28 is a pressure control valve, 30 is an air trap, 31 is a pressure reducing valve, and 32 is a communication cable.

[2]作用 空気だめ30内の圧力が低下して下限に達すると、圧力ス
イッチ34によって空気圧縮機12が運転を開始する。
[2] Action When the pressure in the air reservoir 30 drops to the lower limit, the pressure switch 34 starts the operation of the air compressor 12.

そして、たとえば収着槽22Aで乾燥空気を作って、空気
だめ30にためこむ。
Then, for example, dry air is produced in the sorption tank 22A and stored in the air reservoir 30.

同時に、収着槽22Aで作られた乾燥空気の一部は、オリ
フィス24を通ってさらに乾燥して収着槽22Bに入り、そ
の中の乾燥剤を再生させる。
At the same time, some of the dry air produced in sorption tank 22A is further dried through orifice 24 and enters sorption tank 22B to regenerate the desiccant therein.

[3]水分の問題 空気圧縮機12の出口では空気の温度は高く、水分は気化
している。
[3] Moisture Problem At the outlet of the air compressor 12, the temperature of the air is high and the moisture is vaporized.

その高温の空気も、放熱器16〜フィルタ18〜切換弁20A,
Bを通るうちに温度が徐々に低下し、凝固した水分がフ
ィルタ18や切換弁20A,Bや配管に付着する。
The high temperature air also includes radiator 16-filter 18-switching valve 20A,
The temperature gradually decreases while passing through B, and the solidified water adheres to the filter 18, the switching valves 20A, 20B and the pipe.

フィルタ18内の水分は空気だめ30内の圧力が上限になっ
たとき、排水用電磁弁36が働いて排出されるが、一部は
内部に残留する。
When the pressure in the air reservoir 30 reaches the upper limit, the water in the filter 18 is discharged by the drainage electromagnetic valve 36, but part of the water remains inside.

切換弁20A,B内の水分は、切換え動作時に一部が大気中
に排出されるものの、次第に蓄積していく。そして、気
温が氷点以下になると、凍結して、切換弁の動作不良を
起す。
Moisture in the switching valves 20A and 20B is gradually discharged to the atmosphere although part of the water is discharged to the atmosphere during the switching operation. Then, when the temperature falls below the freezing point, it freezes, causing malfunction of the switching valve.

また配管に付着した水分は、その閉塞を起す。In addition, the water attached to the pipe causes the blockage.

[4]凍結対策 そこで従来は、氷点温度より若干高めになるように、加
熱器38や温度開閉器40を設けて、温度制御していた。
[4] Measures against freezing Therefore, conventionally, the temperature is controlled by providing the heater 38 and the temperature switch 40 so as to be slightly higher than the freezing point temperature.

[考案が解決しようとする課題] しかし従来の方式は、熱源を持つため過熱防止機構を必
要とし、エネルギー消費量も多く、その改善が望まれて
いる。
[Problems to be Solved by the Invention] However, the conventional method requires an overheat prevention mechanism because it has a heat source, consumes a large amount of energy, and its improvement is desired.

この考案は、加熱器38や温度開閉器40を設置せずに、氷
点以下でも、支障なく動作できるように改善したもので
ある。
This invention has been improved so that the heater 38 and the temperature switch 40 can be installed without installing the heater 38 and the temperature switch 40 without trouble.

[課題を解決するための手段] 第1a図、第1b図のように、 前記収着槽22Aと収着槽22Bの各入口の間を、バイパス弁
42を介して接続する。
[Means for Solving the Problems] As shown in FIGS. 1a and 1b, a bypass valve is provided between the inlets of the sorption tank 22A and the sorption tank 22B.
Connect via 42.

[実施例] [1]構成 (1)第1a図、第1b図のように、収着槽22Aの入口側
と、収着槽22Bの入口側とを、バイパス弁42(たとえば
電磁弁)を介して接続する。
[Embodiment] [1] Configuration (1) As shown in FIGS. 1a and 1b, a bypass valve 42 (for example, a solenoid valve) is provided between the inlet side of the sorption tank 22A and the inlet side of the sorption tank 22B. Connect through.

(2)この考案の主要な点は上記の(1)であるが、第
3図の従来例における放熱器16とフィルタ18を除き、凝
固する水分を減らすことが好ましい。
(2) The main point of this invention is the above (1), but it is preferable to eliminate the radiator 16 and the filter 18 in the conventional example of FIG.

このようにすると、これらの部分における水分のトラ
ップがなくなる、切換弁20A,Bを流れる空気の温度が
高くなる(後記参照)。
By doing so, the trapping of water in these portions is eliminated, and the temperature of the air flowing through the switching valves 20A, 20B becomes high (see later).

しかしその反面、収着槽22A,Bの入口温度が高くなり、
収着槽22A,Bの負荷が大きくなる。しかし、この点は、
乾燥剤量を増やすか、再生流量を増加させることによ
り、対処できる。
However, on the other hand, the inlet temperature of the sorption tanks 22A and 22B becomes high,
The load on the sorption tanks 22A and 22B increases. But this point is
This can be dealt with by increasing the amount of desiccant or increasing the regeneration flow rate.

(3)また、フィルタ18を除くと、大気中の塵芥をケー
ブルに送りこんでしまうので、空気圧縮機12の空気吸入
口にサイレンサ兼用のフィルタ44を設置し、大気中の塵
芥除去を行なうほかに騒音対策も出来る。
(3) Also, if the filter 18 is removed, dust in the atmosphere will be sent to the cable, so a filter 44 also serving as a silencer is installed at the air intake port of the air compressor 12 to remove dust in the atmosphere. You can also take measures against noise.

[2]作用 (1)第2図のt1において、P1(空気だめ30内の圧)が
下限に達すると、空気圧縮機12がスタートし、切換弁20
A,Bが交互に切換わる。
[2] Operation (1) At t 1 in FIG. 2, when P 1 (pressure in the air reservoir 30) reaches the lower limit, the air compressor 12 starts and the switching valve 20
A and B are switched alternately.

なお、P0は圧力制御弁28に入る前の空気圧を示す。Note that P 0 represents the air pressure before entering the pressure control valve 28.

(2)t2において、P1が上限に達したとする。(2) At t 2 , P 1 reaches the upper limit.

従来ならば、ここで空気圧縮機12および切換弁20A,Bを
ストップするのであるが、この場合はそれらの運転を継
続し、同時にバイパス弁42を開く。
Conventionally, the air compressor 12 and the switching valves 20A and 20B are stopped here, but in this case, their operation is continued and the bypass valve 42 is opened at the same time.

(3)すると、たとえば第1a図の場合は、空気圧縮機12
の出力側は、切換弁20A〜バイパス弁42〜切換弁20Bを経
て大気に通ずることになり(実線の矢印45参照)、空気
圧縮機12はブロアとして動作するようになる。
(3) Then, for example, in the case of FIG. 1a, the air compressor 12
The output side of the above will communicate with the atmosphere through the switching valve 20A-the bypass valve 42-the switching valve 20B (see the arrow 45 of the solid line), and the air compressor 12 will operate as a blower.

空気圧縮機12は先の圧縮動作により暖められているの
で、出口空気の温度は徐々に下がってゆくとはいえ依然
として相当な高さを有し、結果として相対湿度の低い温
風を得ることができる。
Since the air compressor 12 is warmed by the previous compression operation, the temperature of the outlet air gradually decreases, but still has a considerable height, and as a result, warm air with low relative humidity can be obtained. it can.

この相対湿度の低い温風が、切換弁20A,B内や配管内を
吹流されることになるので、それらの内部が乾燥する。
The warm air having a low relative humidity is blown in the switching valves 20A, 20B and the pipes, so that the insides thereof are dried.

(4)なお、第1a図の場合、切換弁20Aは空気入口と収
着槽22A口が乾燥され、また切換弁20Bは収着槽22B口と
大気放出の部分が乾燥される。
(4) In the case of FIG. 1a, the switching valve 20A has its air inlet and sorption tank 22A port dried, and the switching valve 20B has its sorption tank 22B port and atmospheric release part dried.

そこで、切換弁20A,Bを切換えて第1b図のようにすると
(破線の矢印46参照)、こんどはそれぞれの反対側が乾
燥される。
Therefore, when the switching valves 20A and 20B are switched so as to be as shown in FIG. 1b (see the broken line arrow 46), the opposite sides are dried.

すなわち、結果として、上記のような3方向弁の場合
は、空気だめ30の圧力が上限に達してから1サイクル以
上の乾燥を行えば、内部が全部乾燥される。
That is, as a result, in the case of the three-way valve as described above, if the drying is performed for one cycle or more after the pressure of the air reservoir 30 reaches the upper limit, the entire inside is dried.

(5)なお、上記の方法をとることにより空気圧縮機12
の運転時間が増加する。
(5) By using the above method, the air compressor 12
Driving time will increase.

しかし、空気の圧縮動作をしないため自己発熱がなく、
寿命に大きく影響することはない。
However, there is no self-heating because it does not compress air,
It does not significantly affect the life.

[他の実施態様] 収着槽22A,Bの入口にある切換え弁は、上記例のほか
に、2方向電磁弁とシャトル弁との組合わせ、5方
向型電磁弁によるもの、など各種のものが用いられてい
る。
[Other Embodiments] In addition to the above example, the switching valves at the inlets of the sorption tanks 22A and 22B include a combination of a two-way solenoid valve and a shuttle valve, a five-way solenoid valve, and various other types. Is used.

そのような場合にも、この考案は適用できる。Even in such a case, the present invention can be applied.

[考案の効果] 乾燥剤非加熱再生方式の乾燥空気供給装置において、前
記収着槽22Aと収着槽22Bの各入口の間を、バイパス弁を
介して接続したので、 上記のような運転をすることにより、空気圧縮機を利用
して水分を蒸発させて凍結を防止することができる。
[Advantages of the Invention] In the desiccant non-heated regeneration type dry air supply device, the inlets of the sorption tank 22A and the sorption tank 22B are connected through the bypass valve. By doing so, it is possible to prevent the freezing by evaporating the moisture by using the air compressor.

したがって、従来のような凍結防止用の加熱手段が不要
になる。
Therefore, conventional heating means for preventing freezing becomes unnecessary.

【図面の簡単な説明】 第1a〜2図はこの考案の実施例に関するもので、 第1a図と第1b図は、切換弁を切換えたときの高温空気の
流れを示す説明図、 第2図はタイムチャート、 第3図は従来技術の説明図。 12:空気圧縮機、14:モータ 16:放熱器、18:フィルタ 20:切換弁、22:収着槽 24:オリフィス、26:シャトル弁 28:圧力制御弁、30:空気だめ 31:減圧弁、32:通信ケーブル 34:圧力スイッチ、36:排水用電磁弁 38:加熱器、40:温度開閉器 42:バイパス弁、44:フィルタ 45,46:温風の流れ
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1a to 2 relate to an embodiment of the present invention, and FIGS. 1a and 1b are explanatory views showing the flow of hot air when the switching valve is switched, and FIG. Is a time chart, and FIG. 3 is an explanatory diagram of a conventional technique. 12: Air compressor, 14: Motor 16: Radiator, 18: Filter 20: Switching valve, 22: Sorption tank 24: Orifice, 26: Shuttle valve 28: Pressure control valve, 30: Air reservoir 31: Pressure reducing valve, 32: Communication cable 34: Pressure switch, 36: Solenoid valve for drainage 38: Heater, 40: Temperature switch 42: Bypass valve, 44: Filter 45,46: Hot air flow

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】空気圧縮機で発生した高圧空気を、切換え
弁を介して一対の収着槽に交互に送り込む、乾燥剤非加
熱再生方式の乾燥空気供給装置において、 前記一対の収着槽の各入口間を、バイパス弁を介して接
続した、乾燥空気供給装置。
1. A desiccant non-heated regeneration type dry air supply device for alternately feeding high-pressure air generated by an air compressor to a pair of sorption tanks through a switching valve. A dry air supply device in which each inlet is connected via a bypass valve.
JP9280389U 1989-08-07 1989-08-07 Dry air supply device Expired - Lifetime JPH0730120Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9280389U JPH0730120Y2 (en) 1989-08-07 1989-08-07 Dry air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280389U JPH0730120Y2 (en) 1989-08-07 1989-08-07 Dry air supply device

Publications (2)

Publication Number Publication Date
JPH0334826U JPH0334826U (en) 1991-04-05
JPH0730120Y2 true JPH0730120Y2 (en) 1995-07-12

Family

ID=31642215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280389U Expired - Lifetime JPH0730120Y2 (en) 1989-08-07 1989-08-07 Dry air supply device

Country Status (1)

Country Link
JP (1) JPH0730120Y2 (en)

Also Published As

Publication number Publication date
JPH0334826U (en) 1991-04-05

Similar Documents

Publication Publication Date Title
NZ571273A (en) Receiving hot compressed gas in pressure vessels with two layers of dessicant and regenerating the dessicant using the heat from the gas
CN103017332B (en) Heat-accumulating and dehumidifying coupled frostless air source heat pump water heater
JPS5934485Y2 (en) vehicle height adjustment device
WO2017036281A1 (en) High efficiency vented clothes dryer having heat pump system
CN208626969U (en) A kind of freezing-micro-heat regeneration absorbent combination drying device
JP2012223684A (en) Adsorption system air dryer
JPH0730120Y2 (en) Dry air supply device
CN101131249A (en) Air-conditioning water heater set
CN115193230A (en) Compressed air drying assembly system and regeneration pipeline temperature control method
CN210993632U (en) Zero gas consumption blast heat absorption machine
JPS6359062B2 (en)
CN218853916U (en) Compressed air drying assembly system
JPS5997462A (en) Defrosting circuit for heat pump
JP2004113867A (en) Dryer equipment and its operation method
JPH11221423A (en) Moisture removing apparatus
JPH0454008Y2 (en)
JPH0428406B2 (en)
RU2136819C1 (en) Device for control of hoisting and digging mechanisms
KR101374083B1 (en) Energy saved compressed air dryer with an adsorption tank and serial connectioned cooling tank and a heating tank
RU1126U1 (en) Device for heating and dehumidifying indoor air
RU2158805C1 (en) Lifting-and-digging mechanism control device
CN106931755B (en) Intelligent air energy shrimp shell drying machine
JPS5849006Y2 (en) Hot water supply and cooling equipment
RU2200680C2 (en) Vehicle air supply system
JPS633394Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term